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1 Introduction 

In this Appendix 10 to Annex 1 background to the probabilistic computations is given. It 
serves as an introduction for those who are not familiar with probabilistic computation 
methods. For actual applications of these techniques in the focal areas the reader is referred 
to: 
 
Annex 1: Nam Mae Kok 
Annex 3: Se Bangfai 
Annex 6: Mekong Delta 
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2 Principles of probabilistic flood 
computations 

2.1 Introduction 

The magnitude of floods in the focal areas is related to a combination of influencing factors. 
The influencing factors can be different for different locations. For the focal areas 
downstream of Phnom Penh these factors are peak flow and flow volume of the Mekong 
River. For areas along Mekong tributaries the influencing factors are the flow in the Mekong 
and the flow in the tributaries.  
 
Since these influencing factors vary from year to year, i.e have a random nature, we will 
refer to them as random variables. Because of the random nature, flood probabilities in the 
focal areas can only be quantified through the application of a multivariate probabilistic 
modelling approach. “Multivariate” refers to the fact that more than one random variable is 
involved. “Probabilistic” refers to the fact that these factors have a random nature.  
 
This chapter serves as an introduction for those who are not familiar with probabilistic 
computation methods. The purpose of these methods is to derive flood probabilities or, 
reversely, conditions related to the T-year flood, i.e. the flood conditions which have a 
probability of 1/T per year to be exceeded in a single year. For T, generally a range of values 
like 5, 10, 20, 25, 50 or 100 years are evaluated.  
 
For the sake of clarity we use simplified examples in this chapter to demonstrate the 
principles of probabilistic computation. We emphasise that the numbers used in these 
examples are hypothetic and used with the sole purpose to demonstrate probabilistic 
computation methods.  

2.2 Example 1: the univariate case 

The univariate case is the situation where the severity of the flood is determined by only one 
random variable. This may be for instance the (annual) peak river discharge or the flow 
volume in the flood season. If we take the example of the peak discharge, it means an 
increase in the peak discharge automatically implies an increase in the severity of the flood 
event. The derivation of the 100-year flood event then “only” comes down to the derivation 
of the 100-year peak river discharge, QP(100). The 100-year discharge is defined as follows:  
 
QP(100) is the discharge level which has a probability of being exceeded equal to 1/100 each 
year.  
 
In general, the T-year discharge is defined as follows:  
 
QP(T) is the discharge level which has a probability of being exceeded equal to 1/T each 
year.  
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High values of T refer to extreme events. So, the higher the value of T, the higher the value 
of the peak discharge, QP(T). In this example, where peak discharge QP is the only variable 
involved, we need to derive the function QP(T). Since the return period, T, is directly related 
to the probability, function Q(T) is referred to as a probability distribution function. 
Alternatively the name frequency distribution function is often used as well, since the 
probabilities and frequencies are strongly related. 
 
Generally these type of distribution functions are derived from extreme value analysis. Most 
commonly, strictly statistical methods are used in extreme value analysis and a parameterised 
probability distribution function is fitted to a set of observed extremes of the target variable. 
Figure 2.1 shows an example of the fit of the so-called “Generalised Extreme Value (GEV) 
distribution function” on observed peak discharges of the Mekong river at location Stung 
Treng. The vertical axis shows possible values of the annual peak discharge at Stung Treng, 
the horizontal axis shows its probability of exceedance. The dots represent observed annual 
maximum flows at Stung Treng, the line is the fitted distribution function.  
 
Once this distribution is available it is very straightforward to derive exceedance 
probabilities for any threshold value of the peak river discharge and, vice versa, river 
discharges that correspond to a certain probability of exceedance. So for instance the 100-
year peak river discharge can be derived directly from this Figure by verifying where the 
distribution function crosses the line x = 1/100 (i.e. x = 10-2). In this example the 100-year 
peak discharge is approximately equal to 75,000 m3/s. Similarly it can be derived that the 
1/10 year (10-1) discharge is approximately equal to 67,000 m3/s. 
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Figure 2.1 Example of a frequency distribution function of river discharge along the Mekong 
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2.3 Example 2: the multivariate case 

2.3.1 Introduction 

If more than one random variable is involved the problem is characterised as “multivariate”. 
As we will demonstrate this introduces some complexities that are not present in the 
univariate case. For the sake of clarity the example in this section will be bivariate, i.e. 2 
random variables are involved. However, the problems and solutions addressed also apply to 
situations with more than two variables involved. 

2.3.2 The need for classification 

In the univariate case the classification of the “severity” of the flood was straightforward. In 
the example of the previous section the severity was directly related to the peak river 
discharge, i.e. an increase in the peak discharge automatically implies an increase in the 
severity of the flood event. For multivariate problems this is not the case anymore as will be 
demonstrated in the following example with two random variables: peak discharge and total 
flow volume (above a certain discharge threshold). Figure 2.2 shows 4 hypothetic 
realisations of these two variables. In comparing these 4 events (years) the following 
observations can be made: 
 
• event 4 is more severe than event 3, because the peak discharge in event 4 is higher 
• event 2 is more severe than event 1, because the peak discharge in event 2 is higher 
• event 4 is more severe than event 2, because the flood volume in event 4 is larger 
• event 3 is more severe than event 1, because the flood volume in event 3 is larger 
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Figure 2.2 Four hypothetic events (years), characterised by realisations of the peak river discharge and the 

flow volume in the flood season. 

The main question that remains is which of the following two events is more severe: event 2 
or event 3? Event 2 has a higher peak discharge, while event 3 has a larger flow volume. 
This means we need additional information and criteria to be able to rank these two events 
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and subsequently be able to derive the T-year flood event (e.g. T equal tot 5, 20 or 100 
years). Generally a “damage” function is used for this purpose. This damage function may 
represent a combination of loss of crops, property, infrastructure and economic productivity. 
Even casualties may be taken into account, although it is always hard to quantify the 
economic value of casualties. In the FMMP we will also consider a much simpler “damage” 
function: the maximum water depth in the flooded areas. If the maximum water level is used 
as criterion we speak of “flood hazard analysis”, if economic damages are considered we 
speak of “flood risk analysis”. 
 
Figure 2.3 shows a hypothetic example of a damage function. The horizontal axis shows the 
peak discharge and the vertical axis the flow volume. The contour lines show the damage as 
a function of these two variables. If the peak river discharge is moderate or low (left side of 
Figure 2.3) no flooding occurs and consequently the damage is equal to zero. On the other 
hand for large peak discharges in combination with large flow volumes, there will be 
damage. Clearly the damage increases with increasing values of volume and peak discharge. 
 
Figure 2.4 shows a similar plot, but in this case the “damage”-function is simply the 
maximum water depth at a certain location in a focal area. Again, for low peak discharges no 
flooding occurs, which means the water depth at this location is equal to zero. For larger 
peak discharges the water depth increases with increasing values of volume and peak 
discharge. Note: this is a simplified example, and that is why the coloured contour lines in 
both figures are linear. In “reality” this is generally not the case.  
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Figure 2.3 Hypothetic example of damage (contour lines) due to flooding as a function of the peak discharge 

and flow volume. 
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Figure 2.4 Hypothetic example of maximum water depth at a certain location in focal area (contour lines) as a 

function of the peak discharge and flow volume. 

 
It is very important to note that plots like Figure 2.3 and Figure 2.4 will be different for 
different locations or areas. In areas where the water depth mainly depends on the flow 
volume the contour lines will be nearly horizontal, whereas in areas where the water depth 
mainly depends on the peak discharge the contour lines will be nearly vertical. The ranking 
of events will therefore differ form location to location and the same holds for the T-year 
flood event! Probabilistic flood hazard computations therefore generally need to be executed 
separately for different locations or areas. 

2.3.3 Derivation of damage functions 

In the previous section it was demonstrated for the multivariate case that: 
 
• a criterion is required to be able to rank events and to identify the T-year flood event; 
• the T-year flood event can be expected to differ for different locations. 
 
With respect to the first bullet, a damage function often is used to assess the severity of flood 
events. This damage function translates the random variables like peak discharge and flow 
volume into damages. In order to derive such a function two types of analysis are required: 
 
1. hydraulic analysis (and simulations) to translate flow characteristics into flood depth; 
2. economic analysis to translate flood depth into damages. 
 
These analyses are depicted in the flow chart of Figure 2.5. In this example, the starting point 
of the hydraulic analysis is a flow hydrograph. If more than one river is involved, multiple 
hydrographs are required. Based on hydraulic analysis of the river system and potential 
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flooded areas a simulation model is produced. The simulation model uses the flow 
hydrographs as input and computes the flood depth (as a function of time) at various 
locations. Subsequently economic damage as a result of the flood is based on an ecomic 
survey of, among others, crops, property, infrastructure and economic productivity. 
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Figure 2.5 Schematic view of the derivation of damage as a function of flow characteristics. 

2.3.4 Identification of the T-year flood event 

In this section it is assumed that there is a damage function, D, available for the location(s) 
of interest. The T-year flood event is then related to:  
 
“the threshold damage DT which has a probability of exceedance of p=1/T per year” 
 
In order to derive DT a relation between damage, D, and probability of exceedance, p, is 
required. The common approach is to iteratively derive the probability of exceedance of a 
number of well-chosen threshold values of damage function D: D1, D2 … Dk. For example in 
case of Figure 2.3 these threshold values may be 5, 10, 15, …,100 (million USD). Figure 2.6 
shows the possible outcome of such an analysis (section 2.3.5 explains how these numbers 
can be obtained). The squares show the computed probabilities for the individual threshold 
values of D. The dotted line is a fit through the squares and with this line the relation can be 
reversed: for any probability of exceedance the corresponding damage can be obtained. So 
for example the 100-year damage D100 can simply be derived by checking were the dotted 
line crosses the horizontal threshold of 1/100. In the example of Figure 2.6 this occurs at 
around 70 million USD, so D100 =70 million USD. 
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Figure 2.6 Hypothetic relation between damage and annual probability of exceedance 

2.3.5 Probability of exceedance for an individual threshold value 

We will now describe how the frequency of exceedance of a single threshold value, D*, of 
damage function D is determined (i.e an individual dot in Figure 2.6). Suppose the threshold 
value D* equals 80 (million USD). This amount is represented by the yellow line in Figure 
2.3. The area to the upper right of this yellow line consists of all combinations of peak 
discharges and volumes for which the resulting damage exceeds D*. This is also 
schematically depicted in Figure 2.7.  
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Figure 2.7 Schematic representation of the total damage flooding as a function of the peak discharge and flow 

volume. The shaded area represents combinations for which the damage exceeds the threshold 
value of D* million USD. 

The red line in Figure 2.7 connects all combinations of peak discharge and volume that will 
lead to a damage of exactly D*. The shaded area shows all combinations that lead to a 
damage that exceeds D*. This is the area of interest since the probability of exceedance of 
D* needs to be derived. It is therefore relevant to derive the location of this area and/or the 
red line that divides the area where D> D* from the area where D≤ D*. This may seem 
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straightforward at first, but generally that is not the case. In order to derive Figure 2.7 a large 
number of hydrodynamic model simulations need to be executed for different combinations 
of peak discharges and volumes. Furthermore, an economic survey of the area of interest is 
required (see section 2.3.3). 
 
Figure 2.8 shows an example of a 2D-grid of combinations which may be selected to execute 
hydrodynamic model simulations and thus explore the damage function as a function of peak 
discharges and volumes. After executing the hydrodynamic simulations and economic 
analysis, the damages at the grid points is are known. In order to estimate the position of the 
red line these results of the grid points need to be interpolated on a 2D-grid. 
 
In order to derive the probability of exceedance of D* we need a procedure that basically 
performs the following two tasks: 
 
1. find the “failure domain”, i.e. the area where D>D*; 
2. determine the cumulative probability of occurrence of all combinations in the failure 

domain. 
 
This shows that the probabilistic approach consist of a combination of deterministic 
computations (step 1) and statistic computations (step 2). We demonstrate the concept by 
applying it to a very simple problem: a game of two dices. Although there seems to be no 
relation between floods and dices, the basic probabilistic approach is actually very similar. 
The reason to show the example of two dices is that it makes the basic concept of 
probabilistic computation easy to understand.  
 

D = D*

peak discharge (m3/s)

Vo
lu

m
e 

(B
C

M
)

 
Figure 2.8 Schematic representation of the 2D grid of hydrodynamic computations. 

In the example we need to derive the probability that the sum of the outcome of two dices 
equals or exceeds a total of 10. So the sum of the two dices can be considered as the 
“damage function” D, and the objective is to derive P(D≥10). Figure 2.9 shows the possible 
outcomes of the two dices. The horizontal axis shows the set of possible outcomes of the first 
dice (1, 2, 3, 4, 5 or 6), the second axis shows the same for the second dice. Notice the 
similarity between Figure 2.9 and Figure 2.8! 
 



MRC Flood Management and Mitigation Programme Component 2: Structural Measures and Flood Proofing 
 

Hydrological and Flood Hazard in Focal Areas A10 - 10 - July 2009 
 

The total number of combinations shown is 6×6=36, which means each combination has a 
probability of occurrence of 1/36. The red triangle shows all 6 combinations for which 
(D≥10). Since each combination has a probability of occurrence of 1/36 it can be directly 
seen that P(D≥10) = 6/36 = 1/6. 
 

 
Figure 2.9 Possible outcomes of two dices x and y 

 
Now for the random variables in the Mekong basin basically the same procedure is applied 
as in the example of the two dices. However, the actual implementation of the procedure is 
more complex and time consuming because of the following reasons: 
 
• in some cases more than 2 random variables are involved; 
• probability distribution functions are generally continuous and more complex than for 

dice; 
• random variables in nature are often correlated; 
• time-consuming hydraulic model runs need to be executed. 
 
For these reasons it is generally not possible to find an exact analytical solution for these 
type of problems. Therefore, the probability of exceedance has to be based on approximation 
techniques. There are several methods available for this purpose, such as: 
 
1. numerical integration 
2. crude Monte Carlo;  
3. FORM (First Order Reliability Method).. 
 
Below these methods are briefly described. 

Numerical integration 

This method explores the n-dimensional space of possible realisations (where n equals the 
number of random variables) by dividing it into a number of discrete n-dimensional 
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“cubicals” and related grid points. In two dimensions the grid will look somewhat like the 
dots in Figure 2.10. Each gridpoint represents a combination of realizations of the n random 
variables. For each gridpoint the following is computed: 
 
a) the probability of occurrence; 
b) whether or not the grid point is in the “failure domain” i.e. leads to an exceedance of the 

threshold damage D*. 
 
The probability of exceedance of D* is equal to the sum of probabilities of all grids in the 
failure domain. In Figure 2.10 the gridpoints in the failure domain are circled in red. For 
each combination in the failure domain the probability of occurrence is computed, based on 
the combined distribution function of the underlying random variables. The sum of these 
probabilities is the estimated probability of exceedance of D*.. 
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Figure 2.10 Schematic view of numerical integration 

Crude Monte Carlo 

Crude Monte Carlo (MC) is relatively straightforward to apply and still, if enough samples 
are taken, very accurate. In essence, MC involves a large number (N) of deterministic model 
simulations, where for each individual simulation the random parameters are sampled from 
their respective probability distribution functions. For each of the N simulations the resulting 
damage is derived. The probability that the damage exceeds D* can simply be estimated by 
counting the total number of simulations for which D>D* (M) and divide them by the total 
number of samples (N) (see Figure 2.11). The name “Monte Carlo” refers to the famous 
casino in Monaco. The use of randomness and the repetitive nature of this method are 
analogous to the activities conducted at a casino, i.e. repetitive activities with a rondom 
outcome like the throw of the dice.  
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Figure 2.11 Schematic view of a Monte Carlo simulation 

 
Example 1: an example of a Crude Monte Carlo (MC) simulation will clarify the method. 
Table 2.1 shows 20 combined MC-realisations for two random variables, peak discharge 
(1000 m3/s) and flow volume (BCM), sampled from their combined distribution function. 
We emphasise that these numbers are hypothetic and used with the sole purpose to 
demonstrate the Monte Carlo procedure. 
 
In 3 out of 20 cases the peak discharge and flow volume are such that the total damage 
exceeds the threshold value D* = 80 million USD. This means the estimated probability of 
exceedance equals 3/20 each year. Note that in this example a relatively small amount of 
(20) samples is used. Generally, much more samples are used in order to reduce the 
uncertainty in the resulting estimate of the exceedance probability. 
 
Table 2.1 Monte Carlo realisations with hypothetic numbers 

nr. peak discharge volume damage damage>80?
 1000 m3/s BCM million USD yes/no 
1 34.8 12.0 0.0 no
2 69.2 122.7 131.9 yes
3 32.7 20.8 0.0 no
4 58.3 44.8 43.1 no
5 36.1 10.8 0.0 no
6 25.7 2.4 0.0 no
7 32.2 5.5 0.0 no
8 53.6 89.9 83.5 yes
9 59.9 51.3 51.2 no

10 48.7 64.0 52.7 no
11 36.2 12.4 0.0 no
12 41.5 20.0 1.5 no
13 44.4 37.8 22.2 no
14 35.4 19.8 0.0 no
15 25.8 3.2 0.0 no
16 52.6 57.2 49.8 no
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nr. peak discharge volume damage damage>80?
17 51.6 24.4 16.0 no
18 71.7 74.0 85.7 yes
19 40.1 14.1 0.0 no
20 30.3 5.7 0.0 no

 
Example 2 
 
Since the sampling in Monte Carlo is random, the outcome is also random. This may be hard 
to understand, or, accept. However if a large enough number of samples are taken, the 
random nature of the outcome decreases. In statistics, this is known as the “law of large 
numbers”. This is demonstrated by the example below where the two dice are thrown 
repetitively.  
 
The possible outcome for the sum of two dice ranges from 2 (two times 1) to 12 (two times 
6). The average outcome is 7, which can be verified by throwing the two dice a large (N) 
number of times and subsequently taking the average of the outcome. Figure 2.12 shows the 
results of such an experiment. The dice where thrown 10,000 times and the average as a 
function of the number of throws is shown (blue line). For the purpose of validation the 
experiment has been executed a second time (pink line).  
 
Figure 2.12 shows that for a small number of throws (=10), the outcome varies. The first 
experiment (blue line) started with a couple of higher throws, which caused the average to 
significantly exceed the value of 7. Experiment 2, on the other hand, started of with a couple 
of low throws, which caused the average to stay below 7. However, for an increasing number 
of throws the differences with 7 clearly diminish. In other words: the law of large numbers 
causes the outcome to get increasingly close to the real value. 
 
This example shows that as long as a “large enough” number of samples are taken the 
outcome of the procedure is reliable. At the same time it shows one should be careful not to 
take too less samples. While executing a Monte carlo analysis it is therefore worthwhile to 
examine the outcome by making plots similar to Figure 2.12. A (hypothetic) example is 
shown in Figure 2.13, where the probability of exceedannce of a flood level is estimated by a 
large number of Monte Carlo simulations. If the result still shows a relatively large variation 
over the whole range of the figure, additional samples should be taken. In this case, however, 
the results on the right side of the figure converges to the probability of approximately 0.05 
(1/20) per year. 
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Monte Carlo analysis for the sum of two dice 
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Figure 2.12 Monte Carlo sampling procedure for the sum of two dice. The average outcome of the sum of two 

dice is depicted as a function of the number of throws. 
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Figure 2.13 Monte Carlo sampling procedure for the derivation of the probability of exceedance of a certain 

flood level.   

 

FORM 

FORM: FORM is short for First Order Reliability Method. This method derives the design 
point with an iterative procedure and subsequently linearises the limit state function, D=D*, 
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in order to derive the probability of exceedance of D*. The design point is the combination 
of realisations of the involved random variables for which: 
 
1. D=D*, i.e it is part of the limit state; 
2. of all combinations that form the limit state it has the highest probability of occurrence. 
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Figure 2.14 Schematic view of a FORM computation 

 
Figure 2.14 shows a schematic view of a FORM computation. It shows the limit state (red 
curve), the design point (black dot) and the linearised limit state (straight black line). The 
advantage of the linearization is that the probability of exceedance of D* can be estimated 
straight away, without further exploration of the area where D>D*. The disadvantage is that 
this straight line is not the true limit state, i.e. an error is introduced in the estimated 
probability of exceedance. In most situations this error is relatively small though. This is 
because in the neighbourhood of the design point the linearised limit state function is very 
close to the actual limit state function. Since the design point has the highest probability of 
occurrence of all points on the limit state, the maximum contribution to the probability of 
exceedance of D* is generally in the neighbourhood of the design point. Therefore the 
estimate based on the linearised function is generally very accurate.  
 
The design point can be considered as the most likely combination of realizations of random 
variables that will lead to an exceedance of D*. Generally FORM is applied with a set of 
standard normally distributed random variables u1, …un that correspond with the “real” 
random variables X1, ..Xn. The transformation from u to X or vice versa is done by setting 
equal their respective probability of non-exceedance: 
 
 Fi(xi) = Φ(ui) 
 
Where Fi is the distribution function of variable xi and Φ is the standard normal distribution 
function. The u-variables have a mean of 0 and a standard deviation of 1. Furthermore they 
are mutually independent. The advantage of the transformation to u-variables is that is gives 
a clear interpretation of the design point (see Figure 2.15). In the u-space, it is the point on 
the limit state that is closest to the origin. 
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Figure 2.15 Design point in u-space 

The distance, β, from the design point to the origin is the reliability index. Large values of β, 
indicate large deviations of u-values from their mean (0) and therefore extreme events. The 
probability of failure is computed directly from β: 
 

P(D>D*) ≈ P(DL > D*) = Φ(-β) 
 
Where DL is the linearised version of damage function D in the design point:  
 
DL = B + A1 u1 + … An un 

Rationale 

The above described methods are all approximation techniques, necessary because an exact 
analytical solution cannot be derived. Naturally, the error introduced by the approximation 
should be as small as possible. Generally, these errors are relatively small compared to errors 
in the measurements, hydraulic modelling or estimates of (economic) damage. 
 
The error in numerical integration depends on the size of the intervals between the grid 
points: the smaller the intervals, the smaller the error. For Monte Carlo the error decreases 
with increasing number of (N) samples. So, in theory the approximations of these two 
techniques are exact if the grid intervals are infinitely small (numerical integration) or N is 
infinitely large (Monte Carlo). However, this is always at the expense of the computation 
time, since this requires a large amount of hydraulic model simulations. And since the 
available computation time is always limited there will always be some error. 
 
FORM has the advantage that it requires relatively little computation time. The disadvantage of 
this method is that the iterative algorithm to find the design point sometimes does not converge 
and results are not always reliable. This is especially the case if the relation between the input 
and output of the simulation model is highly non-linear. 
 
The selection of the “best” approximation technique, i.e. the technique which introduces the 
smallest error within reasonable computation time depends on the problem under consideration. 
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2.4 Flood hazard versus flood risk 

In flood hazard analysis the focus is on hydraulic features. With respect to the previous 
examples this means only probabilities of flood water levels are derived and no damages are 
considered. In flood risk analysis the combination of water levels and damages are 
considered. The previous sections showed examples of probabilities of exceedance of flood 
both water levels and or damages. It shows that the basic principles of probabilistic 
modelling are the same for flood hazard analysis as for flood risk analysis.  


