Overview of Recent Mekong River Basin Floods

Third Annual Flood Forum
Vientiane, Lao PDR
7-8 April 2005

Main Objectives

1. To provide a preliminary overview on the recent floods based on limited data and information received so far
2. To initiate the invitation for increasing timely data and information sharing among the countries in the region for a better understanding of floods occurrence and their impacts in the region

Today's Topics

1. Data Used and Analytical Tool

Dafia Used
$>$ Archiving and operational data
$>$ Daily data up to Mar 05
> Rainfall from 16 sta.
$>$ Flows and water level from 8 sta.

Analyyical Tool
> Decision Support Framework (DSF)

2. Wet season and flood analysis

Vientiane City Centre. September. 1966.
Central Business Area under water for 5 weeks.
Floodpeak $=26000$ cumecs. (approximately a 1 in 100 year event.)

Hydrograph

Chiang Saen-Pakse

June-October

A/NABLEDEN

Chiang Saen Vater level of Mekong at Chiang Saen

Water level of Mekong at Mukdahan

Water level of Mekong at Pakse

Hydrograph

Kratie-Tan Chau

June-October

A/NABLEDEVI

Wet Season Duration

Flood Event Analysis Tool used to define tentative threshold value and wet season

Threshold value= e.g. 50\% of flow values over a period of 01/ 01/ 1960-28/ 03/ 2005

Wet Season Duration

Chiang Saen

Flow event over threshold

14May 29/May 13/Jun 28/Jun 13/Jul 28/Jul 12/Aug 27/Aug 11/Sep 26/Sep 11/Oct 26/Oct 10/Nov 25/Nov 10/Dec 25/Dec
Day in Year

[Th=1730cumecs, MinEvLen=1, MinIntLen=0]

Wet Season Duration Analysis

Start Date and End Date

Chiang Saen

: Fvent Start Date Δ nalvcic

: Event End Date Analysis

[^0]
Annual Flood Peak

Chiang Saen

: Peak Value Data

Chiangsen_obs:[Th=1730cumecs, MinEvLen=30, MinIntLen=30],Period: Freq. Distribution:

Flood Frequency Analysis

Chiang Saen

Annual Flood Frequency Analysis

Chiangsen_obs - Freq. Distribution: Gumbel (EV1) \& GEV

| \sqrt{V} |
| :--- | :--- |
| $\sqrt{ }$ |
| |\quad| Chiangsen_obs - Hazen (1960-2004) $\sqrt{ }$ |
| :--- |
| GEV Chiangsen_obs - Hazen |

Flow Volume

Chiang Saen

Comparison Wet Season flow Volume at Chaingsen

Summary

Station	Indicators	Avg.	1978	2000	2001	2002	2003	2004
Chiang Saen	Duration (Days)	196	189	207	237	242	148	179
	Start Date	30-May	15-May	15-May	13-May	14-May	07-Jun	20-May
	End Date	05-Dec	20-Nov	08-Dec	05-Jan-02	11-Jan-03	02-Nov	15-Nov
	Peak (cms) Tr (yr)	10,522	$\begin{aligned} & 11,400 \\ & 3 \end{aligned}$	$\begin{aligned} & 10,700 \\ & 2 \end{aligned}$	$\begin{aligned} & 10,700 \\ & 2 \end{aligned}$	$\begin{aligned} & 12,700 \\ & 4 \end{aligned}$	$\begin{aligned} & 6,880 \\ & <2 \end{aligned}$	$\begin{aligned} & 10,715 \\ & 2 \end{aligned}$
	Volume(m3)	6.84E+10	8.58E+10	8.55E+10	$8.54 \mathrm{E}+10$	7.31E+10	4.73E+10	7.00E+10
Pakse	Duration (Days)	187	188	202	203	207	161	170
	Start Date	04-Jun	28-May	14-May	26-May	23-May	03-Jun	29-May
	End Date	05-Dec	02-Dec	02-Dec	15-Dec	16-Dec	11-Nov	15-Nov
	Peak (cms)	36,807	56,000	45,148	42,318	39,343	34,159	38,556
	Volume(m3)	3.20E+11	4.02E+11	4.01E+11	3.88E+11	3.97E+11	$2.59 \mathrm{E}+11$	3.09E+11

Kratie	Duration(Days)	183		216	206	213	174	162
	Max. WL (m)	21.45		23.08	23.37	22.97	20.98	21.19
Phnom Penh	Duration(Days)							
	Max. WL (m)	8.6		11.21	10.77	10.09		

Seasonal Flood Hydrograph Volume

Figure 5.1 The flood history of the Lower Mekong Basin 1960 to 2003. The analysis is based on a statistical analysis of the annual volumes of flow during the six flood months (June to November).

Seasonal flood hydrograph volume (SFHV) \square SFHV below "normal", less than the 1:2 yr ARI
SFHV> 2 and < 5 yr ARI
WII SFHV>5 and < 10 yr ARI
\square SFHV> 10 and < 20 yr ARI
SFHV> 20 yr ARI

Overview Mekong Hydrology, November 2004, p. 35

3. Rainfall conditions

Rainfall Conditions

Jun-Feb
A/NABLEDEVI

Rainfall Conditions (con't)

Over the Basin

Jun-Feb

-Rainfall average from 16 sites across the lower Mekong Basin

KHON KAEN : Historical context of rainfall in 2004

Regionally during 2004, rainfall during the first 9 months of the year was generally above average

However, during the $4^{\text {th }}$ quarter of the year there was little or no rainfall, indicating an uncharacteristically early end to the 2004 wet season.

Taking the year as a whole, however, total rainfall during 2004 was average.

Rainfall (mm)	$1^{\text {st }}$ quarter Jan - Mar	$2^{\text {nd }}$ quarter Apr - Jun	$\begin{aligned} & 3^{\text {rd }} \text { quarter } \\ & \text { Jul - Sep } \\ & \hline \end{aligned}$	$4^{\text {th }} \text { quarter }$	Year
Average 1950-2004	60	410	620	130	1220 mm
2004	80	520	625		1227 mm
\% average	133\%	127\%	100\%	<2\%	100 \%

Seasonal \% of normal rainfall

October $1^{\text {st }} 2004$
to
March 30 th 2005

Although the image indicates less than 50\% of normal seasonal rainfall.
...over most of NE Thailand and Central Laos the proportion was in fact between 0\% and 10% of normal

Source: USDA Website:www.fas.usda.gov

4. Conclusion and Recommendations

- Timely data and information sharing among the countries in the region is indispensable for further detailed studies of flood occurrence and their impacts.
- During 2003 wet season, Mekong water levels are lower than the average while fluctuate around the normal during the wet season in 2004.

Flood peaks and flow volumes in 2003 and 2004 wet seasons are slightly below or comparable with the average value.

- Rainfall in basin was found to be lower than the normal esp. during the end of wet season after September in 2003 and 2004, possibly resulting the lower than normal flows in the consequent dry seasons.

4. Conclusion and Recommendations

Time series analytical tool in DSF is useful to analyse flood characteristic.

For a better understanding in the flood occurrences and their impacts, more comprehensive studies should be carried out on:

- Bivariate distribution of annual flood peak and volume
- Spatial rainfall distribution
- Flood duration map, flood depth map, salinity intrusion map and etc.
oStatus of reservoir lake as compared to average, maximum and minimum level
o etc...

Mekong at Vientiane: Bivariate distribution of annual flood peak and volume. Note the 1966 event compared to the 1: 100 year bivariate relationship between peak \& volume

4. Dry Season and Low flow analysis

- Hydrographs
- Low flow frequency analysis

Hydrograph

Chiang Saen-Pakse

Mukdahan

Water level of M

 2004-2005

Water level of Mekong at Chiang Saen

November-May

season (2003/04) at present

Mekong water levels fluctuate around the normal level, slightly higher than previous year dry

Upper Part

of Mekong at Pakse
Pakse

$-2003-04$	2004-05	- Average1980-03
$-1992-93$	$-2001-02$	- Minimum WL

$\begin{aligned} & \text { 工 } 2003-04 \\ & \text { 工 } 2001-02 \\ & \text { Average1980-03 } \end{aligned}$	

Hydrograph

Kratie-Tan Chau

November-May

Frequency Analysis

Water Level

Return periods for low water levels in February 2005

Station	Data	Water Level in February	
		Min	Mean
Chiang Saen	$1961-2004$	<2	<2
Nongkhai	$1960-2004$	9	3
Mukdahan	$1960-2004$	4	3
Pakse	$1960-2004$	2	<2
Kratie	$1980-2004$	<2	<2
Kg.Cham	$1960-2004$	8	7
Phnom Penh	$1960-2004$	23	29
Tan Chau	$1980-2004$	49	16

Conclusion

- Water levels in upper part (from Chiang Saen to Kratie) fluctuate around the normal level while very low compared with the normal level in lower part (from Kompong Cham downward)
- Comparing with previous year, water level at present slightly higher in the upper part (Chiang Saen to Kratie) but comparable or slightly worse in the lowen part (from Kompong Cham downward).
- More intensive rainfall data are indispensable for detailed analysis. Low flows are possibly a result of low rainfall especially during the end of 2004 wet season

[^0]: $\sqrt{\square}$ Chiangsen_obs:[Th=1730cumecs, MinEvLen=30, MinIntLen=30],Period: (60-04)

