Guidelines for efficient irrigation water use

Naoki HORIKAWA National Institute for Rural Engineering

Objectives and Scope

The purpose of this guideline is to describe options to improve irrigation efficiencies of the irrigation systems in the Mekong river basin.

3 Phase of irrigation project and scope of this guideline

Features of irrigation projects in the Mekong river basin

	Mekong river basin	
Canal Type	Open channel	Pipeline
Farm size	Small farms	Estates
Main crop	Rice	Upland crop
Irrigation	Supply oriented	Demand oriented
Climate	Tropical monsoon	

Contents of the guideline

]	
7. Technical managerial	and aspects	1.Water allocation (Seasonal Irrigation plan)	Reliability	
Water requi Monitoring Organization	rement n	2.Water Distribution (Irrigation scheduling)	Flexibility	
		3. Canal operation	5	
		4. Water management of tertiary canal	Equity	
	[5.Institution]	
		6.Improvement of physical structures		

1.Water allocation (Seasonal Irrigation Plan)

	articles	contents	Related analysis
	Seasonal Irrigation plan	What is the irrigation plan?	
	Procedure	How are water users involved in the decision making process?	
	Monitoring and survey	What should be measured or surveyed prior to seasonal irrigation plan?	
\bigcirc	Estimation available water and water requirement	How are water supply and water demand compared?	
	Optimal Reservoir operation	How much water can be used in reservoir storage?	Simulation Dynamic Programming
\bigcirc	Functions	What should be decided in the seasonal irrigation plan?	
)		What would be limited if available water is less then water demand?	
\bigcirc	Allocation of irrigated area	How is restriction on irrigated area allocated?	
\bigcirc	Area water level control	Irrigation plan of tidal irrigation area	Water balance , inundation analysis
	Announcement	Irrigation plan should be informed to farmers.	

Estimation of available water and water requirement

	Estimated water resour	ces	Effective	rainfall		
Pessi mistic	Present reservoir stora	ge	0			
						High production
	Using record of draugh	t year or other	certain yea	ır		Failure of water supply
						7
Optim istic	Present reservoir stora inflow into reservoir	ge + average	Estimated average r	l based on ainfall	V	
		Estimated wa resources	iter _	water dema purpose	nd fo	or other
	Irrigation area =	Irrigation der for unit area	nand	estimat rainfall	ed	effective
				Opt	imu	Im Reservoir operation

Dynamic programming (DP)

When reservoirs are large enough to keep water storage beyond one irrigation season, estimation of reservoir storage change is estimated for a longer period.

Dynamic programming is the method that can directly find the policy that can generate the maximum benefit under conditions given and an evaluate function such as the rice production.

$$f(S_i) = \max_{R_i} \left(\sum_{li} P(I_i) (g(R_i) + f(S_{i+1})) \right)$$

$$S_i + I_i - R_i = S_{i+1}$$
Reservoir
Storage
R: Release from reservoirs
I: Inflow into reservoirs from catchments
g(R): Function which stand on benefit caused by release
S: Storage
f(S): Evaluate function
JAN FEB MAR T

R: I:

S: f(S):

Restriction

The seasonal irrigation plan is calculated after comparing estimated available water and irrigation water demand calculated by a temporal plan. When the former is less than the latter at any period of next irrigation season, a temporal plan must be revised as for cultivated crop, irrigated area, crop establishment, The staring date of irrigation.

- Cultivated Crop
- Irrigated area
- Crop establishment method
- Delay of planting

Allocation of irrigated area

Distribution of irrigation implementation

Irrigation should be started at the same time at tertiary level to reduce the duration of irrigation.

While, start date of irrigation should be distributed for cut peak of water demand (land preparation) at project level

Area water level control (1)

 Water can be distributed evenly if irrigation project area is very flat and canals have enough capacity. This irrigation system called as Tidal Irrigation etc. can achieve high irrigation efficiencies by controlling water level. Target water levels should be decided at some points and in some periods. Target water level depends on the location of irrigation project.

Are water level control (2)

Inundation analysis

Schematic diagram of channel networks

Forecasting of operation Design of canal system and structures

Basin Water balance

Flood water intrusion estimation

2.Water distribution (Irrigation Scheduling, weekly or daily distribution plan)

		contents	Related Analysis
	Irrigation scheduling	What is the irrigation scheduling	
$\Big)$	Type of water distribution	Flexibility and water distribution	
	Interval, frequency	When is the water distribution decided.	
	Monitoring and Procedure	How is it decided.	
$\Big)$	Continuous water supply and intermitted water supply	Which can improve irrigation efficiencies	
	Flood introduction	Management to utilize water resources	
	Reservoir operation	Water management in water shortage	Simulation

Flexibility and water supply method

Supply - oriented water control is control in which manager of irrigation canal have initiative. In open channel farmers use water within the amount which is intake or conveyed. The amount of water diverted into canal have no relation with the water demand witch cause on farm fiscally. The water manager decide the amount to divert or distribute by their own judgment.

The most simple method to supply water is to distribute fixed discharge to each branch canal . In this method it may create water which go through in valid . To decrease ineffective water the water manager must estimate water demand correctly . It is difficult to estimate water demand . In Japan there are three method to estimate water demand practically . As special case , the water manager operate to irrigate each farm plot instead of farmers in some irrigation project . This case is classified to supply oriented water control .

Demand oriented water control Supply oriented water control				
Fixed distribution without reflect water demand change				
Distribution in obedience to water demand				
Estimate by field survey				
Estimate by monitoring				
ordering				
Distribution to farm plot by water manager				
Others				
Mixed water control				
classification of water supply method				

Procedure of ordering

In some projects, farmers apply for irrigation water to water manager in advance . The water manager divert water from intake to main canal and distribute to each branch canals according to farmers application . If farmers use water as much as they applied , there is no difference between supply and demand . In general farmers careless about saving water . In this project area , water demand is more than their maximum of water supply . Water shortage happen every year . Farmers recognize that it is important to save water and this water management system can be carried out .

Example

irrigation supply

Continuous irrigation supply and intermitted (on-off) irrigation supply

Continuous	Control supply volume by flow rate Flexible	
	Main canal	Multiple use
On-off	Control supply volume by duration	Minimum flow
	High irrigation efficiency, equity with poor management	
	Tertiary canal	

Reservoir operation rule

3. Canal operation

Canal operation and spill	To reduce spill from main or secondary canals
Operation of turnout works	Monitoring and control
Operation of cross regulator	Upstream control or Downstream control
Communication	Communication between operators

Control of turnout works

		Operation	
А	Flow rate control (measurement) at	From upstream to downstream	
В		Several times a day (long canal system)	
С	Flow rate control (measurement) at key points Water level control (measurement) at main turnout	Several trial or experience	
D	Water level control (measurement) at main turnouts	Several trial or experience	
E F		Rotation between turnouts	
		Proportional distribution without reflection of changing demand	

Once flow rate measurements is established, flow rate control is easier than Water level control.

Operation of cross regulator

- the gate which keeps constant upstream level automatically was introduced to irrigation canal system in some projects.
- This gate keep upstream level mechanically at division points . Introduction of this type of gates makes operation simple . Managers only have to operate intake gate and division gate which discharge must be varied . The open degree of division gate obey only its discharge .
- But some problems remains or caused . In irrigation canal system, upstream branches have advantage than down stream branches . If there were no check gates, even most upper weir can't get their require water . But if there were check gates, upstream weir can get all they want . There is no problem if operators of branch gate follows general manager of total canal system instructions . Thus construction of the automatic weirs which control constant upper level may cause water shortage at last .

4.Water management of the tertiary canal

Special treatment

Annual water volume for terticary canal

Water Use Mapping (water flowchart by farmers)

 Creation of a water flowchart (creation of water flowchart to show the flow of water in and out by <u>plot to plot irrigation</u> of each farmer's own fields based on paddy field maps) to confirm the relationships between farmers and to create communication for carrying out collective work

Tomosho et al.(2006), JIID(2007)

5.Institution

- Water right
- Restriction of land use
- Water quality protection rule
- Re-plotting system in land consolidation

6. Improvement physical structures

	Contents	Related analysis
Regulation reservoir	Capacity needed	Unsteady flow model
Cross regulator	Weir and gate	
Canal system	Reduction of direct turnout	
Tertiary canal	Advantage and disadvantage	
Remote monitoring and remote control system	Outline	
Automated gate	What is controlled?	

Construction of tertiary canal

Number of spill points Traveling time

Construction of tertiary canal would improve irrigation efficiencies of plot to plot system. But high density of irrigation canals may sometimes result in low efficiency with poor water management.

Low irrigation efficiency with poor water management

Remote monitoring and control system(1)

It is desirable to operate facilities in higher degree by less stuff . To enable this , remote control and monitoring systems are introduced in Japan. Remote monitoring system collects many data such as rainfalls , water levels and water discharges . Water manage can observe these data at control center .

Collected data are displayed to digital or analog meter on graphic panel (panel graph).

The manager decide how to operate water facilities such as gates, bulbs and pumps by judging according to observed data. Facilities operations are executed by using operation console.

As a communication between control center and on -site station, there are three types communication. There are wireless, exclusive communication line and commercial line.

The purpose of remote control and monitoring system is as follows .

- 1 Equal water distribution
- 2 Utilization of water resources without wasting
- 3 Elimination of labor
- 4 Prevention of disaster in facilities
- 5 Adjust of data

Remote monitoring and control system(2)

Automated gate

Automatic gate Sluice gate controlled by computer

- 1. Gate opening
- 2. Upstream water level
- 3. Downstream water level
- 4. Flow rate (discharge)

Stability

feedback

7.Managerial and technical aspects

Monitoring

- Frequency and period
- Rainfall
- Reservoir
- Flow
- Field survey
- Farmer requests

Organization

- Structure
- Operator
- PIM

Water requirement

- Net water requirement
- Gross water requirement
- Irrigation efficiency
- Effective rainfall
- Pre-saturation water depth

Monitoring Rainfall Depth area analysis

Large-scale irrigation projects consisting of reservoirs contribute towards stabilizing rainy season rice cropping in Southeast Asia, but the water storage capacity of some reservoirs is not sufficient for double cropping. Therefore it is necessary to promote appropriate release reduction by monitoring the average am0unt of rainfall in irrigation systems. This study aims to propose a method for evaluating rainfall station density.

Water requirement: Effective rainfall

Concept of water requirement estimation is same used for seasonal irrigation plan and irrigation scheduling. When the same was used for irrigation project planning, related factors, such as irrigation area, irrigation efficiencies etc. should be revised

PIM and irrigation efficiency

Objectives of Participatory Irrigation Management

- Establishment of communication between irrigation projects and water users
- Effective irrigation managements

- Sustainable water management (collection of water fee)
- Irrigation Management Transfer

Improvement of Irrigation efficiency

Temporary lower irrigation efficiency

Thank you for your attention