The Socialist Republic of Viet Nam Winistry of Natural Resources and Environment

National Hydro-Meteorological Service of Vietnam

National Center for Hydro-Meteorological Forecasting

Trung tom Dù bo KhÝ t-îng Thny vin Trung -ng

http://www.nchmf.gov.vn http://www.kttv.gov.vn

MISSIONS

- Monitor Hydro-Met. conditions in Vietnam territory and the related areas.
- Perform operational forecasts and disseminate Hydro-Met forecasts, warnings, and information.
- Organize and construct Hydro-Met. info.
 network for national forecasting and international data dissemination (GTS)
- Provide Hydro-Met services on requests of different national and international organizations

MISSIONS

- Apply new technologies and carry out researches to improve forecast skill and quality.
- Participate in training, guiding, and improving professional skills on Hydro-Met. forecasts and information.
- Construct and compile the guidelines and technical procedures for Hydro-Met. forecasting operations.
- Collaborate internationally on Hydro-Met.
 forecasting and related issues.

Structure

Ministry of Natural Resources and Environment

national Hydro-Meteorological Service of vietnam

National Center for Hydro-Meteorological Forecasting

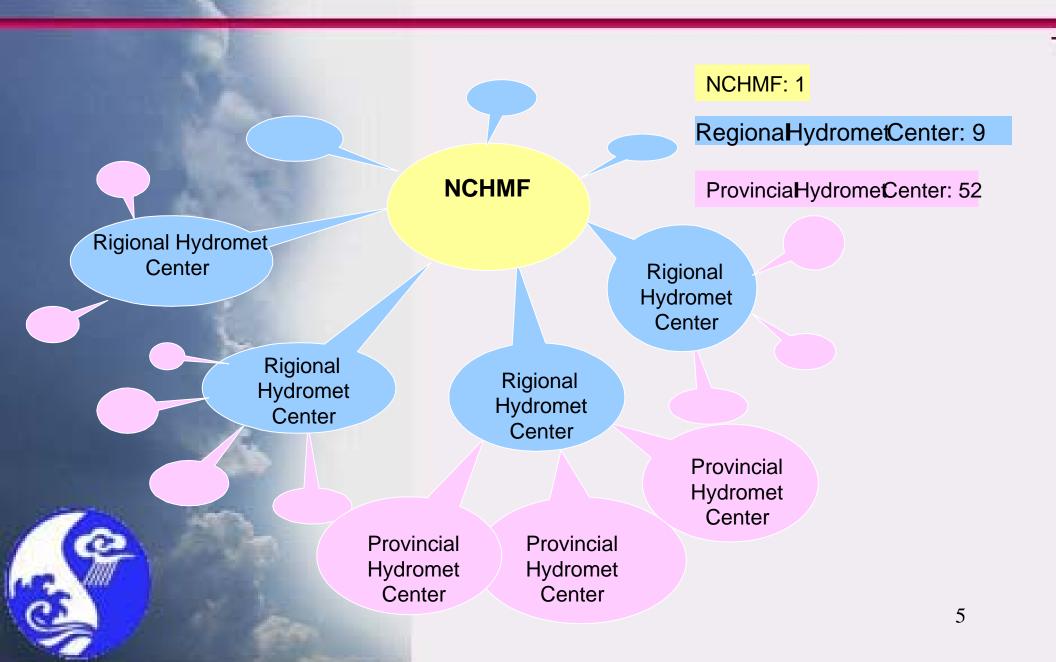
Short-range Weather Forecast Div.

Hydrological Forecast Div.

Research & Development Div.

Med. & Long range Met. Forecast Div.

Information System Div.


Computer System Div.

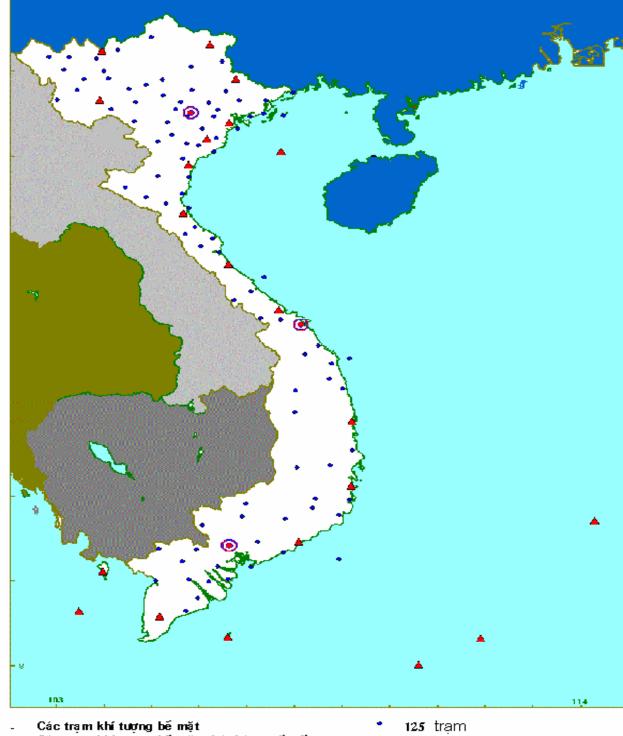
Administration Division

NCHMF

Three level system of HYDRoMeteorological Forecast in Vietnam

Mapof regional hydrometeorolo-gical centers

System of hydro-meteorological forecasts


NCHMF is responsible for providing information on hydro-meteorological, marine forecasts for the needs of natural disaster prevention and preparedness, social and economic activities.

The system of hydro-meteorological forecasts includes three levels:

- Central level realized by National Center for Hydro-Meteorological Forecasts
- Regional level realized by Regional Hydro-Meteorological Forecasts Centers
- Provincial level realized by Provincial Hydro-Meteorological Forecast Stations

Data information collection, processing for operational forecast

- -International Station **Network**
- -National Telegraphic **Station Network** consisting of:
- + 132 synoptic
- + 76 rainfall stations.
- +186 hydrologic
- eorological

- Các tram khí tương bế mặt phát báo quốc tế
- Các tram khí tượng bể mặt + cao không phát báo quốc tế

3 tram

26 tram

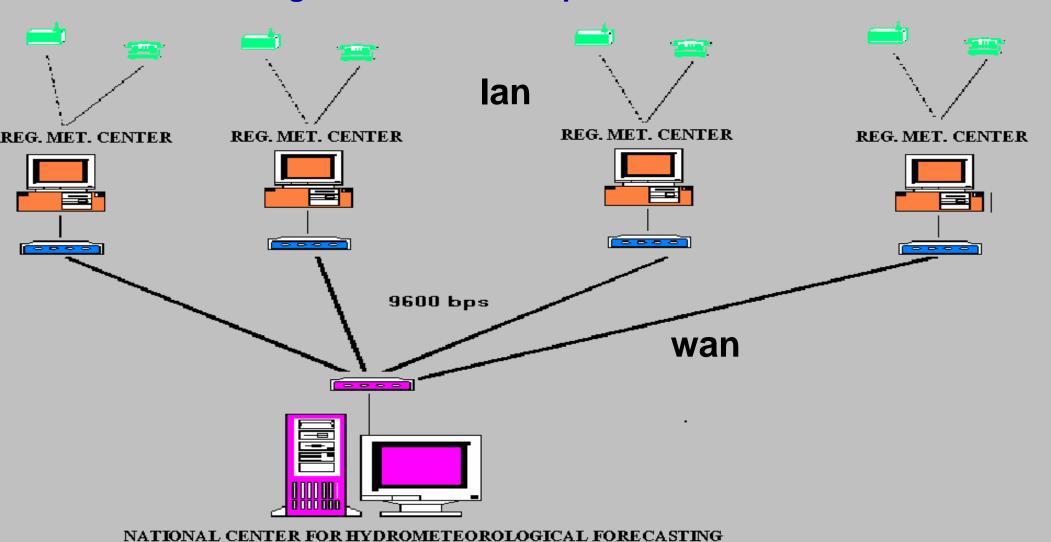
+ 5 weather radar stations.

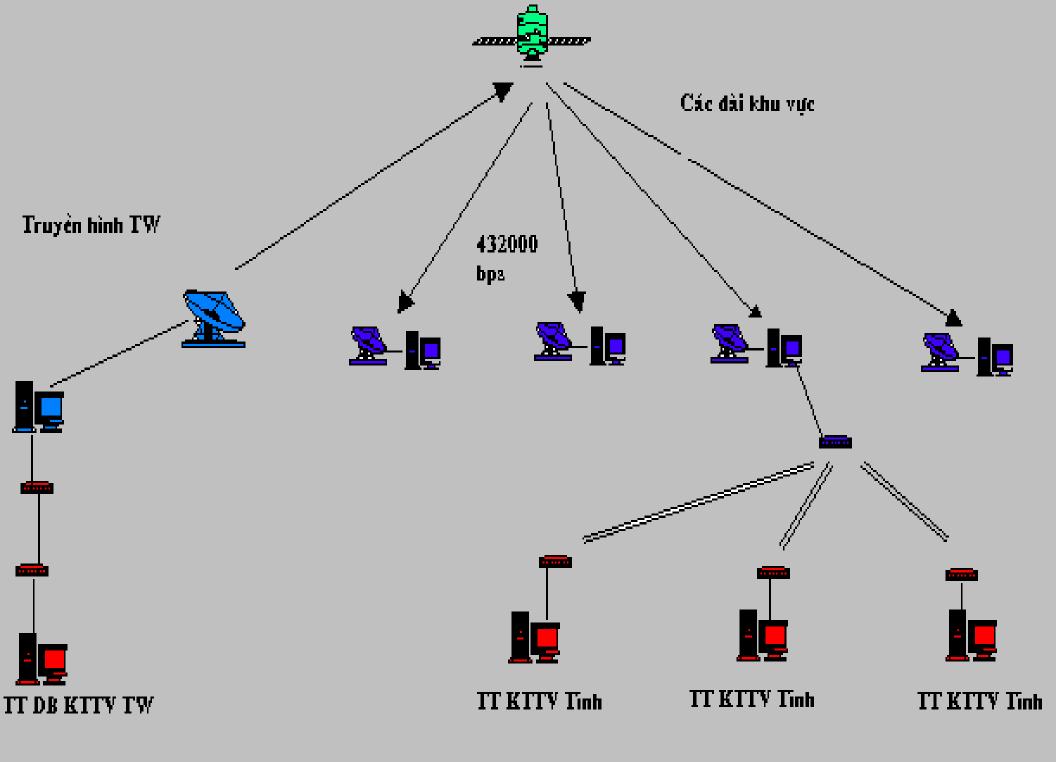
+ 3 low resolution satellite stations

+ 1 high resolution GMS and NOAA satellite stations.

communication

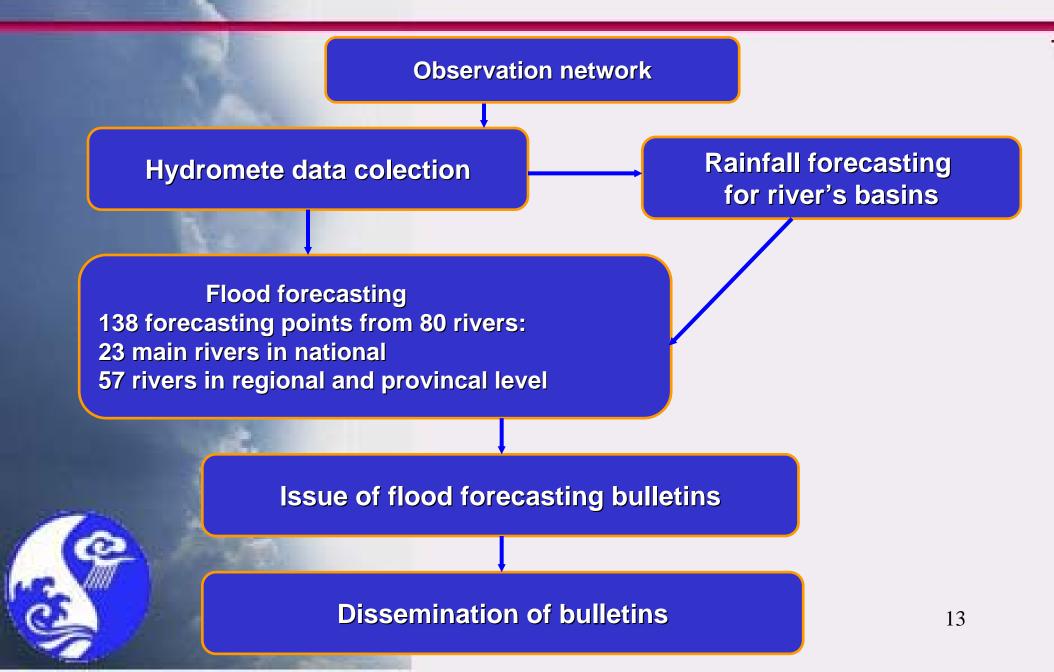
3 channels connected to GTS:


- Hanoi Moscow: 100 baups
- Hanoi Beijing: 75 baups
- Hanoi Bangkok: 1200bps
- PCVSAT: Hanoi Beijing: 9600bps



National communication network

(9 REG. MET. CENTERS)


The hydrometeorological data from all stations can be received within 30 minutes through information computer LAN and WAN network

Inserting Hydromet data into TV Satellite

Flood forecasting system

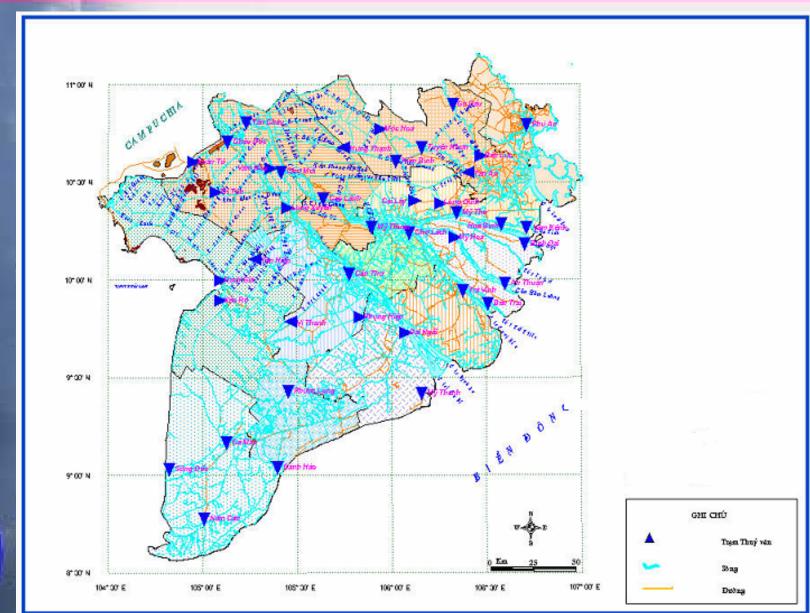
Hydrological bulletins

- ➤ During flood season: 1 time/day
- Flood summary: According typhoon-flood alert regulation
- ➤ Medium-term flood forecast: 1 time/5 day (during flood season), 1 time/10days (during dry season)
- Monthly and seasonal forecasts
- Drought forecast

Dissemination of forecasting bulletin

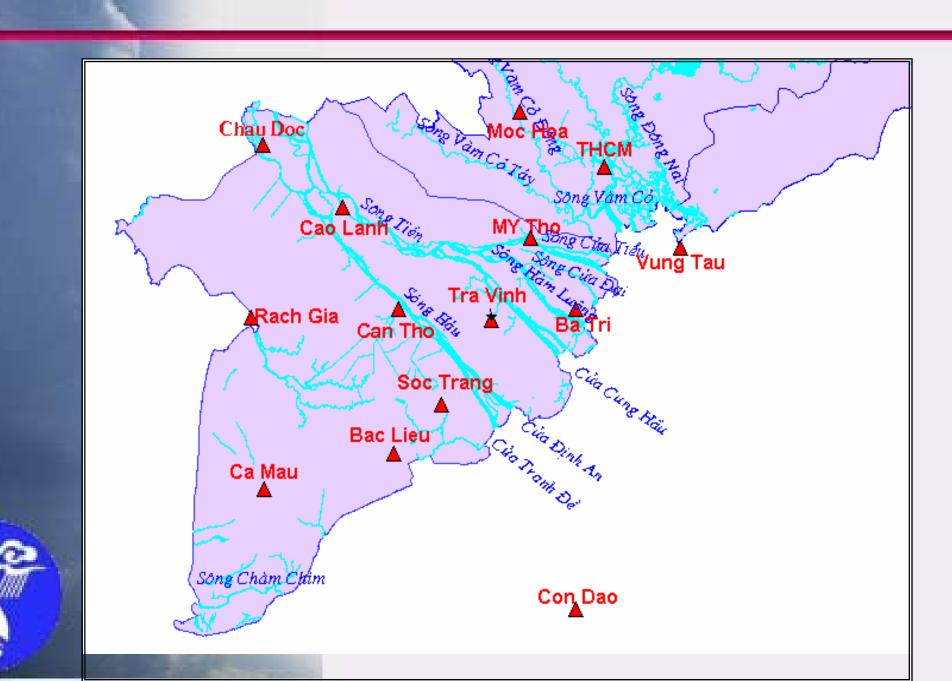
- Weather, flood forecasting and information on tropical storms and depression bulletin is provided to TV, Radio broadcasting agencies, some central daily newspapers as well as posted on the website of www.nchmf.gov.vn
- Regional hydromet centers and provincial hydromet forecasting centers daily provide provincial flood and storm control committees, local TV and radio broadcasting agencies with hydromet forecasting bulletin.
- Information bulletin on storm, tropical depression and flooding is delivered directly to leading communist party bodies, National Assembly, Government and relief providing organizations

Flood forecasting in lower part of Mekong river


NCHMF has been carrying out flood forecasting along the mainstream Mekong River. Water level forecasts are produced for 2 stations of Tan Chau and Chau Doc for 5 days in advance and disseminated to the Central Committee for Flood and Storm Control and Governmental Authorities and to RHMC South Vietnam.

Collection of hydrometeorological data

For the flood operational forecasting activities in lower Mekong, the National Centre for HMF collects data from about 60 water level stations and 70 rain-gauge sites (on the mainstream Mekong River, on highland and in MK delta of Vietnam) from other sources.

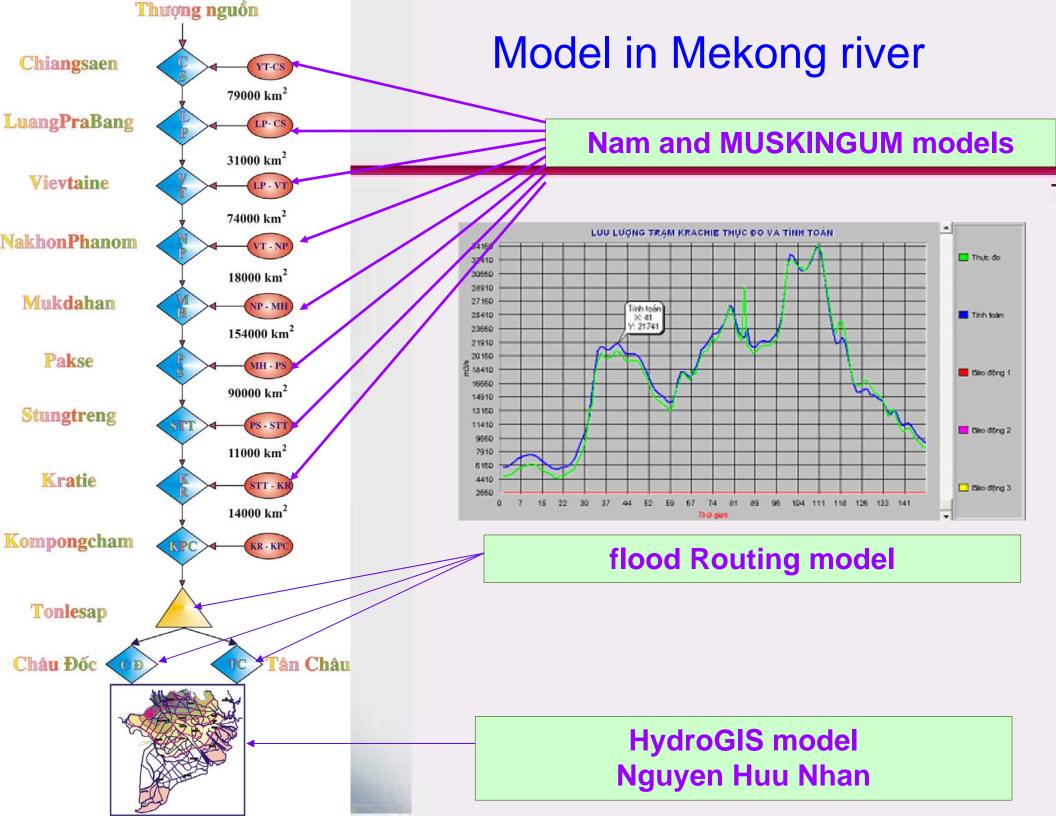


Hydrological station network in Mekong delta in vietnam

Meteorolo-gical station network in Mekong delta in vietnam

Flood Forecasting in Mekong delta in vietnam

The temporal nature of forecast information for floodplain management need to be considered at three different scales


- Short-range flood forecast bulletins:
 5-day River's water level forecasts
- Medium range forecasts bulletins:
 10 15 days
- Long range forecasts bulletins:

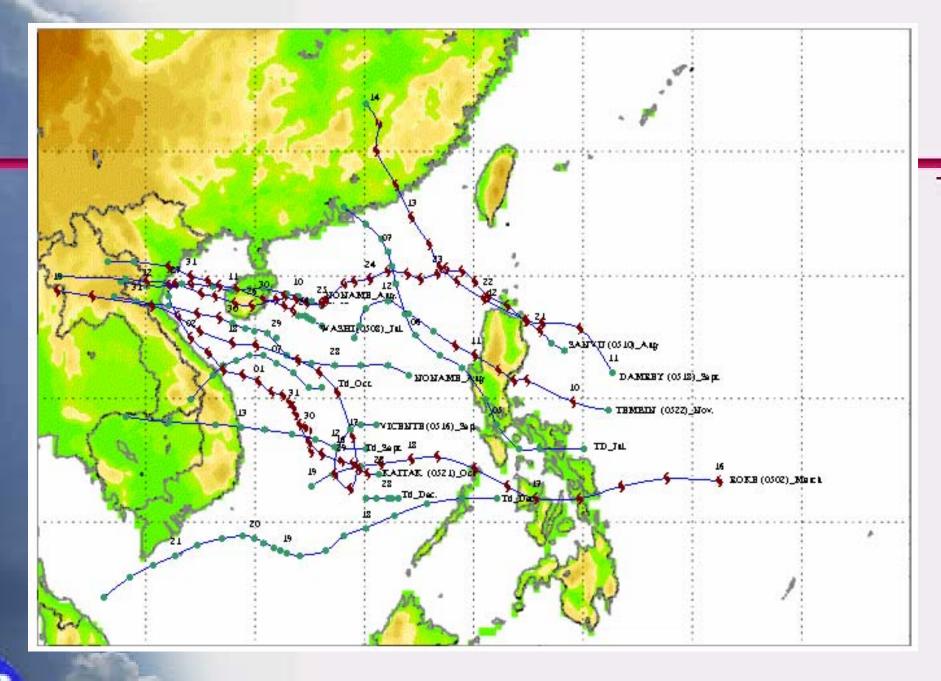
 Long-term hydro-met forecasting bulletin is released
 monthly and seasonal

Flood forecasting is done daily from June to November

Forecasting techniques

- •Meteorological forecasting mainly made using synoptic methods in combination with world meteorological forecasting products.
- •Numerical Rainfall Forecasting models such as HRM, ETA have been applied in VN.
- Rainfall-runoff models, method of corresponding stage and multivariable regression have been used to conduce short-term river forecasts.
- and Hydrodynamic models like SSARR, TANK, and Hydrodynamic models have also been used ecasting water level in lower of Mekong river

operational rainfall and flood forecasting for disaster prevention and mitigation in 2005


Introduction

- Flood season of 2005 peaceful creating favourable conditions to the riparian people, particularly, those in the lower parts of the Mekong Basin
- It caused some damage to Cuu Long Delta: 44 deaths, mostly were children, 2,723ha cultivated land was submerged and damaged.

1. Overview on 2005 rainfall and flood in the lower mekong delta

The weather condition

- There were 9 storms, 5 tropical depressions in the East Sea, of which 5 storms and 2 tropical depressions affected directly to the Lower Mekong river basin;
- Tropical converging band was not as strong as that in the years with relatively big flood;
- South-westerly wind took place in one moth later than long-term average and was normal one.

Raifall

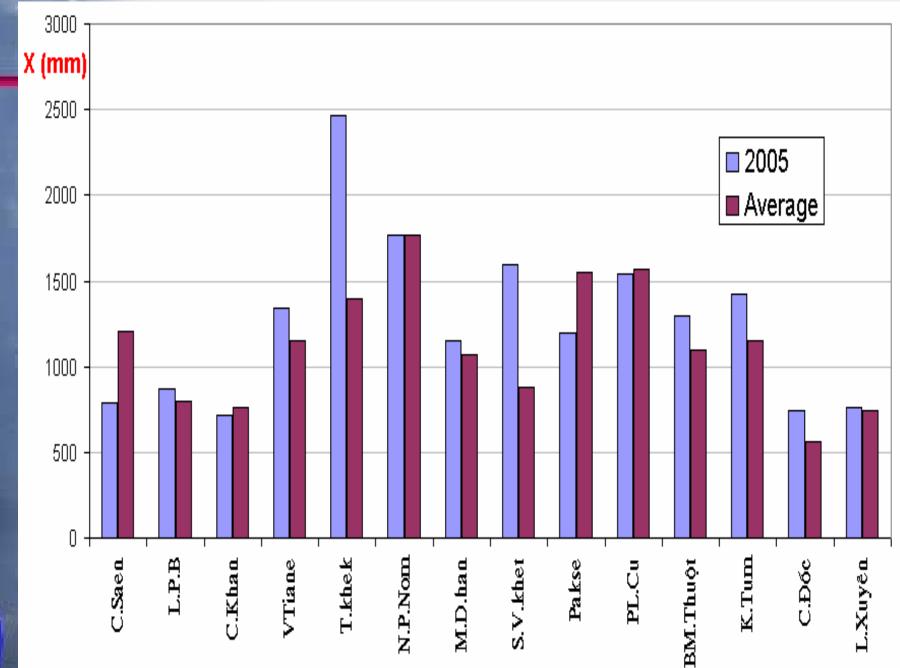

- 2005 rainfall amount was not high.
- Rainfall total of the rainy months was of annual average, some areas in middle part of the basin higher than annual average;
 - June September rainfall total: 800 1200mm;
 - Most rainfall was occurred in the middle part of the Mekong river basin, meanwhile downstream part- with least rain;
 - 9 heavy rainfall events of 3-7 days;
 - 2 heavy rainfall events occured over large area.

TABLE 1: TOTAL MONTHLY AND PERIOD PLOOD SEASON RAINFALL ON THE MEKONG BASIN Stations Year C.Saen L.P.B C.Khan VTianeT.khek N.P.NomM.D.hanS.Y.khel PakseStungtrei KratiePPBasa PL.CuBM.Thuá Month K.Tun C.Séc L.Xuufa rimm). lrine) i rine) i rine) i rimali rian). rina). riant rinali rian) irian)i rian) ríma riami rinni rina). r(aa) Jun Mean Jul Mean Aug Mean Sep Mean Sem 7#7 #30 Jen-Sac Hear ##2

Total rainfall of period flood season and mean on the Mekong basin

Station

1.2. Hydrological condition

At commencement of flood season:

- Flow in the main Mekong and its tributaries was much lower than long-term annual average;
- In the Mekong Delta in Viet Nam salinity intrusion penetrated far upper and lasted for long duration.

During flood season:

Flow in the main Mekong and its tributaries was at its long-term annual average.

In the upper reaches of the Mekong

- The flood occurred almost one month later than usual;
- During June and July, flow was lower than longterm annual average, even lower than that of 2003;
- End of July, since heavy rain, water levels rose rapidly with high rate of 35-45 cm/day on average, some days: 100-150 cm/day;
- In middle August, water level at the stations consecutively attained peaks, which were 1m higher than 2004 ones.

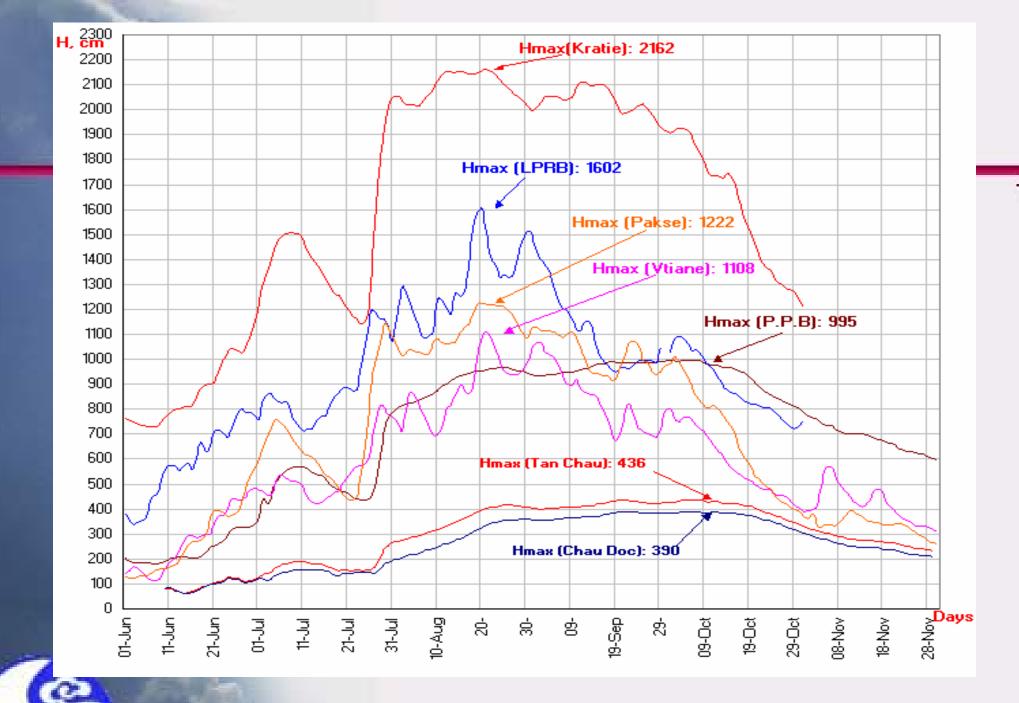


Fig. 3: Flood hydrographs at main stations on the Mekong river in 2005

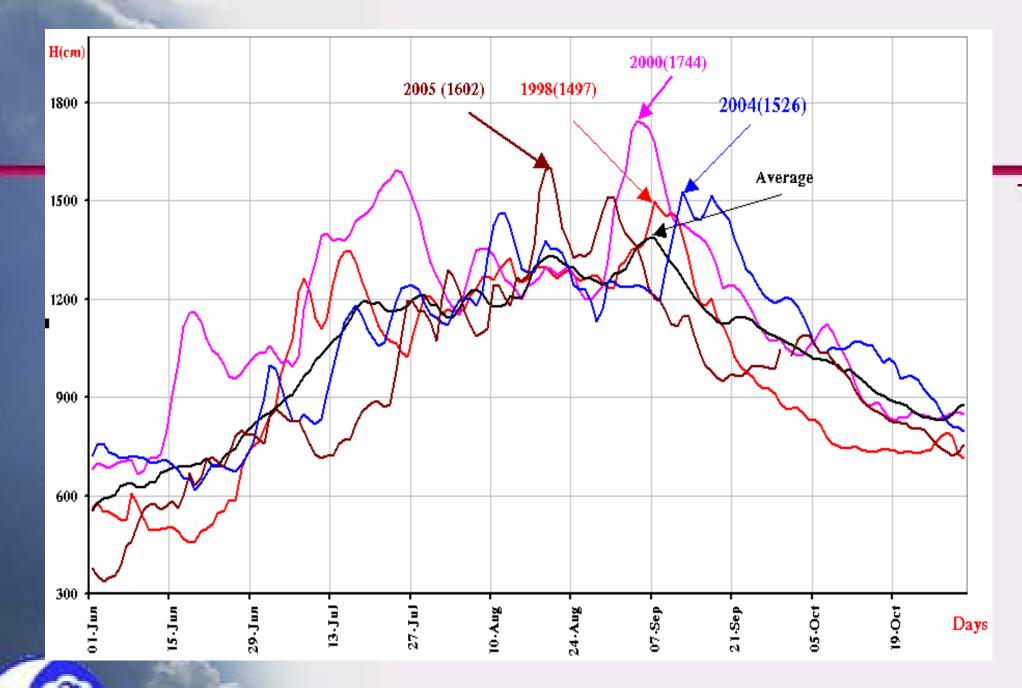


Fig 4: Flood hydrographs at Luang prabang Station on the Mekong river in 1998, 2000, 2004, 2005 and average

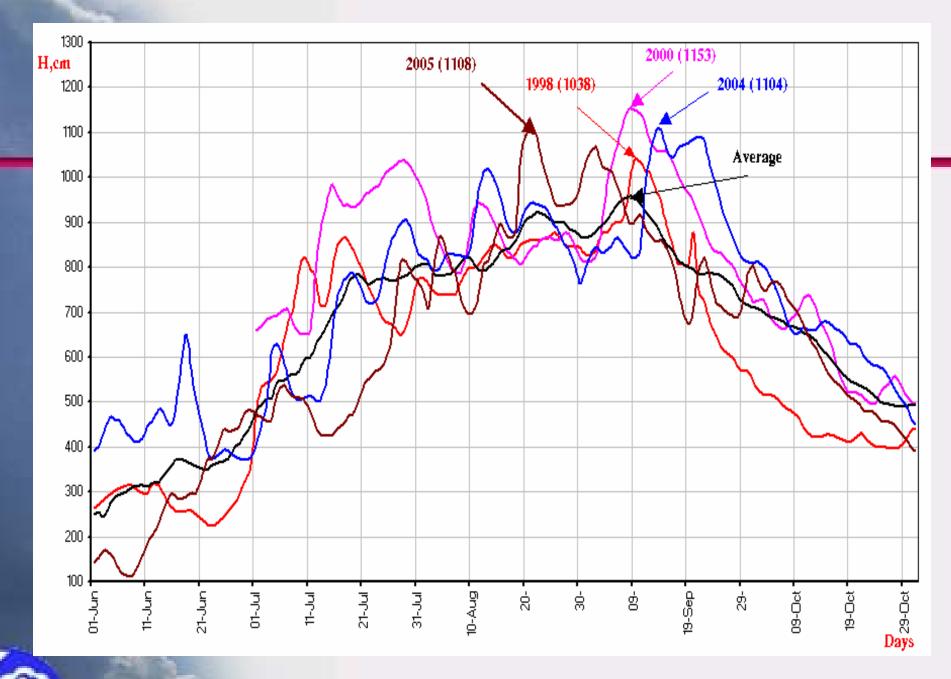


Fig 5: Flood hydrographs at Vientiane Station on the Mekong river in 1998, 2000, 2004, 2005 and average

In the middle reaches

- In early July a flood with a peak in 2 m higher than long-term annual average occurred;
- In the end of July, water level rapidly increased with average rate at 0,5-1,0m, highest was 1,80m at Pakse station.
- Peaks of the year occurred in middle August, which were by 2-4 meters higher than long-term annual average peaks and by 1 meter lower than 2000 flood peaks;

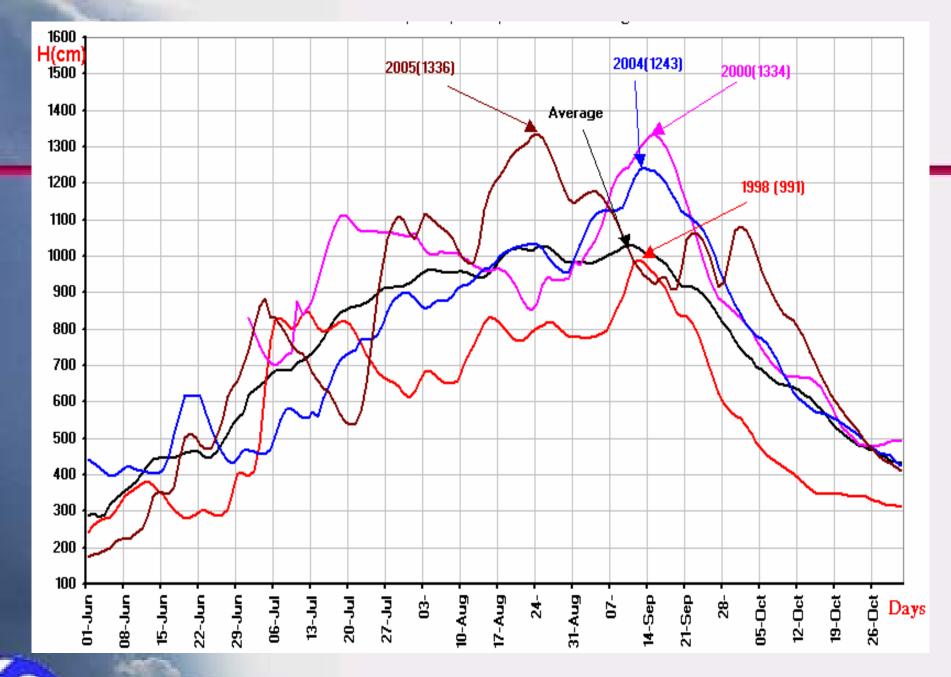


Fig 6: Flood hydrographs at Mukdahan station on the Mekong river in 1998, 2000, 2004, 2005 and average

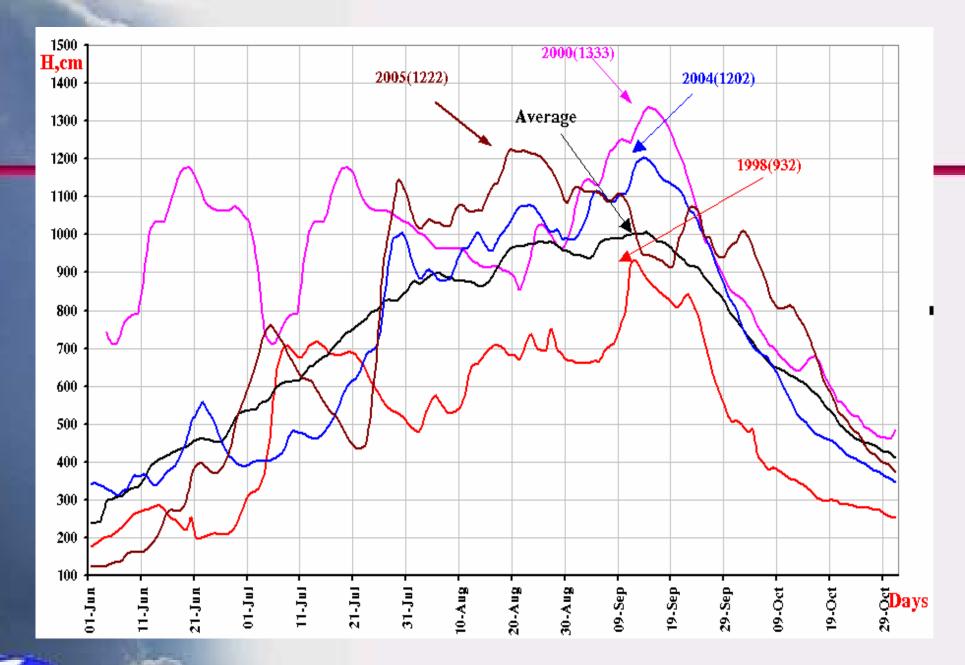


Fig 7: Flood hydrographs at Pakse station on the Mekong river in 1998, 2000, 2004, 2005 and average

Flood flow in the Mekong

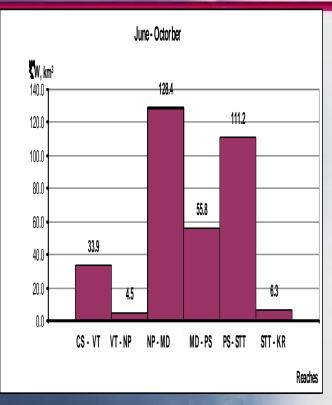
- Flow of the Mekong during the early flood season months (June and July), was 10-20 % lower than that of long term annual average
- In main flood course months and the end of flood season, flow was higher than long-term annual average;
- Flood water volume of the main flood course months (June to September) as well as of the whole flood season in the upstream was about 7-10% lower than long term annual average.

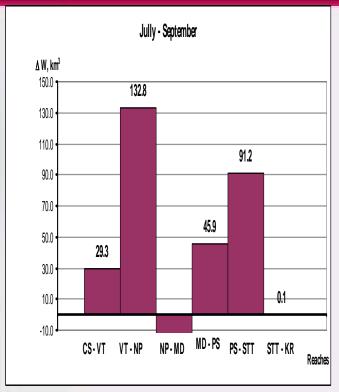
Table 4: Monthly and annual flow and total volume at the main station on the Mekong river in 2000 - 2005

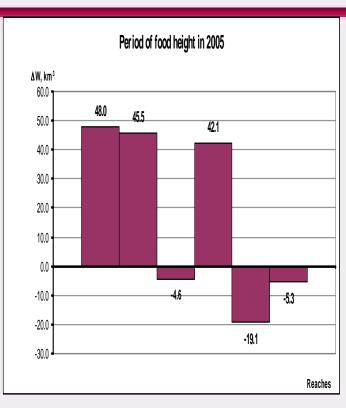
ТТ	Station	Year	Monti	hly flow i	in the flo	Total flow volume (km ³)					
			VI	VΠ	VШ	IX	X	VI-IX	VII-IX	V∏-X	VI-X
1	Chiang Sean	Mean	2430	4640	6460	5450	3870	50.2	43.9	54.1	60.5
		2000	6870	7210	6720	7890		75.6	57.8	57.9	
		2001	4800	10300	7190	7370	4530	78.4	65.7	78.1	90.5
		2002	2706	7062	9225	4026	3530	61.1	53.8	63.1	70.5
		2004	2676	5149	5941	6509	4231	53.5	46.7	58.0	64.8
		2005	2160	3730	6000	4530	3500	43.4	37.9	47.0	52.8
2	Vientiane	Mean	3490	6960	11810	11040	6870	87.9	79.2	97.2	106
		2000	4770	10280	12280	12380	5398	105	92.7	107	119
		2001	5260	9980	13140	11880	6142	106	92.9	109	123
		2002	3635	10863	15310	9427	5050	104	94.4	108	117
		2004	3746	6991	10514	12109	6430	88.0	78.7	95.6	105
		2005	2030	4930	10600	9710	5470	72.0	67.2	81.3	86.7
3	Mukdahan	Mean	7050	13960	21440	20920	12060	167	150	181	200
		2000		19700	20300	25700	10300		174	202	
		2001	11420	19840	26800	23130	11400	214	185	215	245
		2002	11110	21850	27390	21660	9680	217	188	213	243
		2004	7397	12062	20110	25397	10423	171	153	180	199
		2005	5600	14900	27300	22300	12800	185	171	205	220

ンフ

4	Pakse	Mean	8660	17120	26820	27640	16600	212	190	234	256
		2000	15880	29600	28180	39500	16045	298	258	301	341
		2001	13530	24580	36060	34450	16439	287	253	296	331
		2002	11997	26923	34500	31370	15700	277	246	288	319
		2004	8581	14534	28239	32540	12073	221	200	232	253
		2005	5580	17300	34400	30000	16700	231	217	261	275
5	Stungtreng	Mean	10800	20590	32910	37378	23310	268	242	303	331
		2000	20700	42400	37700	53100	24800	406	353	420	472
		2001	17400	32590	50790	45540	23000	386	342	403	448
		2002	15464	34271	49948	47477	22900	389	350	410	450
		2004	13064	19316	41426	43290	16840	309	277	320	354
		2005	6780	21600	51100	43200	23300	324	309	368	387
6	Kratie	Mean	11280	25630	38350	39940	23860	304	276	339	368
		2000	21440	44050	40990	53940	30448	423	368	450	505
		2001	16810	33660	48840	48680	28252	391	348	423	466
		2002	15294	33642	48584	49043	26400	387	349	418	458
		2004	12555	18361	42645	45210	19365	313	283	333	365
		2005	5810	20600	49200	46100	26700	322	309	378	393
7	Ban Don	Mean	206	248	375	504	591	3.51	3.00	4.57	5.09
		2000	307	398	399	649	1408	4.61	3.84	7.61	8.38
		2001	220	230	695	506	395	4.36	3.81	4.83	5.42
		2002	179	147	607	655	362	4.18	3.76	4.69	5.15
		2004	172	189	453	281	173	2.89	2.46	2.90	3.36
		2005	107	173	288	776	372	3.52	3.30	4.28	4.52




Table 5: Monthly flow and total flow volume at the main stations on the mekong river in 2005


		Month	nly flow (r	n³/s)		Total flow volume (km³)						
Station	Jun	Jul	Aug	Sep	Oct	Jun-Sep	Jul-Sep	Jul-Oct	Jun-Oct	Highets		
								ļ		Flood		
Chieng Sean	2160	3730	6000	4530	3500	43.4	37.9	47.0	52.8	12.2		
Vientiane	2030	4930	10600	9710	5470	72.0	67.2	81.3	86.7	60.2		
Local inflow						28.6	29.3	34.3	33.9	48.0		
Percent (%)						39.7	43.6	42.2	39.1	79.7		
Vientiene	2030	4930	10600	9710	5470	72.0	67.2	81.3	87	60.2		
Nakhonpanon	5800	14200	26900	22200	12200	183	200	162	91	106.0		
Local inflow						111	133	81.0	4.5	45.8		
Percent (%)						60.6	66.4	49.9	5.0	43.2		
Nakhonpanon	5800	14200	26900	22200	12200	183	200	162	91	106		
Mukdahan	5600	14900	27300	22300	12800	185	171	205	220	101		
Local inflow						2.7	-28.5	42.3	128.4	-5.0		
Percent (%)						1.4	-16.6	20.7	58.5	-5.0		
Mukdahan	5600	14900	27300	22300	12800	185	171	205	220	101		
Pakse	5580	17300	34400	30000	16700	231	217	261	275	143		
Local inflow						45.4	45.9	55.9	55.8	42.0		
Percent (%)						19.7	21.1	21.5	20.3	29.4		
Pakse	5580	17300	34400	30000	16700	231	217	261	275	143		
Strungtreng	6780	21600	51100	43200	23300	324	309	368	387	124		
Local inflow						93.6	91.2	107.8	111	-19.0		
Percent (%)						28.9	29.6	29.3	28.8	-15.3		
Strungtreng	6780	21600	51100	43200	23300	324	309	368	387	124		
Kratie	5810	20600	49200	46100	26700	322	309	378	393	119		
Local inflow						-2.8	0.1	9.3	6.3	-5.0		
Percent (%)						-0.9	0.0	2.5	1.6	-4.2		

Local inflow on the Mekong

Mark: CS - Chiang Saen; VT - Vientiane; NP - Na Khon Phanom; MD - Mukdahan; PS-Pakse; STT-Stungtreng; KR-Kratie

Downstream and the Mekong Delta

- During first months of the flood season, water levels at all stations were lower than the same period average by 20 to 50 cm, at some station this defference was 100 cm
- The first flood peak appeared late and occurred in early July.

Flood peak in 2005

Flood amplitude of rising limb was relative high, about 3 - 7m was recorded in Cambodia, but in Mekong Delta in Viet Nam it was only 2.0-2.5m

The flood peak of the year at Kratie and at Kompongcham, 0,3 - 0,5 m higher than that in 2004;

first peak in the mid of Sep and the second peak in early of October.

The 2005 flood peak at Phnom Penh Bassac was 9.95m, at Tan

Chau: 4.36m, at Chau Doc: 3.90m, approximate to that of 2004

and by 0.16-0.40 m higher than the alarm level 3;

In far downstream, due to affected by the high tide, flood peak occurred later, in the mid October.

TABLE 2. CHARACTERISTICS OF THE HEIGHEST FLOOD ON THE MEKONG RIVER IN 2005

	Starting flood			Peak flood				Τι	In	tenzive flo	od
Station	Day	Н	Q	Day	Н	Q	Δн		I _{max}	Day	$I_{\rm Live}$
	Month	(cm)	(m3/s)	Month	(cm)	(m3/s)	(cm)	(Days)	(cm/day)	Month	(cm/day)
Up Stream											
Chiang Saen	07 VIII	503	4190	29 VIII	843	9390	340	12	51	18 VIII	28
Luangpraßang	07 VⅢ	1088	7460	20 VIII	1602	15048	514	13	161	18 VIII	40
Chiang Khan	09 VIII	1005	7137	20 VIII	1396	15216	391	11	119	19 VIII	36
Vientiene	10 VIII	698	7220	21 VIII	1108	17871	410	11	161	19 VIII	37
Nakhon Phanom	12 VIII	936	19200	23 VIII	1288	36000	3 52	10	100	13 VIII	3 5
Mukdahan	12 VIII	978	20800	22 VIII	1336	34422	358	10	94	14 VIII	36
Khong Chiam	11 VIII	1225	25447	22 VIII	1480	34621	255	11	54	15 VIII	23
Pakse	07 VⅢ	1021	30000	19 VIII	1222	39477	201	12	42	15 VIII	17
Stungtreng	05 УШ	949	44900	11 УШ	1076	55296	127	6	38	09 VIII	21
Down ziream											
Kratie	01 VIII	2014	45000	21 VIII	2162	52900	148	20	25	08 VIII	7
KompongCham	03 VⅢ	1388		22 VIII	1535		147	19	18	10 VIII	8
PhnomPenh Porí	02 IX	838		01 X	903		65	29	19	11 VIII	2
PhnosePenh Ba222	02 IX	932		01 X	995		63	29	19	11 VIII	2
Koh Khel	02 IX	722		01 X	743		21	29	11	09 VIII	1
Neak Lương	03 IX	693		01 X	723		30	28	13	14 VIII	1
Mekong River del	ía										
Tán Cháu	02 IX	400		05 X	436		36	33	6	15 IX	1
Cháu Đốc	02 IX	356		05 X	390		34	33	5	12 TX	1

	Table 3:	Peak f	ood Je	evel at t	he ma	in sta	tions o	n the N	1ekon	g Rive.			
		2000				2004			2005			Меал	
No	Station	Day	H	Q	Day	Н	Q	Day	H	Q	H	Q	
		Month	(cm)	(m3/s)	Month	(cm)	(m3/s)	Month	(cm)	(m3/s)	(cm)	(m3/s)	
	Up stream	•	1		1		T	_		•		1	
1	Chiang Saeл	6/IX	972	11600	16/IX	838	93100	19/VIII	729	6962	825	10600	
2	Luang Prabang	7/IX	1740	23000	12/IX	1526	14900	20/VIII	1602	15048	1601	14800	
3	Chiang Khan	8/IX	15 14		13/IX	1396		20/VIII	1396	15216	1392	159 00	
4	Vieлtiале	8/IX	1153	17500	13/IX	1104	15600	2 1/VIII	1108	17871	1062	16400	
5	Nakhoл Phanom	14/IX	1270	33 100	13/IX	1215	31800	22/VIII	1270	33224	1129	252 00	
6	Миксанал	15/IX	1334	34500	13/IX	1243	30500	22/VIII	1310	34422	1161	27800	
7	Клолд Сліалі	15/IX	1625		13/IX	1459		22/VIII	1480	34621	1382	34600	
8	Pakse	15/IX	1333	51100	13/IX	1202	38900	19/VIII	1222	39477	1160	375 00	
9	Stung Treng	16/IX	1149	65 100	15/IX	1022	52200	11/VIII	1076	55296	997	50400	
	Down Stream												
10	Kratie	17/IX	2261	61200	17/IX	2119	50500	21/VIII	2162	52900	2022	547 00	
11	Котролд Сһат	18/IX	1591		17/IX	1505	!	22/VIII	1535		1442		
12	Cảng Phnom Релh	20/IX	1009		25/IX	910		1/X	903		894		
13	Р <mark>илотРели Ва</mark> ssa	21/IX	1120		25/IX	997		1/X	995		986		
14	Koh Khel				25/IX	753		1/X	743		734		
15	Neak Lương				25/IX	741		1/X	723		755		

Γ										
		Me Kong river	de Ita							
L	16	Tán Cháu	23/IX	506	27/IX	441	5/X	436	419	
	17	Cháu Đốc	23/IX	490	29/IX	402	5/X	390	378	
	18	Hồng Ngự	23/IX	485	28/IX	422	21/IX	423		
	19	Hưng Thạnh	24/IX	358	4/X	270	19/X	277	231	
	20	Mộc Hoá	25/IX	327	12/X	235	19/X	239	197	
	21	Kiến Bình	2/ XI	266	15/X	175	23/X	188	170	
	22	Хиал То	25/IX	467	4/X	392	11/X	388	356	
	23	Тгі Тол	27/IX	298	7/X	276	11/X	269	256	
	24	Tán Hiệp	3/X	183	15/X	130	22/ X	142	136	
L	25	Cao Lāлh	27/IX	261	29/IX	232	19/χ	237		
	26	Long Хиуёл	27/IX	263	29/IX	241	18/X	245	242	
	27	Mỹ Thuận	30/IX	180	29/IX	179	18/X	186	167	
	28	Cần Thơ	30/IX	179	29/IX	191	19/X	194	167	
	29	Тал Ал	30/IX	167	16/X	145	18/X	149		
	30	Bến Lức	16/X	137	16/X	136	18/X	140	120	

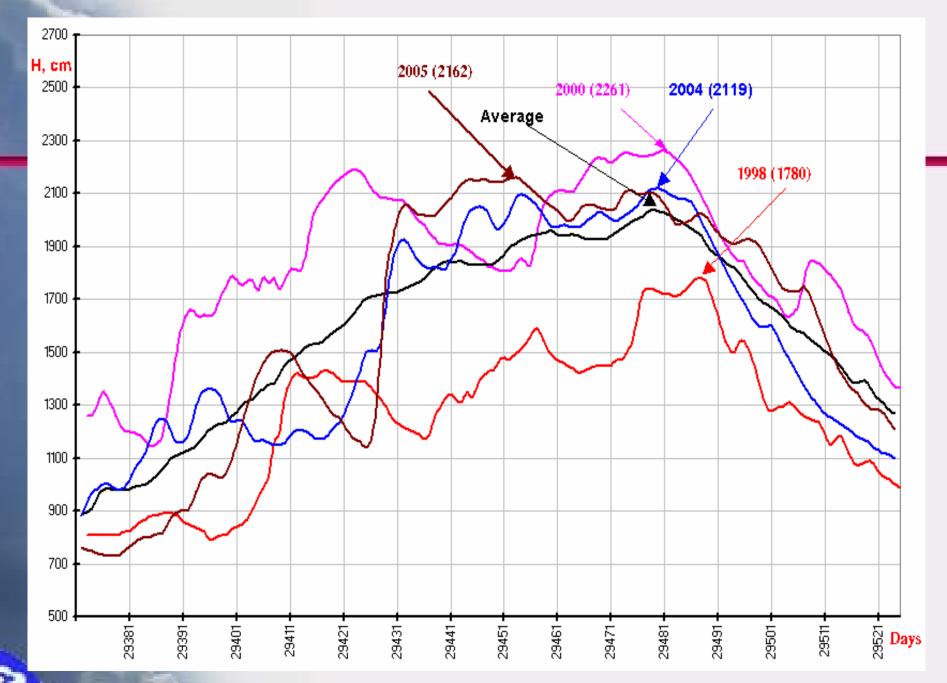


Fig 10: Flood hydrographs at Kratie Station on the Mekong riverin 1998, 2000, 2004, 2005 and average

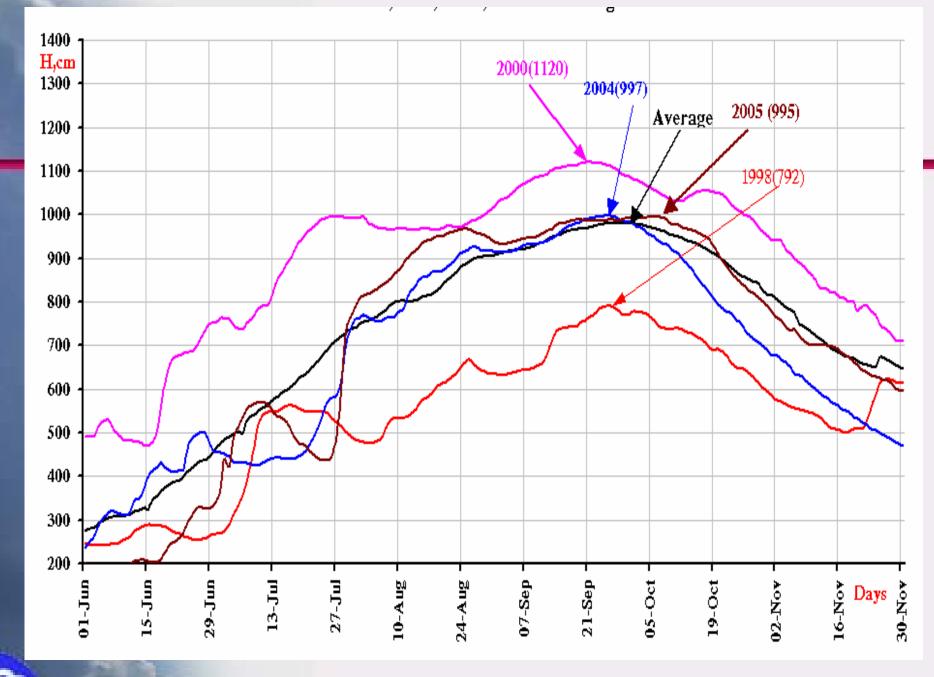


Fig 11: Flood hydrographs at Phnompenh Bassac on the Mekong river in 1998, 2000, 2004, 2005 and average

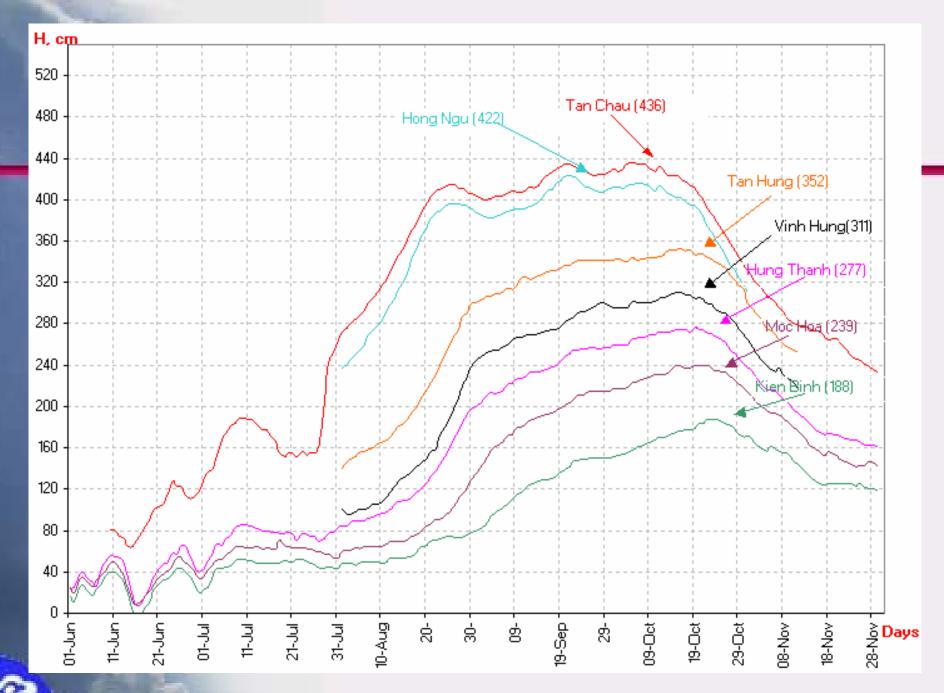


Fig 12: Flood hydrographs at main stations on the Tien River in the Dong Thap Muoi delta in 2005

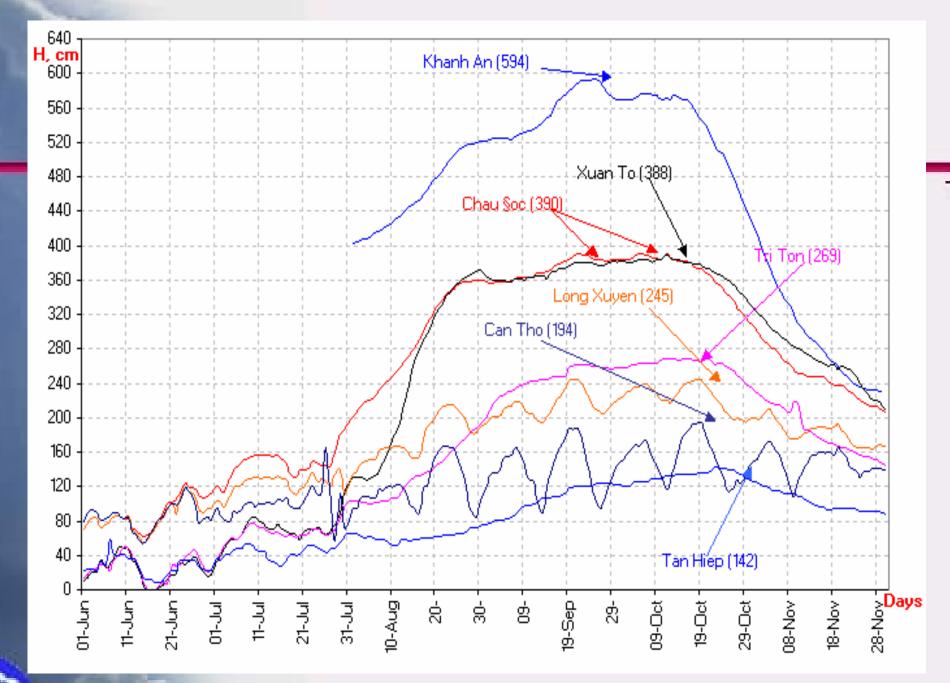


Fig 13: Flood hydrographs at main stations on the Hau River in the Tu Giac Long Xuyen delta in 2005

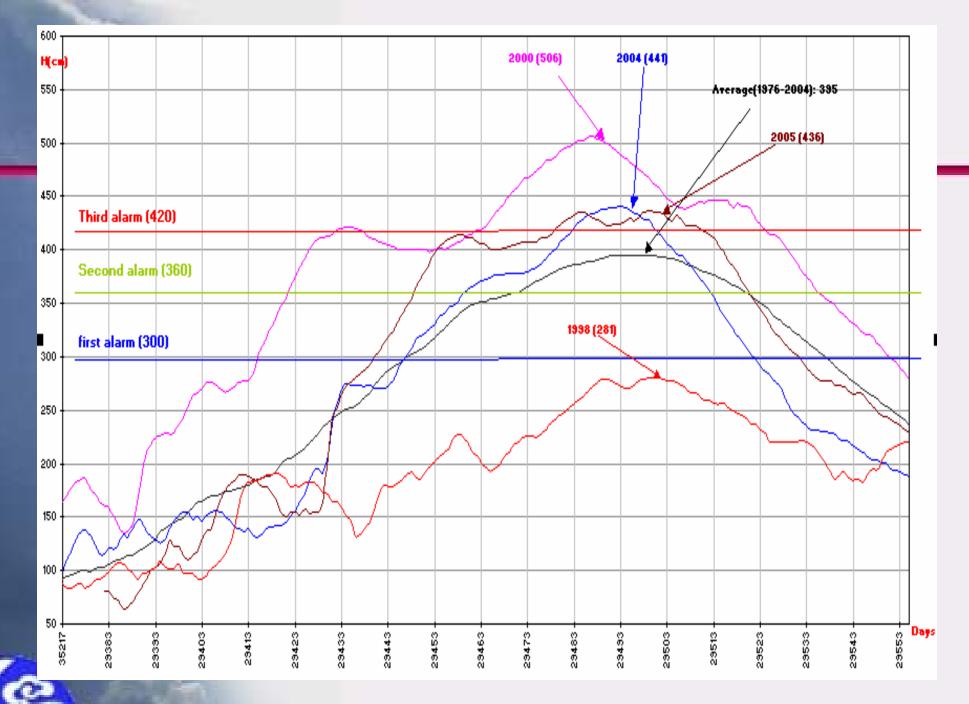


Fig 14: Flood hydrographs at Tan Chau Station on the Tien river in 1998, 2000, 2004, 2005 and average 51

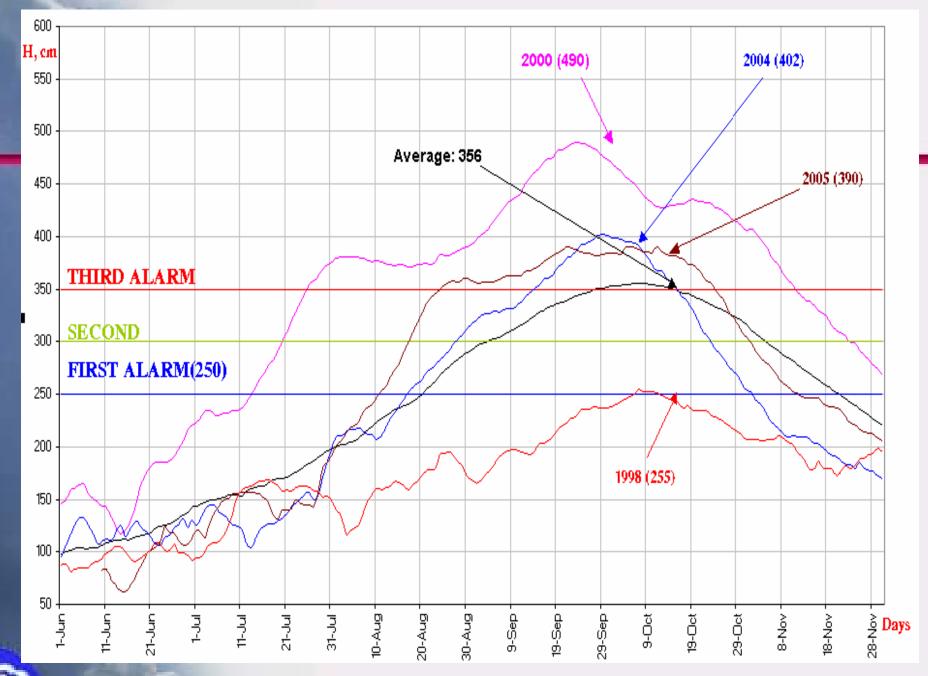


Fig 15: Flood hydrographs at Chau Doc Station on the Hau river in 1998, 2000, 2004, 2005 and average $_{52}$

2. Flood warning and forecasting PRACTICE

- The National Center for Hydrometeorological Forecasting closely monitored the hydromet conditions in the Mekong river and thanks to which timely warnings and high-accurate forecasts of water levels at the to key stations of Tan Chau and Chau Doc;
- 85% and 89% of 5-days ahead forecasts with permissible error of 15 cm were read accurate ones at Tan Chau and Chau Doc stations respectively;
- At Tan Chau, a one month ahead warning flood peak was by 14 cm in magnitude different from actually occurred one;
- 12 flood and urgent flood bulletins as flood reached and exceeded alarm level 3, which all were given timely and with acceptable accuracy

2. Flood warning and forecasting PRACTICE

 Southern Regional Hydrometeorological Centre as well as provincial forecasting centers in Cuu Long delta has closely monitored the rainfall, flood situation and released number of accurate flood forecasts and warnings. 85-90% of total forecast number were read accurate;

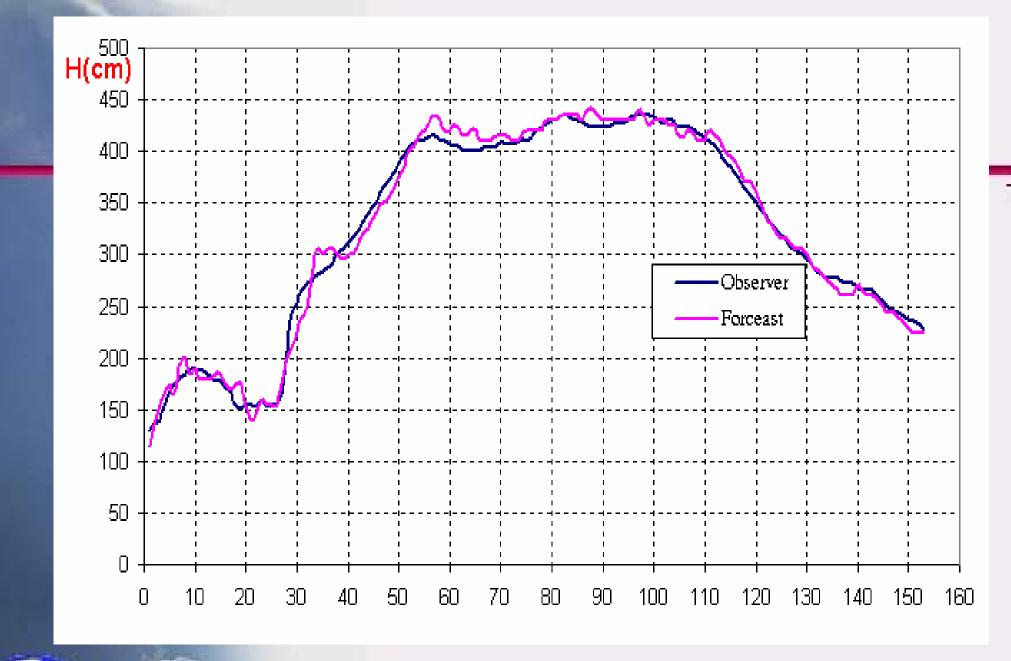


Fig 16: Flood hydrographs Observer and Forceast at Tan Chau Station on the Tien river in 2005

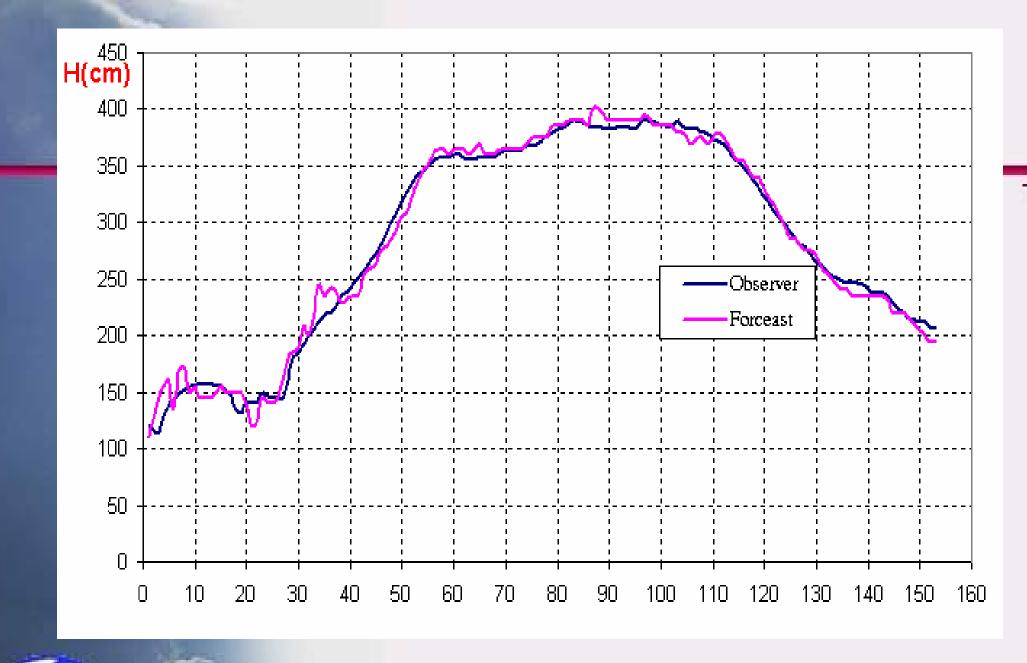


Fig 17: Flood hydrographs Observer and Forceast at Chau Doc Station on the Hau river in 2005

Lessons learnt

- Keeping close watch on the development of hydromet condition over the whole basin;
- Proactively taking action on disaster preparedness;
- Maximizing the utilization of benefit of flood water for economic development;
- Enhancing and improving community education and awareness on flood and flood prevention and mitigation measures;
- Firmly applying the necessary measures to minimize damage caused by disaster to the people, particularly to those living in flooding areas;
 - Constructing flood control structures/works to protect the people and key economic zones against flooding.

3. Recommendations

- Installing more water level and rainfall telemetric stations in the whole Mekong River Basin, particularly in the upper reaches;
- Hydro-met information and data in the basin and dissemination of necessary data for operational forecast to the riparian countries must be completed before 9h00;
- MRC should provide early prediction on possible rainfall and flood water level forecasts, and the prediction should be made available not later than early April every year for the riparian countries to refer to prepare an operational flood forecasting plan;
- MRC's daily forecasting bulletin should be released before 10 a.m so that it could be used by the riparian countries to make flood forecasts and warning in their own countries;
- Frequently exchange information on Mekong water utilization and hydrometerological forecasting and development in the basin;
 - Exchange and transfer of new hydromet forecasting technologies need to be carried out regularly;
 - Training courses for forecasters should be organized every two year.

