

Cruise Report "Dr. Fridtjof Nansen"

Southern Indian Ocean Seamounts (IUCN/ GEF/ UNDP/ ZSL/ ASCLME/ NERC/ EAF Nansen Project/ ECOMAR/ ACEP 2009 Cruise 410) 12th November – 19th December, 2009

By

A.D. Rogers¹, O. Alvheim², E. Bemanaja³, D. Benivary⁴, P.H. Boersch-Supan^{1,5}, T. Bornman⁶,
R. Cedras⁷, N. Du Plessis⁸, S. Gotheil⁹, A. Hoines², K. Kemp¹, J. Kristiansen², T. Letessier⁵, V.
Mangar¹⁰, N. Mazungula⁶, T. Mørk², P. Pinet¹¹, J. Read¹², T. Sonnekus⁶

4) University of Tuléar, Madagascar.

- 6) South African Institute for Aquatic Biodiversity, Pbag 1015, Grahamstown 6140, South Africa.
- 7) University of the Western Cape, Dept. of Biodiversity & Conservation Biology, Private Bag X17, Bellville 7535, South Africa.
- 8) University of Cape Town, Department of Oceanography, Rondebosch 7701, Cape Town, South Africa.
- 9) International Union for Conservation of Nature (IUCN), Rue Mauvernay 28, 1196 Gland, Switzerland.
- 10) Albion Fisheries Research Centre, Mauritius.
- 11) ECOMAR Laboratory, Université de La Réunion, 15 avenue René Cassin, Saint Denis, 97715, France.
- 12) National Oceanography Centre, European Way, Southampton, SO14 3ZH, United Kingdom.

¹⁾Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, United Kingdom.

²⁾ Institute of Marine Research, P.O. Box 1870 Nordnes, 5817 Bergen, Norway.

³⁾ IHSM Institut Halieutique et des Sciences Marines, Madagascar.

⁵⁾ Pelagic Ecology Research Group, Scottish Oceans Institute, University of St Andrews, Fife, KY16 8LB, United Kingdom.

Contents

1.0 The South West Indian Ocean6
1.1 Regional fisheries management arrangements
1.2 Fisheries for deep-sea species in the South West Indian Ocean
1.3 Protection of benthic marine ecosystems
1.4 The Seamounts Project
1.5 The Environmental Setting of the Madagascar and South West Indian Ocean Ridges
1.5.1 Geology
1.5.2 Oceanography 14
1.5.3 Prior knowledge on the biology of the Madagascar and South West Indian Ocean Ridges 17
2.0 Cruise track and daily events
3.0 Multibeam bathymetry of the investigated seamounts28
3.1 The seabed mapping system
3.2 Bathymetry of the seamounts
3.2.1 Atlantis Bank
3.2.2 Sapmer Bank
3.2.3 "Middle of What" Seamount
3.2.4 Coral Seamount
3.2.5 Melville Bank
3.2.6 Unnamed Seamount, Madagascar Ridge
4.0 Physical Oceanography41
4.1 Objectives
4.2 Plan
4.3 Equipment
4.4 Data processing and calibration 44
4.5 Results
4.6 Conclusions
5.0 Phytoplankton, nutrients and POM53
5.1 Phytoplankton
5.1.1 Materials and methods
5.1.2 Preliminary results
5.2 Nutrients
5.2.1 Materials and methods

5.2.2 Preliminary results	56
5.3 Particulate Organic Matter (POM)	56
5.3.1 Materials and methods	56
5.3.2 Preliminary results	57
6.0 Mesozooplankton and micronekton sampling	
6.1 Summary	58
6.2 Materials and methods	58
6.2.1 Pelagic Sampling	58
6.2.2 Multinet protocol (Stratified)	60
6.2.3 Multinet protocol (Fmax)	61
6.2.4 Oblique bongo protocol	61
6.2.5 Aakratrawl Crustaceans	61
6.3 Results	62
6.3.1 Mesozooplankton	62
6.3.2 Aakra trawl Crustaceans	64
6.4 Sampling limitations	66
6.5 Research intentions/discussion	67
7.0 Micronekton and nekton sampling	69
7.1 Summary	69
7.2 Methods	70
7.2.1 Åkra trawl fishing	
7.2.2 Åkra trawl catch-processing	71
7.3 Results	72
7.3.1 Fish identifications	72
7.3.2 Species presence-absence	75
7.3.3 Invertebrates	
7.4 Discussion	77
8.0 Acoustic Sampling of Zooplankton, Micronekton and Fish	79
8.1 Summary	79
8.2 Introduction	79
8.3 Materials and Methods	80
8.3.1 Acoustic equipment and data processing	80
8.3.2 Echosounder Calibration	81
8.3.3 Survey Strategy	
8.4 Summary of Activities	

8.5 Preliminary results	
8.6 Discussion	
9.0 Seabird and cetacean observations	95
9.1 Background	
9.2 Seabirds and Seamounts	
9.3 Materials and methods	
9.3.1 Study area	
9.3.2 Seabird and mammals surveys	
9.4 Preliminary results	
9.4.1 Survey track	
9.4.2 Seabird observations	
9.4.3 Seabirds distribution	100
9.4.4 Seabird assemblage	101
9.5 Mammals observations	102
9.6 Preliminary discussion	103
10.0 Indian Ocean Whalebone Moorings	104
10.1 Summary	104
10.2 Methods	105
10.2.1 Bone collection	105
10.2.2 Mooring setup and design	106
10.2.3 Bone and wood package preparation	108
10.2.4 Deployment details	109
10.2.5 Deployment procedure	111
10.3 Discussion	111
10.3.1 Recovery procedure and recommendations	111
10.3.2 Analysis	112
11. 0 Communications activities	113
11.1 Initial activities	113
11.2 Cruise blog	113
11.3 Google Earth & ProtectPlanetOcean	116
11.4 BBC Earth News	116
11.5 Photography	117
11.6 On the web	117
12.0 Final Comments	118
12.1 Conclusions	118

12.2 Sampling limitations and other comments on cruise organisation	118
12.3 Acknowledgements	119
13.0 References	121
Appendix A: List of CTD stations and depths sampled for phytoplankton, nutrients and POM	129
Appendix B Multinet and bongo net metadata	136
Appendix C Zoological Society of London Genetics Samples by Sample box (numbers indicate sample number)	170

1.0 The South West Indian Ocean

1.1 Regional fisheries management arrangements

The Indian Ocean is the world's third largest ocean, stretching 9600km from the Bay of Bengal to Antarctica and 7600km from Africa to Australia (Demopoulos *et al.*, 2003). It is a globally important region for marine capture fisheries, representing more than 10% of global catches according to the latest FAO figures (FAO, 2009). Within this region, the western Indian Ocean is notable for recent increases in fish catches (FAO, 2009). However, it is also the region of the world where the highest proportions of exploited fish stocks are of unknown or uncertain status (Kimani *et al.*, 2009), reflecting problems of fisheries management and ocean governance in the region. Artisanal fisheries in the Indian Ocean are critical for the livelihoods and food security of the populations of coastal states in the region, particularly island nations such as the Seychelles. The offshore fisheries of the western Indian Ocean are rich but countries within the region have been unable to develop the infrastructure to exploit these fisheries. As a result they have allowed the distant water fishing fleets of developed countries to access fish resources through multilateral or bilateral agreements (Kimani *et al.*, 2009). This situation is promoted by the subsidies received by foreign distant-water fleets which give them a competitive advantage over local fishing fleets (Kimani *et al.*, 2009).

At present there are two main agreements that exist for the Southern Indian Ocean, the Southwest Indian Ocean Fisheries Commission (SWIOFC; see Fig. 1.1), which was opened in 2004 to promote sustainable utilization of marine living resources. This agreement was signed by Comoros, France, Kenya, Madagascar, Mauritius, Mozambique, the Seychelles, Somalia, and Tanzania. SWIOFC is focused on shallow-water fisheries but some states are investigating new fisheries for deep-water species within their EEZs (e.g. Mauritius or Mauritian dependencies on the Nazareth and St Brandon Banks; SWIOFC, 2009). In 2006, the South Indian Ocean Fisheries Agreement (SIOFA see Fig. 1.2) was opened and signatories so far include Australia, the Comoros, France, Kenya, Madagascar, Mozambique, Mauritius, New Zealand, Seychelles and the European Community. However, the latter agreement, which forms the basis of a regional RFMO, has not yet entered into force. This delay in the implementation of the SIOFA agreement caused sufficient concern amongst several of the deep-water fishing companies in the area that in 2006 they formed an association to promote technical, research and conservation activities to furnish a future RFMO with data required for management of deep-water fisheries in the region (Shotton, 2006). This association is known as the Southern Indian Ocean Deepwater Fisher's Association (SIODFA).

Figure 1.1 SWIOFC proposed area of competence (SWIOFC, 2005).

Figure 1.2 Proposed SIOFA area of competence (Bensch et al., 2008).

1.2 Fisheries for deep-sea species in the South West Indian Ocean

The development of deep-sea fisheries in the high seas regions of the Indian Ocean were undertaken by distant-water fleets of developed countries, particularly the USSR. In the early 1970s, the Soviet distant water fishing fleet was the largest in the world (Romanov, 2003). Exploratory fishing on the South West Indian Ocean Ridge, the Mozambique Ridge and the Madagascar Ridge began in the 1970s by the Soviet fleet, and associated research institutions, with commercial trawling began in the early 1980s (Romanov, 2003; Clark *et al.*, 2007). These fisheries targeted redbait (*Emmelichthys nitidus*) and rubyfish (*Plagiogeneion rubiginosus*) with catches peaking about 1980 and then decreasing to the mid 1980s (Clark *et al.*, 2007). Fishing then switched to alfonsino (*Beryx splendens*) in the 1990s as new seamounts were exploited. Some exploratory trawling was also carried out on the Madagascar Ridge and South West Indian Ocean Ridge by French vessels in the 1970s and 1980s, particularly targeting Walter's Shoals and Sapmer Bank (Collette & Parin, 1991).

In the late 1990s, a new fishery developed on the South West Indian Ocean Ridge with trawlers targeting deep-water species such as orange roughy (*Hoplostethus atlanticus*), black cardinal fish (*Epigonus telescopus*), southern boarfish (*Pseudopentaceros richardsoni*), oreo (Oreosomatidae) and alfonsino (Clark *et al.*, 2007). This fishery rapidly expanded, with estimated catches of orange roughy being in the region of 10,000t, but the fishery rapidly collapsed. Fishing then shifted to the Madagascar Plateau, Mozambique Ridge and Mid-Indian Ocean Ridge, targeting alfonsino and rubyfish (Clark *et al.*, 2007).

Fishing continues along the South West Indian Ocean Ridge mainly targeting orange roughy and alfonsino. Recent fishing has also taken place on the Broken Ridge (eastern Indian Ocean), 90 East Ridge, possibly the Central Indian Ridge, the Mozambique Ridge and Plateau and Walter's Shoal (western Indian Ocean), where a deep-water fishery for lobster (*Palinurus barbarae*) has developed (Bensch *et al.*, 2008). The banks around Mauritius within the EEZ and high seas portions of the Saya da Malha Bank have been targeted by fisheries for *Lutjanus* spp., and lethrinid fish (SWIOFC, 2009). There are also reports of unregulated fishing using gillnets in areas of the Southern Indian Ocean such as Walter's Shoal, which target sharks (Shotton, 2006). SIODFA report that their vessels undertake approximately 2000 deep-water trawl tows per year in the entire Indian Ocean. By-catch of fish from SIODFA fishing operations in the region are reported to be small, especially when fishing below 500m depth (Shotton, 2006). As with New Zealand vessels operating in the southern Pacific Ocean, tow times have been reported to be typically short in the region, with a

duration of 10-15 minutes (Shotton, 2006), reflecting the highly targeted nature of roughy and alfonsino fisheries on seamounts.

Currently, there is little or no information available for the assessment of the impacts of deep-sea fishing on high seas areas of the Indian Ocean on populations of target or by-catch species. Reporting of data are complicated by issues of commercial confidentiality in fisheries where individual stocks may be located across a wide area (e.g. the South West Indian Ocean Ridge), and there is no regional fisheries management body in force to regulate fishing. At present, new fisheries are developing in the region with no apparent assessment of resource size or appropriate exploitation levels to ensure sustainability of fisheries. SIODFA have reported that they are collecting data on both fishing operations and catches (tow by tow data) as well as other biological information on target species to feed into a future arrangement (SIOFA) when it is implemented (Shotton, 2006).

1.3 Protection of benthic marine ecosystems

At present the only initiative protecting vulnerable marine ecosystems in the high seas region of the Indian Ocean is the unilateral declaration by SIODFA of Benthic Protected Areas (BPAs). The companies that belong to SIODFA have voluntarily closed these areas to bottom fishing or mid-water trawling (Shotton, 2006). The BPAs were selected on the basis of a number of criteria including:

- Representivity of seabed type (e.g. seamount, slope edge etc.)
- Fishing history
- Level of pre-existing knowledge on an area of geology, bathymetry and biology
- Protection of benthic communities
- Protection of areas of special scientific interest (e.g. geological features of Atlantis Bank)

On these criteria, ten areas were protected in the Indian Ocean on the basis of the knowledge gathered by the members of the association from various sources, as well as the research and data gathered during fishing operations by vessel masters. These sites include a number of seamount, knoll, ridge and other topographic features that in some cases are known or suspected to host VMEs, as well as populations of commercial and non-commercial fish species (see Fig. 1.3).

1.4 The Seamounts Project

At present little is understood about the representivity of the BPAs or whether they offer protection from bottom fishing, as non-members of SIODFA are under no legal obligation to avoid fishing these areas. It was against this background, as well as wider issues of management of fisheries in waters beyond national jurisdiction that stimulated the current project and cruise. Also, unlike other oceans of the world, the Indian Ocean was explored relatively little during the "heroic age" of deepsea exploration. It was only during the Indian Ocean Expedition of 1962-1965 that deep-sea areas were extensively sampled. Since that time deep-sea research in the Indian Ocean has largely focused on the Arabian Sea, and in general the deep-sea ecosystems of the rest of the region remain poorly explored (Banse, 1994; Ingole & Koslow, 2005). The fauna inhabiting seamounts in the Indian Ocean are particularly poorly known and there is an urgent requirement to explore these ecosystems to complete the picture of the biodiversity and productivity associated with the Indian Ocean (Demopoulos *et al.*, 2003). Until now the main source of information on the biology of these seamounts have been scientific / fisheries reports of past Soviet expeditions related to exploratory fishing which are focused on fish populating the ridges of the Indian Ocean (Romanov, 2003).

The International Union for the Conservation of Nature (IUCN), the United Nations Development Programme (UNDP), the Aghulas and Somali Current Large Marine Ecosystem Project (ASCLME), the Norwegian Agency for Development Cooperation (NORAD), the Natural Environment Research Council (NERC) and the Zoological Society of London have collaborated to develop a research programme focused on the high seas ecosystems and management of fisheries of the South West Indian Ocean, particularly the South West Indian Ocean Ridge. This project is aimed at addressing a number of scientific questions but all are focused on contributing to ecosystem-based management of fisheries on the high seas of the Southern Indian Ocean. The questions specifically are:

- What are the benthic communities of southern Indian Ocean seamounts like, how diverse are they (global importance, biogeography)?
- What is driving the seamount fisheries (energy supply to the seamount ecosystems)?
- Are predictions of coral diversity on seamounts in the southern Indian Ocean based on habitat suitability modelling using global datasets accurate?
- What are the impacts of the past and current deep-sea fishing activities?

- Will the areas voluntarily set aside as BPAs by the trawling industry make a significant contribution to conservation of vulnerable seabed communities?
- Could the BPAs actually benefit fishing?
- Which seamounts should be fully protected due to their high ecological value, and which others can remain open to bottom fishing subject to regulations to prevent significant adverse impacts to marine biodiversity?

To answer these questions, two cruises were funded. The first, supported by NORAD's EAF-Nansen Project on their vessel, the *Fridtjof Nansen*, funded as part of a UNDP/IUCN project funded by the Global Environment Facility (GEF)¹ and the ASCLME project, is a cruise aimed at understanding the pelagic biology and physical oceanographic setting of the seamounts on the South West Indian Ocean Ridge. In addition, it would also provide a platform for the observation of the avifauna of the region as well as distribution of cetaceans around the seamounts, knowledge of which were pointed out as being data deficient in the region for the purposes of management (Shotton, 2006). The second cruise, funded by NERC and to be undertaken on a NERC vessel, will deploy a remotely operated vehicle to explore and sample the benthic biodiversity of seamounts of the South West Indian Ocean Ridge.

Here we report on the results of the first cruise, Fridtjof Nansen Cruise 2009 410, which explored 6 seamounts, five distributed along the South West Indian Ocean Ridge running from north to south including, Atlantis Bank (BPA), Sapmer Seamount, Middle of What Seamount, Melville Bank and Coral Seamount (BPA). The final seamount investigated, lies on the Madagascar Ridge, north of Walter's Shoal, a large submarine plateau, part of which is also protected as a BPA by SIODFA. Thus, these seamounts were located on two isolated groups of ridge features. The seamounts of the South West Indian Ocean ridge also differed in physical settings, both through having different summit depths but also by being divided, between Melville Bank and Coral Seamount, by the Sub-Tropical front, recognised as a major potential biogeographic barrier. The main methods of investigation included systematic acoustic survey, sampling of pelagic fauna using a combination of bongo nets, multisampling nets and trawls, oceanographic measurements using CTD casts and measurements of chlorophyll and phytoplankton biodiversity.

¹ Applying an ecosystem-based approach to fisheries management: focus on seamounts in the Southern Indian Ocean; GEF Project ID 3657

Figure 1.3 Map of the Indian Ocean showing high seas areas, seamounts <2000m summit depth (green dots), seamounts >2000m depth (red dots) and BPAs (MCBI, 2009).

1.5 The Environmental Setting of the Madagascar and South West Indian Ocean Ridges1.5.1 Geology

The South West Indian Ocean Ridge separates the African and Antarctic Plates and has an ultraslow spreading rate (full rate of 16mm per year; Sauter *et al.*, 2002). It extends approximately 1200 miles from the Rodriguez Triple Junction to the Prince Edward Islands, and varies from 200-300 miles wide (Romanov, 2003). The ridge is characterised by a very deep (>5000m in places) and rough mid-axial valley and is cut by a series of north – south running transform faults (Münch *et al.*, 2001), such as the Atlantis II and Novara transform faults that lie either side of Atlantis Bank (Coogan *et al.*, 2004). Near Prince Edward Island the ridge splits into two, one branch continuing as the South West Indian Ocean Ridge and joining with the Mid-Atlantic Ridge, the other forming the African-Antarctic Ridge.

The Madagascar Ridge extends southwards from the microcontinent of Madagascar for about 700 miles. The minimum depth is about 15m on the summit of Walter's Shoals which is located roughly 400 nautical miles (nm; approx. 720 km) south of Madagascar and 600 nautical miles east of South Africa, and have an estimated area of 400 km² shallower than the 500 m depth isobath (Groeneveld *et al.*, 2006). This large and shallow seamount is covered, at its shallowest depths, with rhodoliths formed predominantly by the calcareous algae *Mesophyllum syrphetodes* and *Tenarea tessellata*

(Collette & Parin, 1991), and coral (Romanov, 2003). The slopes of the Shoals are reported to be steep. Other seamounts along the Madagascar Ridge are reported to have summit depths between 84m to 1100m (Romanov, 2003).

Figure 1.4 South West Indian Ocean Seamounts Cruise; cruise route and stations: 1. CTD station. 2. Off Ridge Station.
3. CTD Station. 4. Atlantis Bank. 5. Sapmer Bank. 6. Middle of What Seamount. 7. Off-Ridge cold-water station. 8.
Coral Seamount. 9. Melville Bank. 10. Un-named Seamount Walters Shoal.

The South West Indian Ocean ridge has been subject to numerous geological investigations and was key to the discovery that ultraslow spreading ridges were distinct from slow and fast spreading ridges (Dick *et al.*, 2003). One result of this is that rather than being formed of volcanic rock parts of the ridge comprises large areas where mantle has been extruded onto the seafloor. Atlantis Bank, in particular, has been subject to intensive geological study and has been the subject of many scientific publications. However, the biological observations on this seamount have been confined to comments that Atlantis Bank was host to large populations of lobsters, crabs, sharks, sea fans, siphonophores and other "critters" (Dick, 1998). Side scan sonar imaging of the ridge has identified

a number of different types of geological formations. These include flat-topped volcanoes, hummocky terrains (<500 m diameter sub-circular mounds) formed by flows of pillow lavas, and smooth flat areas formed of smooth lava flows or lava ponds, all of which may or may not be draped with sediment (Sauter *et al.*, 2002). Such terrains are likely to provide a variety of attachment surfaces and niches for benthic fauna.

Hydrothermal vents were first observed on the Central Indian Ocean Ridge in 2000 (Hashimoto *et al.*, 2001; Van Dover *et al.*, 2001). This site comprised a fauna with affinities to western Pacific hydrothermal vent fields but with the addition of shrimps, *Rimicaris karei*, closely related to the visually dominant species at some Atlantic hydrothermal vents, *Rimicaris exoculata* (Watabe & Hashimoto, 2002; Komai *et al.*, 2007; Komai & Segonzac, 2008). Vent plumes were first identified along the South West Indian Ocean Ridge in 1997 (German *et al.*, 1998) but the first vent has only just been discovered using an autonomous underwater vehicle (Tao *et al.*, 2007). The vent field is located close to the Middle of What Seamount at a depth of ~2800 m, includes black smokers, sulphide edifices and a fauna comprising stalked barnacles, anemones and gastropods. A proposal to explore this vent field as part of the second NERC funded cruise to the Indian Ocean is currently in submission (John Copley, National Oceanography Centre, University of Southampton).

1.5.2 Oceanography

The water circulation of the upper layers of the southern Indian Ocean is dominated by a Sub-Tropical Anticyclonic Gyre which is mainly located in the western half of the ocean (Demopolous *et al.*, 2003; Sultan *et al.*, 2007). The eastern extension of the gyre is mainly blocked by the South-East Indian Ocean Ridge, although some water penetrates further east to be blocked by the Ninety-East Ridge. Topographic constraints exerted by the Madagascar and South West Indian Ocean Ridges forces the separation of three small anticyclonic cells within the Sub-Tropical Anticyclonic Gyre, two to the east of the Madagascar Ridge and one between the Madagascar Ridge and South Africa (Sultan *et al.*, 2007). The western boundary of the Sub-Tropical Anticyclonic Gyre is associated with a strong southward transport of water (~55Sv) associated with the Aghulas Current. This current retroflects eastwards as the Aghulas Return Current between 16° and 20° E to become the Aghulas Return Current (Lutjeharms & Van Ballegooyen, 1988). Through the region of the present investigation, the southern boundary of the Aghulas Return Current is marked by the Aghulas Front which lies to the north of the Sub-Tropical Front, to the south of which lies the Antarctic Circumpolar Current (ACC; Read *et al.*, 2000). The Aghulas Front has the steepest density gradient of any in the Southern Ocean, is narrow, with an average width of only 96km, has a temperature of 21° C – 15.7° C, is optically clear and nutrient impoverished and is limited to about 40° S (Read *et al.*, 2000). The Aghulas Front can compress closely to the Sub-Tropical Front so the two are difficult to distinguish (Read & Pollard, 1993). The proximity of the Aghulas Return Current and the Sub-Tropical Front can lead to extreme temperature gradients (up to 1° C per km; Read *et al.*, 2000).

The Sub-Tropical Front forms the poleward boundary of warm salty water from the South Atlantic sub-tropical gyre (Read *et al.*, 2000). It has a mean latitude of 41°40'S (Lutjeharms & Valentine, 1984), although its north-south position varies considerably. It is associated with a marked gradient in temperature, of up to 7°C and salinity of up to 0.5‰ (Lutjeharms, 1985; Whitworth & Nowlin, 1987; Lutjeharms *et al.*, 1993). It is a surface feature associated with the upper 300m of the water column and its position and shape are influenced by bottom topography (Weeks & Shillington, 1996).

Below the surface water layers, in the regions to the north of the front (all but Coral Seamount and occasionally Melville Bank), Sub-Antarctic Mode Water is located in the thermocline. This water is ventilated in the Southern Ocean, north of the Sub-Antarctic Front, and is associated with a maximum in oxygen. It moves with the subtropical gyre (McDonagh *et al.*, 2008). This water mass is found down to about 500m depth, in the vicinity of the South West Indian Ocean Ridge. Below it occurs Antarctic Intermediate Water, which is also ventilated in the Southern Ocean, but is identified by a salinity minimum (McDonagh *et al.*, 2008). This water reaches to about 1500m around the South West Indian Ocean Ridge. Underlying this water mass is Upper Deep Water which comprises mainly Indian deep water. It flows south and forms part of the Indian Ocean overturning circulation. It exhibits an oxygen minimum, and high levels of inorganic nutrients (McDonagh *et al.*, 2008), and penetrates to about 2000m depth.

The deep-water circulation of the region is quite different to the shallow circulation. Between 2000 and 3,500m depth, modified North Atlantic Deep Water (NADW) flows into the Indian Ocean (McDonagh *et al.*, 2008) along the African continental slope, up through the Mozambique Channel and also around the southern South West Indian Ocean Ridge and Del Cano Rise (Van Aken *et al.*, 2004). In the north western part of the region the NADW flows up along the eastern slope of the Madagascar Ridge and then on over the Madagascar Ridge at about 35°S. An additional flow comes through the South West Indian Ocean Ridge via the Discovery Fracture Zone in the south (Van Aken *et al.*, 2004). This water eventually forms Circumpolar Deep Water (McDonagh *et al.*, 2008).

Figure 1.5 Deep-circulation in the SW Indian Ocean at 2000 – 3,500m depth (Van Aken et al., 2004).

Deeper still, the flow of Antarctic Bottom Water into the Indian Ocean is controlled by the South West Indian Ocean Ridge. The main flow, from the Enderby Basin in to the Aghulas Basin, is over a saddle in the ridge between 20° and 30°E, probably via deep channels (>4,000m depth) in the ridge (Boswell & Smythe-Wright, 2002). This water continues to flow northwards between the gap between the Aghulas Plateau and South West Indian Ocean Ridge and then onto the Mozambique Channel. Another branch crosses the ridge at 35-36°S through the Prince Edward Fracture Zone whilst a third branch passes along the southern flank of the Del Cano Rise (Boswell & Smythe-Wright, 2002).

Overall, the South West Indian Ocean Ridge is set within an area where the Aghulas Return Current, the Sub-Tropical Front and the Sub-Antarctic Front, further to the south, create one of the most energetic and important hydrographic regions of the world (Read *et al.*, 2000). The seamounts of the ridge lie within an area of complex biogeochemistry, phytoplankton composition and productivity associated with the transition from sub-tropical conditions to sub-Antarctic (Bathmann *et al.*, 2000). The Sub-Tropical/Sub-Antarctic Front front is also thought to represent a major biogeographic boundary in the Southern Indian Ocean dividing two distinct faunal provinces (Vierros *et al.*, 2009). In deeper water, the South West Indian Ocean Ridge acts as a major physical barrier to the flow of deep water masses and separates areas of deep-sea floor on the Enderby Abyssal Plain, the Aghulas Basin and the Crozet Basin.

1.5.3 Prior knowledge on the biology of the Madagascar and South West Indian Ocean Ridges Despite being an area of downwelling, the sub-tropical convergence within the region has been associated with elevated concentrations of phytoplankton and zooplankton compared to the seas to the north and south (Froneman et al., 1998) and has been identified as a region important in carbon sequestration in the oceans (Llido et al., 2005). At the front peak chlorophyll concentrations of $>1\mu g l^{-1}$ have been recorded with microphytoplankton making up a significant proportion (~10%) to total chlorophyll. Outside this region, with the exception of the sub-Antarctic Front, chlorophyll concentrations have been measured at $<0.9\mu g l^{-1}$ and the phytoplankton assemblages may be dominated by nano- and picophytoplankton (Froneman et al., 1998). It is thought that the accumulation of phytoplankton cells at the front, stability of the water column and availability of nutrients, especially iron may all contribute to elevated chlorophyll measurements (Lutjeharms et al., 1985; Weeks & Shillington, 1996; Froneman et al., 1998). The enhanced primary productivity of the sub-tropical convergence zone occurs in intermittent pulses in spring and summer (Llido et al., 2005). Likewise, species diversity of microphytoplankton may also peak at the sub-tropical convergence as a result of mixing of species from different water masses and unique biochemical conditions which lead to a unique planktonic community that is poorly characterised, especially in regions away from continents (Froneman et al., 1998; Barange et al., 1998; Longhurst, 1998; Richoux & Froneman, 2009). Recent stable-isotope studies have also demonstrated that planktonic foodwebs undergo significant changes across the sub-tropical covergence in response to differing availability of phytoplankton and smaller zooplankton size classes (Richoux & Froneman, 2009). Thus, the seamount along the South West Indian Ridge are likely to be in contrasting productivity regimes depending on their proximity to the sub-tropical convergence and the sub-Antarctic front. Advection of surface production to the benthos of seamounts will depend on the depth of the seamount summit and the current regimes around seamounts (Rowden et al., 2005; White et al., 2007).

The recent Global Open Oceans and Deep Seabed report classified the pelagic ecosystems of the South West Indian Ocean into several different regions: The Indian Ocean Gyre, The Aghulas Current, The Sub-Tropical Covergence and the Sub-Antarctic Region (Vierros *et al.*, 2009). This biogeographic analysis was focused on the upper 200m of the water column and it was unknown how much it was likely to reflect the distribution of deeper pelagic communities, although it was felt that patterns would diverge from that at the surface with increasing depth (Vierros *et al.*, 2009). The same classification identified the lower bathyal benthic fauna of the South West Indian Ocean Ridge as all falling into one biogeographic area, The Indian Ocean, the southern limit of which

coincided with the Antarctic Convergence (Vierros *et al.*, 2009). At present there are few data available to test this proposed scheme of biogeography.

Data on the diversity of biological communities of the southern Indian Ocean are sparse. More studies have been undertaken on Walter's Shoal, probably because the region is closer to land than the South West Indian Ocean Ridge and because of interests in commercial fisheries in the region. The shoal was sampled during the Indian Ocean expedition in 1964 by the *R/V Anton Bruun* and subsequently by the Vityaz. These collections included a new endemic sub-species of crinoid, Comanthus wahlbergi tenuibrachia (Clark, 1972), prevalent in the shallow-waters of the shoal (Collette & Parin, 1991), and several crustaceans including an endemic species of alpheid shrimp (Alpheus waltervadi; Kensley, 1981) and an endemic isopod, Jaeropsis waltervadi (Kensley, 1975). Recently, an endemic species of rock lobster, Palinurus barbarae, has been described from the shoals following the landing of the species from commercial fishing vessels (Groeneveld et al., 2006). Collette and Parin (1991) described the fish fauna from ~400m depth to the surface on the shoal (summit depth approx. 15m) and identified 20 species of which several were potentially endemic undescribed species, several were widespread temperate or sub-tropical species and several were Indo-Pacific reef associated species. Biogeographic affinities of elements of the shallow fish fauna with Gough Island, Tristan da Cunha and St Pauls and Amsterdam Islands (West Wind Drift Islands) were identified, particularly in the occurrence of species such as Helicolenus mouchezi, Trachurus longimannus and Serranus novemcinctus (Collette & Parin, 1991). Others are found in Australia and New Zealand (Acantholatris monodactylus, Lepidoperca coatsii, Nelabrichthys ornatus). Helicolenus mouchezi and possibly several other species from Walter's Shoal also occur on the South West Indian Ocean Ridge. The implication here is that the Sub-Tropical Anticyclonic Gyre and Antarctic Circumpolar Current and/or other westerly flowing currents have assisted in transoceanic dispersal of these species, with islands and seamounts acting as stepping stones. Russian exploration of the Madagascar Ridge in the search of fisheries resources identified: dories (Oreosomatidae), sharks, Alepocephalus sp., Beryx sp., Macrouridae, Moridae, Plagiogeneion rubiginosum, Polyprion americanus, Polyprion oxygeneios, Pseudopentaceros richardsoni, scabbard fish, Scorpaenidae, Trachurus longimannus, tuna, Uranoscopidae.

Vereshchaka (1995) summarised several investigations on the macroplankton occurring on slopes and seamounts in the Indian Ocean. The paper lists a large number of taxa as occurring on Walter's Shoal including: Mysidacea - *Gnathophausia ingens*, *G. gracilis*, *Siriella thompsoni*, *Euchaetomera typica*, *E. glythidophthalmica*, *Metamblyops macrops*; Euphausiacea – *Thysanopoda monacantha*,

T. tricuspidata, T. aequalis, T. obtusifrons, T. pectinata, T. orientalis, T. egregia, Nematobrachion flexipes, N. boopis, Euphausia recurva, E. diomedeae, E. mutica, E.similis, E. spinifera, E. hemigibba, E. paragibba, E. pseudogibba, Thysanoessa gregaria, Nematoscelis megalops, N. microps, N. atlantica, N. gracilis, N. tenella, Stylocheiron carinatum, S. affine, S. suhmi, S. longicorne, S. elongatum, S. abbreviatum, S. maximum; Decapoda – Funchalia villosa, Gennadas parvus, G. propinquus, G. scutatus, G. bouvieri, G. incertas, G. tinnayrei, G. gilchristi, Sergestes corniculum, S. disjunctus, S. atlanticus, S. sargassi, S. pectinatus, S. armatus, S. orientalis, Sergia prehensilis, Sergia scintillans, Sergia splendens, Sergia grandis, Sergia laminata, Lucifer typus, Pasiphaea natalensis, Acanthephyra quadrispinosa, Notostomus elegans, Oplophorus spinosus, O. Novaezelandiaea, Systellaspis debilis, S. guillei, Stylopandalus richardi; Larvae – Penaeus sp., Solenocera sp., Gennadas sp., Sergestes sp., Acanthephyra sp., Palaemoninae, Pontoniinae, Pandalidae, Nematocarcinidae, Lysmata sp., Alpheus sp., Pontophilus sp., Stenopus sp., Panulirus sp., Jasus sp., Scyllarides sp., Paguridae, Galathea sp., Callianassa sp., Homola sp., Dromiidae, Albunea sp., Cancridae, Majidae, Calappidae, Brachyura, Amphionides reynaudi. These animals fall into two distinct group, species that were associated mainly with the water column and decrease in numbers towards the seabed, and those that are associated with the seabed. The latter group fall into several categories including: animals that are found near the seabed at night but disappear by day, presumably because they migrate to benthic habitats during daylight hours; animals found well above the seabed by day and descend to the seabed by day; larval animals which are found mainly over areas of seabed inhabited by adults (Vereshchaka, 1995).

Investigations of high seas areas of Indian Ocean for fish resources were undertaken by Soviet research vessels and exploratory fishing vessels from the 1960s to 1998. Whilst detailed information is not available data on the fish species present on the South West Indian Ocean Ridge has been published. The following species were identified as being present: *Alepocephalus* spp., *Antimora rostrata, Beryx splendens, Beryx decadactylus, Centrolophus niger*, Chauliodontidae, *Dissostichus eleginoides, Electrona carlsbergi, Epigonus* spp., Gonostomatidae, *Helicolenus mouchezi, Hyperoglyphe antarctica, Lepidopus caudatus, Macrourus carinatus*, Myctophidae, *Nemadactylus macropterus, Neocyttus rhomboidalis, Notothenia squamifrons, Plageogeneion rubiginosum, Polyprion americanus, Polyprion oxygeneios, Promethichthys prometheus, Pseudopentaceros richardsoni, rays, Ruvettus pretiosus , Schedophilus huttoni, Schedophilus maculatus, Schedophilus velaini, sharks, Trachurus longimannus* (Romanov, 2003). A more extensive species list is given in Romanov (2003) but this list is for all the seamounts sampled in the Indian Ocean from 1969-1998. It was noted that seamounts on the South West Indian Ocean

Ridge showed a marked variation in the fish present. For example, pelagic armourhead, *Pseudopentaceros richardsoni*, was only caught in commercial quantities on Seamount 690 (Romanov, 2003), which corresponds in position to Atlantis Seamount. The species has also been found on Sapmer Seamount (López-Abellán *et al.*, 2008). Some of the species listed are exclusively Antarctic / Sub-Antarctic and so probably occur further south than the seamounts sampled on the present expedition.

As, with invertebrates and fish, knowledge of the distribution of aquatic predators, including cetaceans and birds in the region are sparse. There have been sightings of concentrations of humpback whales in the vicinity of Walter's Shoal (e.g. Collette & Parin, 1991; Shotton, 2006), suggesting that it may be an important migratory area between high latitude feeding grounds and low latitude breeding grounds off Madagascar (Findley, 2009). There are reports of pilot whales, humpback whales and sperm whales in the areas of deep-water fishing in the Southern Indian Ocean although it is not clear where these were (Shotton, 2006).

Shotton (2006) report that sightings of birds are rare in the areas of fishing and these were rarely seen north of 35°S. White chinned petrels (*Procellaria aequinoctialis*) had been reported as occurring in areas of deep-water fishing and cape pigeons (*Daption capense*) and sooty shearwaters (*Puffinus griseus*) were reported as being observed from fishing vessels (Shotton, 2006). Bird observations taken from a cruise between La Réunion, Crozet, Kerguelen, St. Paul, Amsterdam Islands, and Perth, Western Australia identified 51 species of birds from over 15,000 sightings (Hyrenbach *et al.*, 2007). During this cruise the density of birds increased significantly across the sub tropical convergence from 2.4 birds km⁻² in sub-tropical waters to 23.8 birds km⁻² in sub-Antarctic waters. The taxonomic composition of birds also differed markedly in the 3 areas with prions (*Pachyptila* spp.) accounting for 57% of all sub-Antarctic birds, wedge-tailed shearwaters (*Puffinus pacificus*) accounting for 46% of all subtropical birds, and Indian Ocean yellow-nosed albatross (*Thallasarche carteri*) accounting for 32% of all birds in the sub-tropical convergence zone (Hyrenbach *et al.*, 2007). Given that this cruise transited part of the South West Indian Ocean Ridge it would seem likely that significant numbers of seabirds are present in the vicinity of the seamounts, particularly in the more southerly areas.

2.0 Cruise track and daily events

The cruise track was aimed at taking physical and biological observations and samples along the South West Indian Ocean Ridge, targeting five seamounts, two of which were SIODFA voluntary benthic protected areas, the others of which had been previously targeted by fishing (see Fig. 1.4). In addition two off-seamount stations were included in the survey as control sites. Two CTD sections were taken across the Sub-Tropical Convergence to analyse the physical structure and changes in phytoplankton communities across the front. Six days of contingency time were included in the schedule for bad weather, although if these were not taken a further station would be included at Walter's Shoal, a site of special interest for bird observations. Oceanographic observations at these sites were to include CTD transects across seamounts to analyse the structure of the water column and a 24 hour CTD yo-yo to observe the influence of tides on the water masses immediately around each seamount. CTD work was complemented where possible with ADCP measurements. At each station an acoustic grid of 12 hours was surveyed to analyse the relative biomass and movements of the deep-scattering layers and fish shoals on and off seamounts. Biological sampling included samples taken to analyse chlorophyll, phytoplankton samples and micro- and mesozooplankton samples taken with phytoplankton, bongo and multinets. Targeted trawling of the deep-scattering layers and fish shoals was undertaken using the aakra trawl.

Six seamounts were surveyed during the cruise as a result of only losing one day in total to poor weather, although conditions at several points in the cruise were marginal for work. The sites were Atlantis Bank, Sapmer Bank, Middle of What Seamount, Coral Seamount and Melville Bank, on the South West Indian Ocean Ridge, and an un-named seamount to the north of Walter's Shoal on the Madagascar Ridge. The total distance by sea covered during the cruise was close to 5000 nm. For details of sampling activities see relevant chapters.

Final cruise report: Southern Indian Ocean Seamounts 2009

Date	Station	Event	Sample	Dav/night
12/11/2009	Stution	Leave Reunion	Sumple	Night
13/11/2009	1	1	CTD – 1500m	Day
15/11/2009	24°48'S, 55°49,3'E	1	01D 1000m	Duy
	1	2	Phytoplankton net	Dav
14/11/2009	2	Acoustic survey	-	Day
1	² 6°56.6'S. 56°14.4'E	ricoustic survey		2.49
	2	1	CTD	Dav
	2	2	Phytoplankton net	Day
	2	3	Multinet	Day
	2	4	Multinet	Day
	2	5	Bongo	Day
	2	6	Bongo	Day
	2	7	Aakra trawl 600-	
			300m	
	2	8	Multinet	Night
	2	9	Multinet	Night
	2	10	Bongo	Night
	2	11	Bongo	Night
	2	12	Bongo	Night
	2	13	Bongo	Night
15/11/2009	2	Acoustic survey	-	Day
	2	14	Aakra trawl 800m	Day
	2	15	Bongo	Day
	2	16	Bongo	Day
	2	17	Bongo	Day
16/11/2009	3	1	CTD	Day
	29°S, 56°34.5'E			5
17/11/2000	3	2	Phytoplankton net	Day
17/11/2009	4 Atlantis Bank	Acoustic survey	-	Day
	32*40*5, 57*20°E	1	CTD	Dere
	4	1	CID Device algorithm and	Day
	4	2	Multipot	Day
	4	1	Aakra trawl 700-	Day
	4	4	500m	Day
	4	5	Aakra trawl 400-	Dav
	7	5	100m	Duy
	4	6	CTD Yo-Yo	Dav
	4	7	Phytoplankton net	Day
	4	8	CTD Yo-Yo	Night
	4	9	Phytoplankton net	Night
18/11/2009	4	10	CTD Yo-Yo	Day
	4	11	Phytoplankton net	Day
	4	12	CTD Yo-Yo	Day
	4	13	Phytoplankton net	Day
	4	Whale bone drop	-	Day
	4	14	Bongo	Night
	4	15	Bongo	Night
	4	16	Bongo	Night
	4	17	Multinet	Night
	4	18	Aakra trawl 700m	Night
19/11/2009	4	19	Aakra trawl 400m	Night
	4	20	Multinet	Night
	4	21	Multinet	Night
	4	22	Small aakra trawl	Dawn
	4	Acoustic survey	- -	Day
	4	23	Multinet	Day
	4	24	Nultinet	Day
	4	23	Bongo	Day
	4	20	Bongo	Day
	4	21	CTD	Day
	4	20	CID Destorionistor not	Day
	4	29	CTD	Day
	+	30		INIGIII

	4	51	Phytoplankton net	Night
	4	32	CTD	Night
	4	33	Phytoplankton net	Night
	Δ	34	CTD	Night
	4	25	Dhytoplanitop nat	Night
	4	33	Fliytoplankton net	Nigit
	4	36	CID	Night
	4	37	Phytoplankton net	Night
20/11/2009	Steam	(CTD station lost due		
		to had weather)		
21/11/2000	Steem			
21/11/2009	Steam	1	OTTO	NT: 1.
22/11/2009	5 Sapmer Seamount	1	CID	Night
	36°50'S, 52°6.6'E			
	5	2	Phytoplankton net	Night
	5	3	Bongo	Night
	5	4	Bongo	Night
	5	5	Bongo	Night
	5	5	Boligo	Night
	5	6	Multinet	Night
	5	7	Multinet	Night
	5	Acoustic survey	-	Day
	5	8	Aakra trawl	Day
	5	0	Aakra trawl	Day
	5	3	Aakia uawi	Day
	5	10	Multinet	Day
	5	11	Multinet	Day
	5	12	Multinet	Day
	5	13	CTD Yo-Yo	Day
	5	14	Phytoplankton net	Day
	5	14		Day
	5	15	CID Yo-Yo	Night
	5	16	Phytoplankton net	Night
23/11/2009	5	17	CTD Yo-Yo	Night
	5	18	Phytoplankton net	Night
	5	10	CTD Vo-Vo	Dav
	5	1)		Day
	5	20	Phytoplankton net	Day
	5	21	CID Yo-Yo	Day
	5	22	Phytoplankton net	Day
	5	23	Aakra trawl 750m	Night
	5	24	Aakra trawl 400m	Night
24/11/2000	5	25	Small calma travil	Night
24/11/2009	3	23		INIGIII
			250m	
	5	26	Small aakra trawl	Dawn
			750m	
	5	Acoustic survey	-	Dav
	5	27	Multinet	Day
	5	29	CTD	Day
	5	20		Day
	5	29	Phytoplankton net	Day
	5	30	СГD	Day
	5	31	Phytoplankton net	Day
	5	32	CTD	Dav
	5	33	Phytoplankton net	Day
	5	24	CTD	Night
	5	34	CID	Nigit
	5	35	Phytoplankton net	Nıght
	5	36	CTD	Night
	5	37	Phytoplankton net	Night
	5	38	Multinet	Night
	5	30	Bongo	Night
25/11/2000	5	40	Dongo	Night
23/11/2009	3	40	Bongo	INIGHT
	5	41	Bongo	Nıght
	6 Middle of What SM	Acoustic survey	-	Day
	37°57.6'S. 50°25.2'E			-
	6	1	CTD	Dav
	6	2	Dhytoplankton not	Day
		2	I Hytopiankton net	Day
	0	3	wuitinet	Day
	6	4	Multinet	Day
	6	5	Multinet	Night
	6	6	Multinet	Night
	6	7	Multinet	Night
	U	1	munnet	1415111

	6	8	Bongo	Night
	6	9	Bongo	Night
	6	10	Bongo	Night
26/11/2000	0	10		Night Night
20/11/2009	0	11	Aakra trawi 700-	Night
			500m	
	6	12	Aakra trawl 400-	Night
			200m	-
	6	13	Aakra trawl 950m	Night/Dawn
	6	14	CTD	Day
	0	14		Day
	6	15	Phytoplankton net	Day
	6	16	CTD	Day
	6	17	Phytoplankton net	Day
	6	18	CTD	Night
	6	19	Phytoplankton net	Night
27/11/2000	6	20		Night
27/11/2009	0	20		Night
	6	21	Phytoplankton net	Night
	6	Acoustic survey	-	Day
	6	22	Bongo	Day
	6	23	Bongo	Day
	6	23	Multinet	Day
	0	24		Day
	6	25	Aakra trawl 700-	Day
			500m	
	6	26	Aakra trawl 400-	Day
			200m	5
	6	27	Bongo	Dav
	0	20	CTD	Day N: 14
	6	28	CID	Night
	6	29	CTD	Night
	6	30	CTD	Night
28/11/2009	6	31	CTD	Night
	6	32	CTD	Night
	0	32	CTD	Night
	6	33	CID	Night
	390S		CTD Section	
	39015'S		CTD Section	
	39o30'S		CTD Section	
	39045'S		CTD Section	
	40.5		CTD Section	
	4005			
	4001578		CID Section	
	40o30'S		CTD Section	
	40o45'S		CTD Section	
	4105		CTD Section	
	41015'S		CTD Section	
20/11/2000	41013 S	1	CTD Section	D
29/11/2009	/ Off-Ridge Site	1	CID	Day
	41°30'S, 49°30'E			
	7	2	Phytoplankton net	Day
	7	3	Multinet	Dav
	7	4	Multinet	Day
	7	5	Multinet	
	7	5	Dong	Day
	/	0	Bongo	Day
	7	7	Bongo	Nıght
	7	8	Bongo	Night
	7	9	Bongo	Night
	7	10	Multinet	Night
	7	11	Multipot	Night
20/11/2000	/ 7	11	M L	
50/11/2009	/	12	Multinet	INIght
	7	13	Aakra trawl 700-	Night
			500m	1
	7	14	Aakra trawl 400-	Night
			200m	
	7	A 2011-1-1-	20011	Davi
	/	Acoustic survey	-	Day
	7	15	Aakra trawl 700-	Day
			500m	1
	7	16	Aakra trawl 400-50m	Day
	7	17	Bongo	Day
	7	10	Dongo	Day
4 /4 8 /8 0 0 -	/	10	DUIIg0	Day
1/12/2009	Steam			1

2/12/2009	8 Coral Seamount	1	CTD	Night
	41°23.82′S,42°52.86′E	2		NT: 1.
	8	2	Phytoplankton net	Night
	8	3	Multinet	Night
	8	4	Multinet	Night
	8	5	Multinet	Night
	8	Acoustic survey	-	Day
	8	6	Multinet	Day
	8	7	Multinet	Day
	8	8	Multinet	Day
	8	9	Bongo	Day
	8	10	Bongo	Day
	8	11	Bongo	Day
	8	12	Aakra trawl 900- 600m	Day
	8	13	Aakra trawl 600-	Day
			300m	
	8	14	Bongo	Night
	8	15	Bongo	Night
	8	16	Bongo	Night
3/12/2009	8	17	Aakra trawl 900-	Night
			600m	
	8	18	Aakra trawl 600-	Night
	8	19	Small Aakra trawl	Dawn
	8	1)	300m	Dawii
	8	20	CTD Yo-Yo	Dav
	8	20	Phytoplankton net	Day
	8	21		Day
	8	22	Phytoplankton net	Day
	8	23	CTD Vo Vo	Night
	8	24	CID 10-10 Phytoplankton net	Night
4/12/2000	8	25	CTD Vo Vo	Night
4/12/2009	8	20	CID 10-10 Phytoplankton net	Night
	8	A constic survey	T hytoplanktoli het	Day
	8	Whale moorings	-	Day
	8	28	- CTD	Day
	8	20	Dhytoplankton not	Day
	8	30		Day
	8	30	Dhytoplankton net	Day
	8	31		Day
	8	32	Phytoplankton net	Day
	8	34		Night
	8	35	Dhytoplankton net	Night
	8	36		Night
	8	37	Phytoplankton net	Night
	41º12 85'S 43º00 05'E	51	CTD Section	Night
	$41^{-1}12.0554500.05E$ $10^{0}5005'S12^{0}1224'E$		CTD Section	Night
5/12/2009	40°48 02'S 43°25 02'E		CTD Section	Dav
5/12/2009	$40^{0}2600^{\circ}S43^{\circ}5108^{\circ}E$		CTD Section	Day
	40 30.09 S 43 31.98 E		CTD Section	Day
	40°00 03'S 44°41 85'E		CTD Section	Day
	20°48 06'S 44°58 27'E		CTD Section	Day Night
	30°36 00'S 45°15 04'E		CTD Section	Night
6/12/2000	37 30.00 3 43 13.04 E		CTD Section	Night
0/12/2009	37 23.77 5 43 31.10 E		CTD Section	Night
	37 11.90 3 43 47.40 E		CTD Section	Dav
1				Day
	38°55.99′S 46°03.53′E		CTD Section	Day
	38°55.99'S 46°03.53'E 38°44.95'S 46°22.97'E	1	CTD Section	Day Day
	38°55.99'S 46°03.53'E 38°44.95'S 46°22.97'E 9 Melville Bank	1	CTD Section CTD	Day Day
	38°55.99'S 46°03.53'E 38°44.95'S 46°22.97'E 9 Melville Bank 38° 28.8'S, 46°46.2'E	1	CTD Section CTD	Day Day
	38°55.99 S 46°03.53 E 38°44.95 S 46°22.97 E 9 Melville Bank 38° 28.8' S, 46°46.2' E 9	1	CTD Section CTD Phytoplankton net	Day Day Day
	38°55.99'S 46°03.53'E 38°44.95'S 46°22.97'E 9 Melville Bank 38° 28.8'S, 46°46.2'E 9 9	1 2 3 4	CTD Section CTD Phytoplankton net CTD	Day Day Day Night
	38°55.99'S 46°03.53'E 38°44.95'S 46°22.97'E 9 Melville Bank 38° 28.8'S, 46°46.2'E 9 9 9	1 2 3 4 5	CTD Section CTD Phytoplankton net CTD Phytoplankton net	Day Day Day Night Night
	38°55.99'S 46°03.53'E 38°44.95'S 46°22.97'E 9 Melville Bank 38° 28.8'S, 46°46.2'E 9 9 9 9	1 2 3 4 5	CTD Section CTD Phytoplankton net CTD Phytoplankton net CTD	Day Day Day Night Night Night

7/12/2009	9	7	CTD	Night
	9	8	Phytoplankton net	Night
	9	9	CTD	Night
_	9	10	Phytoplankton net	Night
	9	11	CTD	Dav
	<i>)</i>	10		Day
	9	12	Phytoplankton net	Day
	9	13	CID	Day
	9	14	Phytoplankton net	Day
	9	Acoustic survey	-	Day
	9	Acoustic survey	-	Day (incomplete)
	9	15	Aakra trawl 900m	Night
8/12/2009	9	16	Aakra trawl 700m	Night
8/12/2007	<u>)</u>	10	Multinat	Night
	9	17	Multillet	Night
	9	18	Multinet	Night
	9	19	Multinet	Night
	9	20	Small aakra trawl	Dawn
			300m	
	9	21	Multinet	Day
	9	22	Multinet	Day
	9	23	Multinet	Day
<u> </u>	9	24	Bongo	Dav
	0	25	Bongo	Day
	7	25	Doligo	Day
	<u>у</u>	20	ыongo	Day
	9	27	Aakra trawl 900m	Day
	9	28	Aakra trawl 700m	Day
	9	29	Small aakra trawl	Day
			500-600m	
	9	30	Bongo	Night
_	9	31	Bongo	Night
	9	32	Bongo	Night
	9	22	CTD	Night
	9	35		Night Night
	9	34	Phytoplankton net	Night
	9	35	CID	Night
	9	36	Phytoplankton net	Night
	9	37	CTD	Night
	9	38	Phytoplankton net	Night
9/12/2009	9	39	CTD	Night
	9	40	Phytoplankton net	Night
	9	41	CTD	Night
	9	42	Dhytoplanktop not	Night
	9	42		Night
	9	43	CID	Night
	9	44	Phytoplankton net	Night
	9	45	CTD	Day
	9	46	Phytoplankton net	Day
	9	Acoustic survey	-	Day
	9	47	CTD Yo-Yo	Day
	9	48	Phytoplankton net	Day
	9	49	CTD Yo-Yo	Night
	0	50	Dhutonlandrar	Night
10/11/0000	У 0	50	Phytopiankton net	Night
10/11/2009	<u>у</u>	51	CID YO-YO	Night
	9	52	Phytoplankton net	Night
	9	53	CTD Yo-Yo	Day
	9	54	Phytoplankton net	Day
12/11/2009	10 Un-named	Acoustic survey	-	Day
	seamount	5		5
	31o37.48'S			
	42o50.22'E			
<u> </u>	10	1	CTD	Dav
	10	2	Dhytoplankton net	Day
<u> </u>	10	2	Multingt	Day
	10	3	Multinet	Day
	10	4	Multinet	Nıght
	10	5	Multinet	Night
	10	6	Multinet	Night
	10	7	Bongo	Night

	10	8	Bongo	Night
	10	9	Bongo	Night
13/12/2009	10	10	Aakra trawl 1100m-	Night
			900m	C
	10	11	Aakra trawl 700m-	Night
			400m	
	10	12	Aakra trawl 300m –	Dawn
			0m	
	10	Acoustic survey	-	Day
	10	13	Multinet	Day
	10	14	Multinet	Day
	10	15	Bongo	Day
	10	16	Bongo	Day
	10	17	Bongo	Day
	10	18	Aakra trawl 1100m-	Day
			900m	
	10	19	Aakra trawl 700-	Day
			400m	
	10	20	CTD Yo-Yo	Day
	10	21	Phytoplankton net	Day
	10	22	CTD Yo-Yo	Night
	10	23	Phytoplankton net	Night
14/12/2009	10	24	CTD Yo-Yo	Night
	10	25	Phytoplankton net	Night
	10	26	CTD Yo-Yo	Day
	10	27	Phytoplankton net	Day
	10	28	CTD Yo-Yo	Day
	10	29	Phytoplankton net	Day
	10	30	CTD transect	Night
	10	31	Phytoplankton net	Night
15/12/2009	10	32	CTD transect	Night
	10	33	CTD transect	Night
	10	34	CTD transect	Night
	10	35	CTD transect	Night
	10	36	CTD transect	Night
	10	37	CTD transect	Day
	10	38	CTD transect	Day
	11 Underway station	1	CTD	Day
	11	2	Phytoplankton net	Day

Table 2.1 Southern Indian Ocean Seamounts Cruise 2009-410 daily event log.

3.0 Multibeam bathymetry of the investigated seamounts

3.1 The seabed mapping system

Surveys of seamount bathymetry were undertaken using a SIMRAD EM710 70 – 100 kHz multibeam echosounder (Kongsberg Maritime AS, Horten, Norway). This is a high-resolution seabed mapping system which, on the R/V Nansen is logged onto the Olex navigation system. The minimum acquisition depth is from less than 3 m below its transducers, and the maximum acquisition depth is approximately 2000 m, somewhat dependant upon array size. Across track coverage (swath width) is up to 5.5 times water depth, to a maximum of more than 2000 m and the depth resolution is 1cm (Kongsberg Maritime). The transmit fan is divided into three sectors to maximize range capability, but also to suppress interference from multiples of strong bottom echoes. The sectors are transmitted sequentially within each ping, and uses distinct frequencies or waveforms. All acoustic instruments used during the cruise were triggered by the 38kHz signal from the SIMRAD EK60. Timing of each instrument can be finely adjusted on the vessel to avoid interference between instruments if the vessel is, for example, operating in shallow water. The model on the R/V Nansen is a $1x2^{\circ}$ model which generates 128beams/200 soundings per ping.

Following collection of raw data for each seamount, data was filtered to remove obvious bad pings (echos that are much higher or lower than background).

3.2 Bathymetry of the seamounts

3.2.1 Atlantis Bank

Atlantis Bank is a tectonic guyot that comprises a section of the Earth's mantle that has been pushed up above the crust onto the seabed. Unlike most flat-topped seamounts, therefore, it does not have a volcanic origin but is tectonic (Dick, 1998). It consists mainly of gabbro, which was uncovered through low-angle detachment faulting about 9.5 - 13 MYA (Coogan *et al.*, 2004). About 9.5 million years ago Atlantis Bank formed an island, about 25km^2 in area but subsided slowly into deep waters and now the summit lies at 700m depth. As a result, large areas are covered in limestone and the remains of rippled fossil beaches, boulders, wave-cut platforms, sea stacks and fossilized clams, gastropods and other marine animals are visible on the seamount surface (Dick, 1998). The seamount lies on the flank of the Atlantis II Fracture Zone and rises on one side from 5000m depth (Dick, 1998).

Figure 3.1 Atlantis Bank. Multibeam bathymetry of the seamount.

Figure 3.2 Atlantis Bank. Profile along longest axis.

Figure 3.3 Atlantis Bank. Profile across seamount.

There are very limited scientific data on Atlantis Bank, known as Seamount 690 to Soviet scientists (Romanov, 2003). Geological investigations have reported lobsters, crabs, sharks, sea fans, siphonophores, sponges and other benthic organisms on the seamount (Dick, 1998). A single paper on ROV investigations reported the presence of crow shark (*Etmopterus pusillus*), orange roughy (*Hoplostethus atlanticus*) and warty oreo (*Allocyttus verrucosus*) all of which exhibited specific depths distributions (Lindsey *et al.*, 2000). Other species observed included several putative species of bellows fish (*Centriscops* spp.), cutthroat eels (*Synaphobranchus* spp), rattail fish (*Coryphaenoides* spp., and possibly *Hymenocephalus* or *Ventrifossa*), attenuated spider fish (*Bathypterois atricolor*), a chimaera, tadpole whiptail (*Squalogadus modificatus*), a halosaur (*Alvodrandia* spp.), a morid cod (*Lepidion capensis*), several perciform fish (Haemulidae) and false cat sharks (*Pseudotriakis microdon*; Lindsey *et al.*, 2000). Several benthopelagic or benthic shrimps were observed including *Hepomadus* sp., *Nematocarcinus* spp., and c.f. *Acanthephyra*, as well as sergestids and swarms of euphausiids above the seamount (Lindsey *et al.*, 2000). Cirrate octopuses and squid were also observed as well as a pelagic holothurian. One of the photographs in the paper shows bellows fish in amongst black coral and octocorals colonies (Lindsey *et al.*, 2000).

Shotton (2006) report that the rugged nature of Atlantis Bank makes it very difficult to trawl, although some trawlable areas exist and up to 60 trawls have been take by SIODFA vessels. They also state that catches of alfonsino were taken from the bank (Shotton, 2006). Soviet vessels seem to have caught significant numbers of pelagic armourhead on Atlantis Bank and nowhere else on the South West Indian Ocean Ridge (Romanov, 2003).

As can be seen from Figs. 3.1-3.3 Atlantis Bank is a north to south trending seamount, > 18km in length and >10km wide, with two distinct "scoops" out of the western side. These correspond to fossil lagoons separated by headlands and oolitic limestone, that may form in lagoons has been found on Atlantis Bank (Dick, 1998). We speculate that these "scoops" may correspond to collapse features on the western side of the seamount associated with mass wasting. The summit depth is

approximately 700m, whilst the base lies at 5000m depth (Dick, 1998). The central area of the summit is characterised by the presence of fossil sea stacks, clearly visible on the multibeam map constructed during the present cruise.

3.2.2 Sapmer Bank

There are few specific data associated with Sapmer Bank. The bank has been subject to exploratory fishing by French and Spainish fishing vessels (Collette & Parin, 1991; López-Abellán *et al.*, 2008) and is still subject to a fishery by SIODFA vessels. Some samples of pelagic armourhead (*Pseudopentaceros richardsoni*) have been taken from this locality and used for ageing studies (López-Abellán *et al.*, 2008). The seamount trends roughly northeast to southwest and, like Atlantis Bank, lies on the edge of a fracture zone. It has a highly irregular shape and very rough topography that seems to be associated with significant mass-wasting in the form of obvious slide features, particularly along the southern face of the seamount, but also along the north. The seamount summit lies at a shallowest depth of approximately 300m, and the entire feature is > 12km in length across its longest axis. There are no available data on the geology of Sapmer Bank.

Figure 3.4 Sapmer Seamount. Multibeam bathymetry of the seamount.

Figure 3.5 Sapmer Seamount. Profile along longest axis.

Figure 3.6 Sapmer Seamount. Profile across seamount.

3.2.3 "Middle of What" Seamount

There are no specific data on Middle of What Seamount. It is a deep feature with an ellipsoid shape, longer in the east to west direction than north to south. The seamount has a distinct ridgeline running along the northern face, almost appearing to follow a fault line, where it reaches its shallowest depths of approximately 970m at the summit. Surrounding the seamount, particularly to the west are small sub-conical features that may be volcanic in origin. The seamount is more than 12km in length along its longest axis. Contact with the seabed by the pelagic trawl deployed on the present cruise indicates that this seamount is likely to host a significant cold-water coral reef feature associated with the northern, ridge-like summit edge.

Figure 3.7 Middle of What Seamount. Multibeam bathymetry of seamount.

Figure 3.8 Middle of What Seamount. Profile along longest axis.

Figure 3.9 Middle of What Seamount. Profile across seamount.

3.2.4 Coral Seamount

This seamount lies to the eastern side of a transform fault and has been reported to host extensive coral communities (Shotton, 2006). For this reason, Coral Seamount has been declared a voluntary Benthic Protected Area (BPA) by SIODFA. Unlike all the other seamounts investigated during the cruise, Coral lies to the south of the sub-tropical convergence. The seamount forms part of a series of ridge-like elevations along the eastern side of a deep fracture zone and lies approximately north east east to south west west, with a length of >18km at its longest axis and a minimum depth of approximately 120m. The central area of the summit has a particularly block-like morphology with a wide area of flat summit.

Figure 3.10 Coral Seamount. Multibeam bathymetry of the seamount.

Figure 3.11 Coral Seamount. Profile along longest axis of seamount.

Figure 3.12 Coral Seamount. Profile across seamount.

3.2.5 Melville Bank

Melville Bank lies just to the north of the sub-tropical convergence and is influenced by meanders and eddies associated with the front. It possibly corresponds to seamount 102 fished by Soviet fleets (Romanov, 2003) and is the shallowest seamount on the South West Indian Ocean Ridge with a summit depth of about 90m (Gershanovich & Dubinets, 1991). Melville Bank has been fished by the Soviet fleet and has been heavily fished between the depths of 750 – 1000m and as deep as 1500m depth (Shotton, 2006).

Figure 3.13 Melville Bank. Multibeam bathymetry of the seamount.

Figure 3.14 Melville Bank. Profile along longest axis of seamount.

Figure 3.15 Melville Bank. Profile across the seamount.

Melville Bank trends roughly east to west with two distinct peaks, summit depths ~90m and ~550m. The seamount is about 12km along its longest axis.

3.2.6 Unnamed Seamount, Madagascar Ridge

This seamount was predicted to have a summit depth of approximately 700m from Gebco. Instead a sub-conical seamount was located with a summit depth of approximately 1300m. The seamount showed a much more regular outline in shape than those located on the South West Indian Ocean Ridge and is circular and approximately dome-shaped in profile. It is a large feature of more than 16km in diameter.

Figure 3.16 Un-named seamount, Madagascar Ridge. Multibeam bathymetry.

Figure 3.17 Unnamed seamount, Madagascar Ridge. Profile across seamount.

Figure 3.18 Unnamed seamount, Madagascar Ridge. Profile across seamount.

4.0 Physical Oceanography

Jane Read

National Oceanography Centre, European Way, Southampton SO14 3ZH.

4.1 Objectives

There were two objectives to the physical oceanography component of the cruise: i) to establish the boundaries of the Agulhas-Somali Current Large Marine Ecosystem (ASCLME),

ii) to ascertain the influence of seamounts on the pelagic ecosystem and to investigate the interaction between seamounts and the water column in terms of physical oceanography.

4.2 Plan

To achieve the objectives two different components were planned. The first was to collect CTD and lowered acoustic Doppler current profiler (LADCP) profiles at intervals throughout the cruise, to investigate the large (gyre) scale water mass properties and circulation. These were to be supplemented by one or two (depending on time) close spaced (better than 30nm) CTD + LADCP sections across the Agulhas Return Current and Subtropical Convergence (STC), to investigate the highly dynamic southern boundary of the ASCLME.

The second component centred on the seamounts. Thus at each seamount, a 24-hour CTD yoyo at or near the crest, would provide details of the tidal cycle, inertial oscillations, internal waves and any short-term periodic flow, while a short full-depth CTD transect across the seamount would measure background density gradients and water mass properties. In addition, the vessel mounted ADCP would be run throughout the acoustic grid survey to provide a map of the surface currents over each seamount.

In addition to data collected during the cruise, access to real-time AVISO merged altimeter sea surface height and absolute surface velocities was requested. These provided a low resolution $(1/3^{rd}$ degree) map of the circulation of the region, and proved invaluable in planning the location of sections and "off seamount" surveys. Satellite chlorophyll data were obtained in weekly composite maps from the MODIS satellite.

4.3 Equipment

The plan depended on good CTD and lowered ADCP profiles, vessel mounted ADCP and shipboard position. Additional information was obtained from thermosalinograph and meteorological instruments.

CTD

Conductivity, temperature and pressure data were collected using a SeaBird Electronics SBE 911+ CTD and deck unit, together with an SBE 43 dissolved oxygen sensor and Chelsea Instruments Aquatracka Mk III fluorometer. A 12-way rosette holding twelve 5-litre Niskin bottles was used to collect water samples.

CTD 911+ SBE CTD and deck unit CTD serial no 09P8109-0316 Deck unit serial no 11P8109-0305 Pressure sensor serial no 53966 Temperature sensor serial no 4143 Conductivity sensor serial no 2037 SBE43 dissolved oxygen sensor Replaced on cast with serial number 431277 Chelsea instruments Aquatracka Mk III serial number 88/2615/119 12-way rosette with 12 5-litre bottles (various of these were lost during the cruise and were replaced by older bottles)

The system worked well throughout the cruise and a total of 423 stations were sampled. A number of Niskin bottles were lost during bad weather and had to be replaced. The first six bottles were lost on station 1273 and only 9 bottles were available for station 1274 until more could be assembled from spare parts. After this time bottles 11 and 12 regularly leaked or failed to close The oxygen sensor broke down on station 1397 and a replacement installed for station 1398 To protect against worn cable, the cable was coiled around the top of the CTD frame several times during the cruise. The CTD termination was re-made after station 1490.

Lowered ADCP

The Lowered ADCP was a problem, which began before the cruise started, when the fullspecification instrument requested of IMR could not be transferred to the Nansen. Two alternatives were obtained, a Teledyne RDI Quartermaster Workhorse from IMR, which was rated to 1500 m and a Teledyne RDI Sentinel "moored" ADCP from NOC. The latter used an old potting compound with the known problem of breaking up with cyclic pressurising. This meant that the instrument could only be used on a limited number of CTD profiles.

Unfortunately and unknown to those on board, the IMR Quartermaster Workhorse was supplied to the ship with a separate battery pack that was rated only to 200m. When the system was deployed to 1500m at the first CTD station the battery pack was destroyed. No alternative was available so this instrument could no longer be used. The Sentinel ADCP was deployed on the next two CTD stations and worked well until the first crossing of the STC. At this point it seemed to be suffering from excess internal moisture and was taken out of use. In fact, this was probably the result of condensation from being used in colder temperatures. However, it was also discovered that the holding bar of the CTD frame had been severely bent under the weight of the LADCP and since no alternative method of deploying the LADCP could be found, it could no longer be used. Stations with lowered ADCP data were as follows:

1215, 1216 – between Reunion and Atlantis 1342,1343,1344,1345,1346 – Sapmer transect 1384,1385,1386,1387,1388,1389 – Middle of What transect 1390,1391,1392,1393,1394,1395,1396,1397 – STC/SAF transect

Underway Measurements

Surface measurements of temperature, salinity and fluorescence were made using a Seabird SBE 21 SeaCat thermosalinograph. Data were presented as 1 minute averages in the daily cnv files. Meteorological measurements were provided, although no air pressure was recorded in the 1 minute tracklog_data file. The other underway measurement that would have been useful was incoming irradiance or PAR (photosynthetic irradiance). Apparently this instrument was recently removed from the meteorological system.

Vessel Mounted ADCP

The Nansens' hull mounted acoustic Doppler current profiler is an RDI Ocean Surveyor 150 kHz model, system serial number 1533 and transducer 3067 running vmDAS version 1.44 with 30° beam angle. Transmissions were synchronised with the other acoustic equipment on board (EM710, EK60), such that the ADCP had to wait for the 38 kHz transducer of the EK60 to ping, before it

transmitted. This led to a lower data rate than the instrument is capable of, and some degradation of data was expected. However, there was little evidence of this and the instrument provided good data over the top 300-400 m of the water column for most of the cruise.

The instrument was configured with one hundred 8m bins, 8m blank beyond transmit and zero transducer depth. Bin depths were corrected during processing using the RDI formula Central depth of first bin = blank distance (WF) + 0.5 * (bin size + xmt length + lag) Where the blank distance = 10 m, bin size = 8 m, xmt length = 8 m and lag = 0.74 m. Together with the vessel's draft of 5.5 m, an estimated first bin depth of 24 m was applied.

Individual pings were internally corrected for ship's heading using the 1 second NMEA input from the Seatex Seapath 200. Data were averaged internally over 3 minutes (STA) and 20 minutes (LTA). During the cruise, the 3-minute averages were read into pstar, corrected for ship's velocity and plotted for the acoustic grids, CTD yoyo's and transects.

No calibration for misalignment angle was attempted during the cruise. The first acoustic survey (event 2) provided coherent data (ie no divergence between the lines of the grid) indicating that any misalignment angle must be small, however, this is something that should be assessed post-cruise.

The Seatex Seapath 200 (S/N 2261) provides real-time heading, attitude, position and velocity. These are obtained by integrating the signals from an inertial measurement unit (MRU 5) and two GPS antennae. The Seatex MRU 5 incorporates 3-axis sensors to measure linear acceleration and angular rate and the output is processed in the Seapath processing unit using a Kalman filter to produce roll, pitch, heave and velocity measurements. Roll, pitch and heading were passed to the vessel's ADCP in NMEA format.

While the instruments on board worked well, there were a number of observations conspicuous by their absence. There was no par or solar radiation sensor on board. Air pressure was not recorded in the tracklog file, although it appeared on the monitor. No thermometers could be found to check the temperature of the lab for the salinometer.

4.4 Data processing and calibration

CTD data were heavily processed before being made available to scientists. The processing path consisted of conversion from binary to ascii format (datcnv), wild edit (calculating mean and

standard deviation on blocks of 2 scans on the first pass and 20 scans on the second pass), correction for the cell's thermal mass (cellTM using default parameters), low pass filtered (conductivity, oxygen and fluorescence over 0.03 and pressure over 0.15), pressure reversals or slowdowns were removed with loopedit (minimum velocity 0.25). The data were then averaged to 1 dbar (binavg) and salinity and density calculated (derive).

While the resulting data were clean, the data had been averaged to 1db, so time was no longer available in the file, except as a start time. Time needs to be maintained as a variable, so that the data can be merged with other data sets. Conductivity had been dropped, although this is usually used for salinity calibrations and further derived parameters. The up-casts were deleted, and yet these would have provided useful additional information during the yoyos. Also, it was not possible to follow the usual convention of obtaining the station position at the bottom of the cast. Instead, the start position had to be used. Curiously temperature was calculated using the International Practical Temperature from the thermosalinograph was calculated using the ITS90. This anomaly, and the missing parameters, mean that the CTD data need to be re-processed to be comparable with other modern data sets and before other variables, such as potential temperature, are derived.

CTD data were read into pstar, but no further processing was attempted. Data were gridded and contoured for the transects and yo-yos. Bottle files were also read into pstar and combined with salinity values determined from the salinometer (see below). The difference between CTD and bottle samples suggest that a correction of between 0.01 - 0.02 to salinity is necessary. Dissolved oxygen measurements using Winkler titration suggested that the SBE43 oxygen sensor had a significant offset.

Salinity calibration

A total of 272 samples were drawn and analysed for salinity. A Guildline Portasal, Portable Salinometer model 8410, serial number 60 652, sited in the main lab, was used for analysis. At the beginning of the cruise the cell was soaked and cleaned with a soap solution before thorough rinsing with distilled water, and the sealing bung and sampling tube were replaced. There were a number of issues with salinity analysis.

Sample bottles were 100 ml green glass with porcelain stopper and rubber rings sealed with a clip spring. The springs were worn and some were heavily corroded, several broke during use and it was not clear how effective a seal the rubber rings provided.

Prior to the cruise, it was understood that there was standard seawater on board, however on arrival, it was discovered that this was not the case and there was not enough time to get any couriered to the ship. Thus just one bottle of standard seawater, provided by ECOMAR (Reunion), was available. This was completely inadequate for a cruise of this duration and intensity of CTD work. Usually, we estimate usage of one bottle per day of CTD time, rounded up to the nearest ten (for this cruise, I would have expected to use up to 20 bottles and would have brought 30 bottles of standard seawater to allow for breakage).

Three bottles of standard seawater were couriered from NOC to the agent in Port Elizabeth and a carefully selected set of samples were analysed on board after the ship had docked. The one bottle of standard seawater (P144) was used to standardize the salinometer at the beginning

of the first session (28 November).

A "substandard" was collected from 2000 m depth on the first cast and measurements of this were made at the beginning and end of every salinometer session. However the values increased during the cruise, presumably due to evaporation through perished sealing rings, so were useless for identifying any drift in the salinometer. It did, however, prove useful in alerting the analyst to anomalous behaviour in the salinometer.

It seems likely that other bottles also allowed evaporation of the sample and some samples were stored for up to a week before analysis. There is no way of quantifying the extent of this problem. However, the majority of samples had sufficient pressure to "pop" the top when the catch was released (from thermal expansion), suggesting that a good seal had been made. Therefore evaporation is not considered to be a major problem (compared to all the other issues encountered). Two problems with the salinometer made salinity analysis difficult. In calm conditions during the acoustic grid surveys, the salinometer made sudden jumps to higher ratios when measuring the conductivity of a sample, which were obviously wrong. These coincided with rapid ("destroyer" or "handbrake") turns made at grid points. The same behaviour occurred in rough seas, when the ship experienced sudden or violent movement (pitching, heaving or rolling). This made it inadvisable to use the salinometer during bad weather.

A ship's motion is generally much reduced when hove-to, therefore an attempt was made to use the salinometer during CTD work. However, it was quickly found that this didn't work either. There was a lot of activity in and between the labs, the CTD hatch was open and there were noticeable

fluctuations in temperature and drafts around the lab. The salinometer gave such unstable readings that it was impossible to determine a correct value for the samples.

The behaviour of the salinometer is shown in the plot of salinity residuals (bottle salinity – CTD salinity). A sequence of steadily increasing residuals beginning at samples 100, 119 and 156 coincide with three separate analysis sessions. The first two took place during rough weather, the third took place while the vessel was hove-to working CTD stations. There is no reason to think that the CTD conductivity sensor was misbehaving at this time.

These behaviours have been experienced before in other salinometers and are not unique to this one. However, on a cruise that experienced days of bad weather, it was difficult to find periods of suitable, calm, quiet conditions for salinity analysis. When the analysis took place in good conditions, the salinometer worked well giving good, stable measurements of conductivity ratio.

A total of 272 samples were analysed including 10 pairs of duplicates. A further 12 pairs of duplicates were drawn for analysis at the end of the cruise. Mean differences between the 10 pairs of cruise duplicates was -0.0002 \pm 0.003, although this masks three "bad" pairs (difference greater than ± 0.005) and seven "good" duplicates (difference better than ± 0.002).

The data suggest that a correction to CTD salinity of order 0.01 is necessary, however, calibration is usually applied to conductivity before calculation of salinity. Conductivity was not available in the CTD files, so a full assessment of the calibration required will be done post-cruise.

4.5 Results

Plots of parameters measured underway by the meterological and thermosalinograph instruments showed the extent of the gale force winds and bad weather experienced during the cruise. Air bubbles in the thermosalinograph caused noise in the salinity data and the instrument had to be turned off during particularly bad weather.

Sea surface height images were received on a daily basis (data were obtained in real-time from AVISO, <u>http://www.aviso.oceanobs.com/</u>). Images presented here were selected to represent each seamount survey. The image for 7 December also includes approximate positions of the two STF crossings.

Reunion to Atlantis

1214 - station 11215 - station 2 (off-seamount survey)1216 - station 3

Atlantis

1217 – Atlantis seamount biological station 1218 – 1268 Atlantis yoyo. 51 profiles, depth 740m, 32° 42.735'S, 57° 16.326'E 1269 – 1274 Atlantis transect. 6 profiles Mean temperature, salinity and density of the top 200 m on the transect: 16.559°C \pm 1.464, 35.505 \pm 0.069, 25.998 kg m⁻³ \pm 0.294.

Sea surface height from 17 November

Although Atlantis reached about 70 m below the sea surface at its highest point most of the plateau was about 750 m deep. The yoyo was worked near the centre of the plateau and showed evidence of tidal periodicity in the bottom 350 m of the water column.

Sapmer

1275 - Sapmer seamount biological station
1276 - 1340 Sapmer yoyo. 65 profiles in 512 m
on SW edge of seamount, above the fracture zone
36° 50.589'S 52° 8.522'E

1341 - 1346 Sapmer transect Mean temperature, salinity and density of the top 200 m on the transect: 15.820°C ±0.069, 35.452 ±0.002, 26.207 kg m⁻³ ±0.014.

Sea surface height from 20 November

Gale force winds were encountered throughout the two day steam from Atlantis to Sapmer. Conditions improved during the Sapmer survey. The upper layer was well mixed down to 350-400 m, with almost no vertical gradient in salinity and only 0.3°C change in temperature. The yoyo was worked at the eastern end of the summit plateau in about 500 m of water, above the steep drop into the fracture zone. There was considerably more structure in the bottom 100 m of the water column than in the top 300 m and this was organised into two periods approximating to tidal cycles, in which colder water appeared at the base of the water column then disappeared again. Surface currents were weak averaging approx 20 cm/s to the east.

Middle of What

1347 – Middle of What biological station 1348 – 1383 Middle of What yoyo, 36 profiles in 990 m 37° 57.415'S 50° 24.828'E 1384 – 1389 Middle of What transect Mean temperature, salinity and density of the top 200 m: 16.604°C \pm 0.522, 35.548 \pm 0.032, 26.028 kg m⁻³ \pm 0.098.

Sea surface height from 25 November

Middle of What was one of the deeper features examined, at its highest elevation reaching no closer than 1000 m to the sea surface. The CTD yoyo was worked close to the summit on the northern edge of the plateau, at the northern drop off into the central rift valley. Surface currents showed weak eastwards flow of about 25 cm/s. The only evidence of tidal signals was a small temperature difference at the seabed in the bottom 100 m of the yoyo.

STC/SAF crossing

1390 - 1400 STC/SAF crossing (15 nm spacing)

Eleven stations were worked at approximately 15 nm spacing across the STC to a depth of 2000 m. The oxygen sensor broke down on station 1397 and was replaced for station 1398. The LADCP was removed at the end of station 1396. Results showed a double frontal feature with strong eastward currents throughout the section.

Coral

1401 - Coral seamount biological station 1402 – 1489 Coral yoyo, 89 profiles in 425 m, 41° 25.360'S 42° 50.695'E 1490 – 1495 Coral transect Mean temperature, salinity and density of the top 200 m during the transect: $10.014^{\circ}C$ ±0.654, 34.561 ±0.132, 26.605 kg m⁻³ ±0.145.

Sea surface height from 2 December

Coral was the only seamount of the survey that was south of the STC and therefore sited in different water masses, providing a colder and fresher environment than the other seamounts studied. It was a shallow seamount, at its highest point reaching about 100 m below the sea surface. The CTD yoyo was worked on the western side, on the edge of the summit plateau, in about 400 m of water above the drop off into the fracture zone. The seamount survey took place at almost full moon, spring tides. The first cast worked in 954m of water, but the topography was too steep to judge safely the CTD depth relative to the bottom, so the vessel was repositioned at end of first cast to a small flattened area in about 425 m depth of water. Tidal effects were visible throughout the water column over the 24 hour period of the yoyo. Water column ADCP measurements suggested bottom intensification and rapid changes in strength and direction of the sure strongest at the sea bed, but extended upwards to the sea surface, including affecting the phytoplankton layer. The base of the fluorescence maximum was elevated over columns of cold water, rising from about 100 m to less than 40 m depth. This appeared to be associated with changes in the concentration of fluorescence from >1 $\mu g/l$ (uncalibrated) as the isolines rose to <0.5 $\mu g/l$ as the isolines relaxed downwards

STC crossing

1496 - 1508 STF crossing (18 nm spacing)

The second crossing of the STC consisted of 13 CTD stations worked to 2000 m approximately 18 nm apart, but included the last station of the Coral transect and the first station of the Melville transect. Frontal gradients were more gentle than the first crossing and only a single frontal feature was observed.

Melville

1509 – 1515 Melville transect (south-north) 1516 – 1525 Melville transect 2 (east-west) 1526 - 1600 Melville yoyo 75 profiles in 520 m at 38° 28.271'S 46° 43.922'E Mean temperature and salinity of the top 200 m during the two transects: 16.281°C ± 0.445 , 35.540 ± 0.034 , 26.098 kg m⁻³ ± 0.079 .

Sea surface height from 7 December. This figure also shows approximate positions of the two CTD sections across the STF

Melville was elongated west to east on the southern edge of the central rift of the SW Indian ridge. The shallowest area was about 100 m, with a second elevation to the west of about 400 m. The CTD yoyo was worked on the western shoulder of the shallowest part of the seamount, just above a col about 600m deep. The initial north-south transect was worked in very bad weather and the ship drifted up to half a mile during stations. A second transect was worked later, from east to west.

Walters' Shoals Seamount

1601 – Walters' Shoals biological station 1602 – 1628 Walters' Shoals yoyo 27 profiles in 1280 m at the centre of the seamount 31° 37.352'S 42° 49.180'E 1629 - 1635 Walter's Shoals transect Mean temperature, salinity and density of the top 200 m during the transect: 18.298°C \pm 1.683, 35.567 \pm 0.027, 25.621 kg m⁻³ \pm 0.408

Sea surface height from 13 December

A small seamount to the northwest of the area called Walters' Shoals was chosen for the last survey site. The seamount proved to be much deeper than either GEBCO or Sandwell and Smith topography predicted (1200 m instead of 700 m). It was also atypical in having a domed structure rather than a plateau. The yoyo was sited at the shallowest point, at the centre of the dome and the transect worked from southeast to northwest through that central point. There was no obvious evidence of a tidal signal, and instead of upwelling in the bottom boundary layer there appeared to be lateral mixing. Surface currents showed a southwestward flow.

4.6 Conclusions

Overall this was a successful cruise collecting a remarkably extensive data set for the weather conditions. Two close spaced CTD sections were worked across the STF and SAF, the first with some LADCP data, fulfilling objective one. CTD yoyos and transects were completed at 6 seamounts for objective two. Results from the seamounts were mixed, but showed evidence of tidal motions, amplification of tidal currents, internal waves and mixing. It was clear that such features had a direct impact on the deep scattering layers observed in the EK60 acoustic data. Less frequent, but perhaps more striking was the effect on phytoplankton, as indicated by fluorescence. Such effects will be investigated further post-cruise.

5.0 Phytoplankton, nutrients and POM

Tommy Bornman & Tinus Sonnekus

South African Institute for Aquatic Biodiversity, Pbag 1015, Grahamstown 6140, South Africa

Samples for phytoplankton, nutrients and POM were collected at the 110 environmental stations indicated in Figure 5.1. Details of the samples collected at each depth of every station are given in Appendix A. At each environmental station, the SBE 911plus CTD (Sea-Bird Electronics Inc.) was dipped to the bottom or to a maximum depth of 2000 m. The Deep Chlorophyll Maximum (DCM) or Fluorescence Maximum (F-Max) and bottle sample depths were identified on the downcast and Niskin bottles were triggered on the upcast. Fluorescence was measured by an AQUAtracka III (Chelsea Technologies Group Ltd). Two Niskin bottles were triggered at F-max for POM and phytoplankton purposes.

Figure 5.1 Station positions sampled for phytoplankton, nutrients and POM.

5.1 Phytoplankton

5.1.1 Materials and methods

Water was collected from five potential depths (depths determined from the sheet provided by acoustics):

- 1. Surface
- 2. Below Surface (termed Shallow normally 20 m)
- 3. Below Surface and above Fmax (termed Deep normally around 40 50 m)
- 4. Fmax (can be anywhere from surface to >100 m)
- 5. Below Fmax (next station below Fmax that has a visibly lower fluorescence)

Samples were collected for size fractionated chl-a, phytoplankton identification, nutrients and particulate organic matter (POM).

Chlorophyll-a analyses:

Half a litre (500 ml) of water from each of the five (or less depending on the depth of F-max) depths were filtered through a Sartorius filter tower cascade set-up with the following filter paper:

- a. Top: 20 µm Nylon Net Millipore filter to collect microphytoplankton
- b. Middle: 2 µm Macherey-Nagel filter to collect nanophytoplankton
- c. Bottom: 0.7 µm GF/F Whatman filter to collect picophytoplankton

The filter paper were sealed in tin foil, labeled and placed in a -20°C freezer for later analyses.

Phytoplankton identification

A litre of water were collected from the surface and the highest F-max Niskin bottle, preserved with 2% Lugols (20 ml) (Karayanni *et al.* 2004) and stored for later analyses. The samples were always added to the fixative so that the preserved cells experienced the minimum target fixative concentration at all times.

80 µm ring net for phytoplankton identification

An 80 µm ring net was deployed vertically to below the F-max and winched up to the surface at 0.5 m.s⁻¹. The contents of the cod-end were washed into a 250 ml honey jar containing 2% Lugols solution and stored for later analyses. Slides from selected stations (1275, 1342, 1348, 1394 and 1601) were made and examined using a Leitz light microscope. Light micrographs of dominant species/taxa were made using a DCM 310 digital camera (3 megapixels) for microscopes. Identification of all taxa to the lowest taxonomic level will be done at the Nelson Mandela Metropolitan University (NMMU) and SAIAB using Light and Scanning Electron Microscopy.

5.1.2 Preliminary results

Chl-*a* will be extracted and read on a Turner Designs 10AU Fluorometer in the phytoplankton laboratory of the South African Institute for Aquatic Biodiversity, South Africa. Comparisons will also be done between Fluorometer, HPLC and Spectrophotometer results.

Diatoms formed the dominant phytoplankton group south of 36°S. The stations north of Sapmer Seamount (including Atlantis Seamount) was characterized by low fluorescence and a relatively deep (80 – 100 m) Deep Chlorophyll Maximum (DCM) typical of oligotrophic tropical and subtropical water. The dominant diatoms included the chain forming species belonging to the genus *Pseudonitzschia, Chaetocerus, Fragilariopsis, Melosira* and *Thalassiosira*; large centrics, such as *Planktoniella* and *Coscinodiscus*; and others, including the large *Rhizosolenia* spp. and several *dinoflagellate* species belonging to genus *Ceratium*. The highest fluorescence was measured in the surface waters between the Subtropical Front and the Subantarctic Front around 40°S. In the Subantarctic water the important high latitude flagellate, *Phaeocystis* sp. (probably P. *antarctica*), made its appearance in large numbers, although diatoms remained the dominant group. The light micrographs below show some of the dominant diatoms recorded during the cruise.

Planktoniella sp.

Pseudonitzschia sp.

Conscinodiscus sp.

Chaetocerus sp.

Rhizosolenia sp.

Phaeocystis cf. antarctica

5.2 Nutrients

5.2.1 Materials and methods

Water samples were collected from all the depths (except for the duplicate F-max bottle) where the Niskin bottles were triggered. Acid washed 50 ml "urine jars" were rinsed twice with water directly from Niskin and filled $\frac{3}{4}$ full (5 – 10 ml space were left to allow expansion during freezing). Bottles were labelled and placed in a -20°C freezer for later in South Africa.

5.2.2 Preliminary results

The nutrients will be analysed in Dr. Howard Waldron's laboratory in the Department of Oceanography at the University of Cape Town. The nutrient data should be available early in 2010. To access the data please contact Dr Tom Bornman at <u>t.bornman@saiab.ac.za</u>.

5.3 Particulate Organic Matter (POM)

5.3.1 Materials and methods

POM samples were collected from the surface and F-max at each environmental station. Five litres of water were collected from the surface with the aid of a bucket and from the duplicate F-max Niskin bottle and pre-screened through a 64 μ m sieve to remove zooplankton. The sieved water was filtered onto a pre-combusted GFF filter under slight vacuum. GFF filters were then dried at 50°C for 24 hrs and stored in sterile opaque blue containers for later analyses.

5.3.2 Preliminary results

The POM and isotope samples will be analysed by Dr. Sven Kaehler from IsoEnvironmental at Rhodes University. For more info contact: <u>s.kaehler@ru.ac.za</u> or visit <u>http://www.isoenviron.co.za/</u>

6.0 Mesozooplankton and micronekton sampling

Tom B. Letessier¹*, Riaan Cedras², Phillipe Boersch-Supan¹

Principal-investigator: Andrew S. Brierley¹, Mark Gibbons²

¹Pelagic Ecology Research Group, Gatty Marine Laboratory, University of St Andrews, Fife, KY16 8LB, Scotland, UK.

²University of the Western Cape, Department of Biodiversity and Conservation Biology, Private Bag X17, Bellville 7535, South Africa

* tbl@st-andrews.ac.uk, Tel: +44 (0) 1223 462345, Fax: +44 (0) 1334 463443

6.1 Summary

During the 2009 410 Seamount cruise (12/11.09-19/12.09) on the Research Vessel *Dr Fridtjof Nansen* we successfully collect net samples from the epipelagic realm on top of, and in the vicinity of six seamounts along the South West Indian Ocean Ridge and Walter's shoal south of Madagascar. Samples were collected in order to describe the pelagic community and to estimate the effects of seamounts on the species composition and the biomass of the pelagic realm, thus complementing and providing a fishery management framework for the area. The preliminary methods and results from the epipelagic mesozooplankton caught with plankton nets and the pelagic crustacean catch (from the Aakra trawl) are presented here. With our sampling completed we are confident that we are able to meet our original goals. Our activities shed light on the biogeography of a remote and poorly surveyed part of the ocean.

6.2 Materials and methods

6.2.1 Pelagic Sampling

Observations of the epipelagic realm were collected using scientific plankton nets. The Multinet $(50\times50 \text{ cm} \text{ mouth opening}, 180 \,\mu\text{m} \text{ mesh size}, Fig.6.1 \text{ and } 6.2)$ was fished obliquely and enabled us to collect and describe samples from 5 depths strata (Falkenhaug 2007; Hosia *et al.* 2008; Wenneck *et al.* 2008). While the ship was steaming at 0.3-0.5 m.s⁻¹ the Multinet was lowered to a maximum of 200 m. Nets were then triggered at the selected depth intervals. Net changing was controlled by downwire link from a Net Command Unit. The volume of water filtered was measured by a Hydro Bios Electronic Flowmeters situated internally and externally on the net frame and was between 8 and 200 m³ per net. Full deployment metrics are included in Appendix B. Nominal depths intervals alternated between two sets of standards deployments: Stratified/Biogeographic and Fmax (see section 6.2.2 and 6.2.3 for respective sampling protocols).

A dual Bongo net (mesh size 500 μ m and 375 μ m, cod-end mesh size 500 μ m and 500 μ m respectively) was towed obliquely from 200 m to the surface (see Fig. 6.3 for deployment). A HYDRO-BIOS flow-meter was mounted in the mouth of the net frame to allow the volume of water filtered to be determined. A record was kept of the time of deployment and recovery, and of flow-meter readings before and after each haul. The Bongo nets were fitted with Scanmar sensors to acoustically determine the depth of the gear (Fig.6.4). The Bongo nets were retrieved over 30 min (up 10m every 1 min).

Multinet and Bongo net hauls were deployed to get 3 replicates during day and night-time (see Table 2.1). Upon recovery all nets were hosed down with seawater to ensure that all zooplankton cumulated in the cod-ends.

Figure 6.1 Diagram of the multinet used on the 2009 SWIO cruise on the Dr Fritdjof Nansen Source HYDRO-BIOS Apparatebau GmbH. For our purpose the cod-end frame depicted was removed so that the cod-ends could be towed freely.

Figure 6.2 Deployment of the HYDRO-BIOS multinet of the starboard side of the Dr Fridtjof Nansen.

Figure 6.3 Night time deployment of Bongo nets with SCANMAR sensors (red) of the starboard side of the ship.

6.2.2 Multinet protocol (Stratified)

For biogeographical studies the nominal stratified ranges were 250-200, 200-150, 150-100, 100-50 and 50-0 m. Single stratified hauls were conducted at all stations during day and night time to avoid diel vertical migration bias (see Table 2.1 for list of deployments and Appendix B for full list of flow meter readings/deployment times and location). Upon recovery of the multinet samples were

retrieved from the cod-ends and split into two fractions using a folsom splitter. One fraction was preserved on 95% ethanol for genetic analysis and the other was preserved on 4% borax buffered formaldehyde. We visually inspected multinet samples for diversity and bio-volume estimates.

6.2.3 Multinet protocol (Fmax)

The fluorescence profile from the CTD dip was used to determine the exact depths at which the nets were triggered, which were as follows: two above f-max, one through f-max, two below f-max. Upon recovery samples were retrieved in a 180µm sieve a fixed on 4% buffered formaldehyde. Sample jars were placed in a black Addis plastic box for 24 hours. After 24 hours, the approximate volume of zooplankton in each sample was recorded using a ruler (in mm) and the data were entered into a log. The main types of zooplankton observed in each sample was identified and recorded in a log. Thereafter, the samples were placed back into the black Addis boxes for storage and for further laboratory analysis.

6.2.4 Oblique bongo protocol

Three Bongo net hauls were conducted at day and night at each station to avoid diel vertical migration bias (see Table 2.1 of activity for list of Bongo net deployments and Appendix B for full list of flow meter readings/deployment times). For one net out of three, the 375 μ m net was carefully washed through 1mm and 64 μ m sieves. Thereafter each zooplankton size-fractioned sample was placed into a blue opaque vile and dried in an oven at 50°C. The sample from the 500 μ m net was washed into a 180 ml honey jar and immediately preserved in 4% buffered formaldehyde. The 500 μ m sample will be analysed for fish larvae by Dr Nadine Strydom at the Nelson Mandela Metropolitan University.

For the second net the 500 and 350 μ m nets were washed through 1mm and 64 μ m sieves and were immediately preserved in 10 seawater formaldehyde. In the final net the 500 μ m net codend were removed and the mesozooplankton was preserved in formalin for subsequent taxonomical analysis. Samples from the 375 μ m net cod-end were removed and preserved on ethanol for subsequent genetic analysis of species diversity.

6.2.5 Aakratrawl Crustaceans

For full details of fishing procedure and sorting protocols see section 7.0. Crustaceans were removed from the catches and voucher specimens were kept for photography and fixed on 4% buffered formaldehyde and later transferred to 70% ethanol. Crustaceans were sorted to taxa and

identified to species level when possible, using keys and microscopes. Fractions of the dominant crustaceans species (n>20) were preserved for phylo- and population genetic analysis and where kept on ethanol. At stations 7, 8, 9 and 10 individuals of the dominant groups (4 < n < 10) were frozen and kept at -20°C for stable isotopes and fatty acid analysis.

6.3 Results

6.3.1 Mesozooplankton

The catches showed high temporal, spatial and temporal variability in quantity and taxon presence. The 500 μ m net yielded consistently greater catches than the 375 μ m net. The Bongo net generally caught animals of a greater size range than the multinet. A complete picture of the biogeography will emerge following more thorough post-cruise analysis. The highest catch of mesozooplankton was caught in the depth range scoping the highest fluorescence reading (*f*-max, see section 5). Information on the presence and absence of main zooplankton identified are shown in Table 6.1, from which it can be seen that most stations were dominated by copepods, euphausiids, chaetognaths and amphipods. Typically oceanic taxa (pteropods, thaliaceans) were present at the far south and Subtropical front stations. Settled volumes for zooplankton were fairly similar across the sampled stations but lowest at the off seamount station (Station 2) and Atlantis bank (Station 4). The greatest number of euphausiids was caught during the net deployments at night. A large collection of Salps and deeper-living crustaceans were caught off Walter's Shoal (e.g *Systellaspis debillis*).

1 mai el albe i eport. Doutier il malan occan beamounts 2007
--

	Station	12	Atlanti	s bank	Sapme	r Bank	Middle	e of What	Subtro	pical front	Coral		Mellvi	lle bank	Walter	shoal
	~				~~~				~~~~	F						
Date (date-month-year)	14/11/2	2009	18/11/2009		24/11/2009		25-27/11/2009		29/11/2009		02/12/2009		08/12/2009		12-13/12/2009	
Latitude	S 26 56 47		S 32 45 23		S 36 52 03		S 37 57 97		S 41 28 96		S 41 24 66		S 21 29 39		S 31 40.82	
Longitude	E 56 14 56		E 57 18 09		E 52 13 91		E 50 23 99		E 49 33 40		E 42 56 10		E 46 48 05		E 42 52.88	
Maximum depth (m)	5055		1169		4100		1179		3566		725		1172		1495	
Max. sampling depth (m)	200		200		200		200		200		200		200		200	
Number of hauls	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Day/Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night
	-	<u> </u>		-	-	-			-	-		<u>-</u>	-	-		
Copepoda	1	1	0.7	0.7	1	1	1	1	1	1	0.9	1	1	0.9	1	1
Euphausiacea	0.6	0.8	0.6	0.8	0.5	0.9	0.7	1	0.7	1	0.6	1	0.9	0.8	1	0.4
Amphipoda	0.4	0.2	0.5	0.5	0.9	0.9	0.9	1	0.9	1	0.6	0.6	1	0.6	0.8	1
Chaetognatha	1	0.8	0.7	0.9	1	1	0.9	0.9	1	0.7	0.9	1	1	0.8	0.9	1
Hydromedusae	0.2	0.6	0	0.1	0.1	0.4	0.3	0	0	0.1	0	0	0.3	0.2	0.1	0.6
Siphonophorae	0	0.2	0.3	0.2	0.2	0.1	0.1	0.1	0	0.1	0	0.1	0.6	0.2	0.6	0.6
Fish larvae	0.2	0.4	0.3	0.5	0.6	0.6	0.3	0.5	0.4	0.6	0.2	0.6	0.2	0.4	0.6	0.4
Ostracoda	0.6	1	0.3	0.8	0.1	0.3	0.3	0.6	0.5	0.7	0	0.8	0.1	0.2	0.1	0
Polychaete larvae	0	0	0.2	0.5	0.4	0.3	0.3	0.2	0	0	0	0	0	0	0.1	0.1
Mysidacea	0	0	0.2	0.5	0.1	0.2	0.2	0.1	0	0	0	0.1	0.2	0	0	0.2
Doliolida	0	0	0.1	0.1	0.2	0.1	0.1	0.2	0	0	0	0	0.3	0.1	0	0.2
Heteropoda	0	0	0	0	0	0	0	0	0	0	0.1	0	0	0	0.1	0
Salpida	0	0	0	0	0	0	0	0	0.1	0.1	0.1	0.6	0.2	0	0.6	0.5
Pteropoda	0	0	0.1	0.2	0	0.8	0.4	0.5	0.1	0.1	0	0	0	0.2	0.3	0
Gastropod larvae	0	0	0	0	0.3	0.3	0.3	0.5	0.1	0.2	0	0.2	0.2	0.4	0.2	0
Cephalopod larvae	0	0	0	0	0.2	0	0.1	0	0	0	0	0	0.1	0	0.1	0
Larval decapods	0	0	0	0	0	0	0	0	0	0	0	0	0.1	0	0	0

Table 6.1 Present and absent averages for each zooplankton taxon in the water column, at each sampling station for day and night, using the f-max multinet protocol.

Figure 6.4 Total settled volumes (mm) of zooplankton in the water column, at each sampling station for day and night, using the f-max multinet protocol.

6.3.2 Aakra trawl Crustaceans

Crustaceans from the Aakratrawl were removed from the samples and identified to the nearest taxa. We identified 16 species of decapods, 22 species of amphipods, 18 species of euphausiids, 1 species of Ostracoda and 3 species of lophogastridea (Table 6.2). Due to the semi-quantitative nature of the sampling the numerical abundance of each species caught in each trawl is omitted from this report but can be found in Appendix A. The crustacean diversity was highest in the deep trawls. Lowest diversity and abundance of crustaceans was caught at station 2. Amphipod diversity was highest over seamounts. Euphausiid diversity was highest in the vicinity and south of the subtropical front.

Final cruise report: Southern Indian Ocean Seamounts 200	rn Indian Ocean Seamounts 2009	ll cruise report: Southern
--	--------------------------------	----------------------------

Decapoda	2	4	5	6	7	8	9	10
Acanthephyra								Х
Acanthephyra sp.								Х
Acanthephyra sp.	Х	Х	Х	Х	Х	Х	Х	Х
Funchalia villosa	Х	Х	Х	Х		Х	Х	Х
Gennadas sp.			Х	Х	Х	Х	Х	
Meningodora mollis				Х				
Notostomus				Х		Х	Х	
Oplophorus	Х	Х	Х	Х	Х	Х	Х	Х
Parapasiphae								Х
Pasiphaea chacei		Х	Х	Х	Х	Х	Х	Х
Pasiphaea sp								Х
Pasiphaea				Х		Х	Х	
Pasiphaea sp								Х
Sergestes sp	Х	Х	Х	Х	Х	Х	Х	Х
Sergia sp	Х	Х	Х	Х	Х	Х	Х	Х
Systellaspis debilis	Х	Х	Х	Х			Х	Х
Amphipoda								
Orchomenella sp						Х		
Trischizostoma sp						Х		
Andaniexis australis		Х						
Hyperia crassa					Х	Х		
Phronima		Х	Х	Х	Х	Х	Х	Х
Phrosina semiluna		Х	Х	Х	Х			Х
Orchomenella						Х		
Oxycephalus clausi		Х						
Scina sp		Х	Х	Х	Х		Х	Х
Eupronae sp	Х	Х		Х			Х	Х
Eurythenes obesus					Х	Х		
Platyscelus ovoides			Х	Х			Х	Х
Platyscelus		Х		Х				
Streetsia	Х	Х	Х	Х			Х	Х
Synopia sp			Х	Х				
Bathystegocephalus			Х		Х	Х		Х
Brachyscelus sp			Х	Х				
Cyphocaris						Х	Х	
Cyphocaris richardi					Х	Х		Х
Cystisoma longipes		Х	Х	Х				Х
Danaella					Х	Х		
Themisto					Х	Х		
Euphauseacea								

Thysanopoda							Х	
Thysanopoda						Х	Х	
Thysanopoda		Х						
Thysanopoda	Х							
Thysanopoda		Х		Х				Х
Thysanopoda					Х			
Thysanopoda		Х	Х	Х			Х	Х
Thysanopoda sp.					Х			
Euphausia					Х			
Euphausia					Х	Х		
Euphausia sp		Х	Х	Х				
Euphausia spinifera			Х	Х				
Euphausiacea sp.		Х						
Stylocheiron		Х	Х	Х	Х	Х	Х	Х
Nematobrachion		Х	Х					
Nematoscelis					Х	Х		
Nematoscelis sp.							Х	
Euphausia mutica							Х	Х
Ostracoda								
Gigantocypris					Х	Х		Х
Lophogastrida								
Gnathophausia		Х	Х	Х		Х	Х	Х
Gnathophausia				Х		Х		
Gnathophausia								Х

 Table 6.2 Species presence/absence as caught in the Aakratrawl during the 2009 seamount expedition on the RV Dr

 Fridtjof Nansen. See introduction section 2.0 for station location.

6.4 Sampling limitations

Although the multinets were in good quality at the beginning of the cruise considerable efforts were allocated to fixing holes and tears near the canvas end. These were created throughout our sampling activity, mainly due to contact with the other cod-ends and the cod-end frames. We suggest that new nets are provided, and that the cod-end frame design is modified so that the nets are better protected from tears. Two alternating sets of cod-ends were used during repetitive deployments; one of these sets was loose fitting, and on two occasions the content of the cod-end was lost before it could be recovered. We suggest that this second, inadequate set is replaced.

Bongo nets were in poor quality at the start of the cruise and should be replaced. The discrepancy between the cod-end mesh size and the net mesh size mean that the while the two nets sampled the same size fractions of zooplankton (i.e. both cod-ends were 500µm), these two samples should not be considered replicates or pseudoreplicates for the sake of statistical analyses.

The aakra trawl is primarily designed for catching larger and faster moving species (Wenneck *et al.* 2008). As such a lot of the delicate and fragile specimens were damaged upon capture and many individuals will not be identifiable to species levels. Some particularly soft-bodied taxa (such as mysids) will probably not lend themselves to identification due to this constraint. The trawl was originally fitted with a multisampler cod-end, which would have enabled the catching of samples from 3 discrete depths. The multisampler failed during the second deployment and was deemed U/S for the remainder of the cruise. The subsequent use of a non-closing cod-end means that it will be difficult to estimate the upper limit of the vertical distribution of the species caught.

6.5 Research intentions/discussion

The mesozooplankton samples we have collected using the multinet are consistent and of high quality. The multinet is internationally recognized as a qualitative and quantitative sampling device, and will fill a cap in the already wide-spanning biooceanographic coverage of mesozooplankton in the Indian Ocean (Zeitzschel and Gerlach 1973). The multinet formaldehyde fraction will be used for ground-truthing the high frequency acoustic backscatter and integrating pelagic biomass, and for the biogeographical studies of mesozooplankton.

The formaldehyde fraction of the cod-end (500 μ m) will complement the biogeography study and will be used to assess mesoplanktic biodiversity, as this greater mesh size probably catches a larger size-fraction of the mesozooplankton taxa due to the smaller bow-wave.

The ethanol fraction of the multinet and the dual bongo (375 μ m) will enable a genetic analysis of larval stages and population genetics/dispersal patterns of mesozooplankton. Results from the larval barcoding will be coupled with the investigation of benthic fauna data from 2011 ROV cruise on the *RSS James Cook* (JC) and should help identify cryptic stages of species with poorly understood lifecycles.

The crustacean species presence/absence data from the Aakratrawl will be used to undertake a study of the biogeography of the South West Indian Ocean Ridge. Although almost certainly the micronektic catches from the Aakratrawl are not quantitative, the depth sampled with the aakratrawl are unprecedented in this area and the crustacean 'bycatch' will provide a valuable record for the South West Indian Ocean Ridge. Moreover there are, to the authors' knowledge, no previously published records of the mesopelagic crustacean fauna from our study sectors (with the exception of Walter's shoal) and many of our species records will involve range extensions (i.e. *Gnathophausia gracilis, Oplophorus novaezealandiaea*) and new records all together. Scientific macrozooplankton sampling has previously been conducted on Walter's shoal and includes published species lists (Vereshchaka 1994). As such some of our data will lend itself to comparative studies. Length measurement will be conducted on portion of the crustacean catch deemed quantitative (i.e. *Acanthephyra* sp, *Pasiphaeia* sp etc), and the data will be used estimate micronekton biomass in conjunction with acoustic measurements, see Holliday (1992) and Greenlaw (1979). The overall species presence/absence data will be used in a cluster analysis, which should provide information on the species composition and the horizontal, and vertical extend of micronekton assemblages. The ethanol fraction will be used for phylo/population genetic analysis. Certain cosmopolitan species, such as *Systellaspis debilis* are particularly suited for the latter. The crustaceans kept for the purpose of Stable Isotopes analyses will be used in the construction of a bentho-pelagic foodweb, again coupled with samples collected on the 2011 JC cruise.

7.0 Micronekton and nekton sampling

Kirsty M Kemp¹*, Philipp H Boersch-Supan², Oddgeir Alvheim³, Doris Benivary⁴, Vijay Mangar⁵, Nkosinathi Mazungula⁶, Tom B Letessier², Alex D Rogers¹

¹Institute of Zoology, Regent's Park, London NW1 4RY, UK.

² Pelagic Ecology Research Group, Scottish Oceans Institute, University of St Andrews, St Andrews KY16 8LB, UK

³ Institute of Marine Research, P.O. Box 1870 Nordnes, 5817 Bergen, Norway.

- ⁴ University of Tuléar, Madagascar
- ⁵ Albion Fisheries Research Centre, Mauritius.

⁶ South African Institute for Aquatic Biodiversity, Pbag 1015, Grahamstown 6140, South Africa.

* k.kemp@ioz.ac.uk

7.1 Summary

A total of 40 trawls were undertaken between 14/11/09 and 14/12/09 along the South West Indian Ocean Ridge and Walter's shoal region to the south of Madagascar. 20 of these were in warm subtropical water between -26.93°S, 42.81 °E and -37.96°S, 57.29 °E. The remaining 20 trawls were undertaken in colder water between -38.46°S, 42.74°E and -41.56°S, 49.54°E. 32 trawls were at seamount sites; 8 were off-seamount sites. Trawling was largely undertaken between 300 and 900m. A single trawl was undertaken at 50m and two had a slightly deeper recorded depth of 1100m. Two day and night replicates were undertaken at each station and targeted the deep scattering layer and the shallow scattering layer. Dawn trawls were usually targeted at summit-associated aggregations and were undertaken opportunistically at 4 stations. Trawls were categorised by station and event number, and by corresponding Nansen Trawl Numbers (a sequential count of successive trawls). These categorisations are outlined in Table 7.1.

A total of 6962 samples were labeled, fixed and stored. 4842 of these samples were frozen, 1725 fixed in 95% ethanol and 370 fixed in 4% formalin. 382 subsamples of fish tissue were taken for genetic analysis by the South African Institute of Aquatic Biodiversity and a further~ 1000 samples of tissue from fish and invertebrates were collected by ZSL (AD Rogers). 9 samples were discarded after weighing/measuring and subsampling (largely scyphomedusa and salp samples) and 1 porifera sample was dried. Storage mode was not noted for 12 samples. A single sample (# 4822) was lost during bad weather in transit.

Final cruise report: Southern Indian Ocean Seamounts 2009

Newses torul such as	Chatlan	Et					Charal and (day)	David Valation	Dete
Nansen trawi number	Station	Event	iviax depth (m)	Start Lat (deg)	Start Long (deg)	S top Lat (deg)	Stop Long (deg)		Date
1	2	7	200	-20.931	50.105	-20.939	50.230	u d	14/11/2009
2	2	7	500	-20.941	50.237	-20.947	50.279	U d	14/11/2009
3	2	/	50	-26.947	56.282	-26.953	56.324	d	14/11/2009
4	2	14	800	-26.986	56.243	-26.930	56.180	d	15/11/2009
5	4	4	/00	-32.725	57.297	-32.715	57.241	d	17/11/2009
6	4	5	400	-32.725	57.297	-32.722	57.233	a	17/11/2009
/	4	18	700	-32.727	57.297	-32.726	57.262	n	18/11/2009
8	4	19	400	-32.722	57.274	-32.726	57.324	n	18/11/2009
9	4	22	740	-32.737	57.288	-32.693	57.297	dw	19/11/2009
10	5	8	750	-36.856	52.054	-36.819	52.062	d	22/11/2009
11	5	9	400	-36.827	52.061	-36.868	52.053	d	22/11/2009
12	5	23	720	-36.842	52.056	-36.805	52.062	n	23/11/2009
13	5	24	400	-36.816	52.075	-36.787	52.118	n	23/11/2009
14	5	25	500	-36.788	52.121	-36.788	52.121	n	23/11/2009
15	5	26	750	-36.861	52.051	-36.807	52.066	dw	24/11/2009
16	6	11	700	-37.955	50.377	-37.951	50.431	n	25/11/2009
17	6	12	400	-37.953	50.421	-37.955	50.373	n	25/11/2009
18	6	13	930	-37.957	50.409	-37.958	50.440	n	26/11/2009
19	6	25	700	-37.956	50.403	-37.959	50.426	d	27/11/2009
20	6	26	420	-37.958	50.423	-37.958	50.405	d	27/11/2009
21	7	13	700	-41.480	49.534	-41.518	49.493	n	29/11/2009
22	7	14	400	-41.510	49.504	-41.475	49.542	n	29/11/2009
23	7	15	700	-41.571	49.450	-41.550	49.471	d	30/11/2009
24	7	16	400	-41.557	49.476	-41.568	49.456	d	30/11/2009
25	8	12	900	-41.427	42.928	-41.415	42.953	d	02/12/2009
26	8	13	600	-41.411	42.942	-41.418	42.913	d	02/12/2009
27	8	17	900	-41.426	42.930	-41.436	42.880	n	02/12/2009
28	8	18	643	-41.419	42.903	-41.400	42.944	n	02/12/2009
29	8	19	270	-41.412	42.870	-41.402	42.905	dw	03/12/2009
30	9	15	860	-38.504	46.759	-38.517	46.699	n	07/12/2009
31	9	16	480	-38.478	46.780	-38.495	46.730	n	07/12/2009
32	9	20	320	-38.475	46.771	-38.473	46.737	dw	08/12/2009
33	9	27	850	-38.505	46.760	-38.515	46.711	d	08/12/2009
34	9	28	430	-38.493	46.743	-38.474	46.791	d	08/12/2009
35	9	29	560	-38.465	46.749	-38.475	46.701	d	08/12/2009
36	10	9	700	-31.641	42.833	-31.624	42.840	n	12/12/2009
37	10	10	1100	-31.589	42.860	-31.581	42.885	n	12/12/2009
38	10	11	300	-31.596	42.880	-31.605	42.859	n	13/12/2009
39	10	18	1100	-31.648	42.813	-31.663	42.803	d	14/12/2009
40	10	29	700	-31.645	42.813	-31.627	42.828	d	14/12/2009

 Table 7.1 Nansen trawl numbers and corresponding station and event codes for all Åkra trawls. d= day, n=night, dw=dawn. Max depth is the maximum depth recorded during the duration of each trawl.

7.2 Methods

7.2.1 Åkra trawl fishing

Two pelagic Åkratrawls were used for fishing. The larger net, a Flytetrål 152 MSK x 3200mm, with a 20m net mouth opening, was used for most trawls (Figure 7.1a). The smaller net, with a 10m net mouth opening, was used for faster trawl attempts targeting what were believed to be aggregations of larger fish mainly at dawn.

Both nets were fitted to a 24mm trawl wire which was payed out to 2.5 x the target fishing depth. Both nets used two Tuberin combi trawl doors of 1750kg each. Trawling was undertaken between 2 and 3 knots vessel speed.

The Åkra trawl net was fitted with a multisampler for the first deployment (Figure 7.1b). The first three trawls undertaken at Station 2 (all labeled as Event 7) were made using this apparatus. Damage to the multisampler which occurred during recovery of this first trawl meant that it could not be used in successive trawls. Though specific sampling depths were targeted during all trawls the net mouth remained open for the duration of fishing. Incidental catches made during

deployment to and recovery from the target depths could therefore not be avoided. This catch was minimised by a quick recovery speed once the nets had been hauled from the target fishing depth.

Figure 7.1 (a) Recovery of the large Åkratrawl. (b) The damaged multisampler on deck.

7.2.2 Åkra trawl catch-processing

Prior to each trawl ice-trays for sorting, and sample labels were prepared. Each label has a unique number. Note that labels were not used in a consecutive order and there were labels remaining after sampling was completed meaning that not all numbers are represented in the database.

Upon arrival on deck the cod end was immediately emptied into large plastic tubs. Particularly large or interesting samples and samples in very good-condition were removed for photography and the rest of the catch emptied into large trays of ice. A small amount of seawater was added to each tray to prevent the samples freezing to the ice. The catch was largely sorted into fish, cephalopod, crustacean, gelatinous zooplankton, and other abundant invertebrate groups.

Fish which could not be immediately identified were photographed and stored in formalin. If a second specimen was available it was stored in ethanol for later genetic analysis. Juvenile and larval stages of fish and crustaceans were preserved in ethanol. All other fish were identified, measured for total length and standard length and frozen in individual zip-lock bags. Very large fish were stored in black bin liners. Additional head length and pre-anal fin length measurements were taken for grenadiers. All large fish were weighed. Labels were fixed to large fish by tying on a loop of string through the mouth and gill slits. Labels were tied around the mantle-arm join or around an individual arm of large cephalopods. All other frozen samples were stored in individual zip lock bags with labels inserted. Formalin and ethanol-stored samples were contained in individual buckets, jars or bottles, with labels inserted.

Crustaceans were identified and species diversity was recorded before weighing and fixing in bulk. All other invertebrates were sorted into broad categories and weighed and fixed in bulk. Fractions of every group were fixed in formalin and ethanol, respectively, and an attempt was made to ensure that representatives of every putative species were included in either fraction.

For the first 26 trawls (up to and including trawl 26: station 8, event 13) myctophids were individually labeled and frozen after measuring. From trawl 27 (station 8, event 17) onwards myctophids were individually measured but stored together in one container of ethanol with one sample number per trawl. This decision was made based on a shortage of small bags and time constraints during trawl processing. Between 50 and 200 myctophids (in addition to those measured) were taken from each catch and stored in ethanol for later genetic work. Note that the measured myctophids are undoubtedly biased towards the larger individuals in each catch.

Small tissue samples were taken from behind the dorsal fin of a subsample of 382 fish by SAIAB (see database for details) and stored in ethanol for genetic analysis. Further samples of tissue of both fish and invertebrates were collected by ZSL for phylogenetics and population genetics studies (see Appendix C). Tissue samples from the mantle or arms were collected from large cephalopods and stored in ethanol for genetic analysis. Crustacean and some cephalopod samples were frozen for stable isotope analysis from trawls 23-25, 31, 35, 37, and 38.

Trawls 12 (station 5, event 23), 29 (station 8, event 19) and 40 (station 10, event 29) were recorded in their entirety. All other trawls have a "rest of catch" component labeled, weighed, and split between formalin and ethanol storage. This component is the sieved mixed remains of the catch which were not sorted due to time or logistical constraints. This portion typically represented 0.5 - 1.5 kg of the total catch for each trawl.

7.3 Results

7.3.1 Fish identifications

In total, 60 fish identifications were made to species level, representing 41 families (Table 7.2).
Fish Identification	Authority	Family	Common name
Alepisaurus brevirostris	Gibbs 1960	Alepisauridae	Shortnose lancetfish
Argyropelecus aculeatus		Sternoptychidae	Hatchetfishes
Argyropelecus affinis		Sternoptychidae	Hatchetfishes
Argyropelecus gigas		Sternoptychidae	Hatchetfishes
Argyropelecus hemigymnus		Sternoptychidae	Hatchetfishes
Astronesthes indicus		Astronesthidae	Snaggletooths
Astronesthes martensii		Astronesthidae	Snaggletooths
Beryx decadactylus		Berycidae	Berycids
Beryx splendens		Berycidae	Berycids
Borostomias antarcticus		Astronesthidae	Snaggletooths
Brama orcini		Bramidae	Pomfrets
Bregmaceros macclellandi	Thompson 1840	Bregmacerotidae	Codlets
Chauliodis sloani	Schneider 1901	Chauliodontidae	Viperfishes
Chauliodontidae		Chauliodontidae	Viperfishes
Chiasmodon niger	Johnson 1863	Chiasmodontidae	Swallowers
Cryptopsaras couesii	Gill 1883	Ceratiidae	Seadevils
Diplophos taenia	Gunther 1873	Gonostomatidae	Bristlemouths
Diretmus argenteus	Johnson 1863	Diretmidae	Diretmids
Emmelichthys nitidus	Richardson 1845	Emmelichthyidae	Rovers
E tmopterus brachyurus	Smith and Radcliffe 1912	Squalidae	Dogfishes
Etmopterus pusillus	Lowe 1839	Squalidae	Dogfishes
Evermannella cf indica	Brauer 1906	Evermannellidae	Sabretoothed fishes
Gonostoma elongatum	Gunther 1878	Gonostomatidae	Bristlemouths
Halargyreus johnsonii	Gunther 1862	Moridae	Deepsea cods
Howella sherborni	Norman 1930	Acropomatidae	Lanternbellies
Idiacanthus atlanticus	Brauer 1906	Idiacanthidae	Sawtail-fishes
Lepidopus caudatus	Euphrasen 1788	Trichiuridae	Frostfishes
Luciosudis normani	Fraser-Brunner 1931	Notosudidae	Notosudids
Margrethia cf obtusirostra	Jespersen and Taaning 1919	Gonostomatidae	Bristlemouths
Maurolicus muelleri	Gmelin 1788	Sternoptychidae	Hatchetfishes
Melanocetus johnsoni	Gunther 1864	Melanocetidae	Devil-anglers
Melanostomias barbatombeani	Parr 1927	Melanostomiidae	Scaleless dragonfishes
Mesobius antipodum	Hubbs and Iwamoto 1977	Macrouridae	Grenadiers
Myctophum selenops	Taaning 1928	Mytophidae	Lanternfishes
Nansenia cf macrolepis	Gilchrist 1922	Argentinidae	Argentines
Nealotus tripes	Johnson 1865	Gempylidae	Snake mackerels
Nemichthys curvirostris	Stromman 1896	Nemichthyidae	Snipe eels
Nemichthys scolopocerus	Richardson 1848	Nemichthyidae	Snipe eels
Neocyttus rhomboidalis	Gilchrist 1906	Oreosomatidae	Oreos
Nessorham ingolfianus	Schmidt 1912	Derichthyidae	Longneck eels
Odontomacrurus murrayi	Norman 1939	Macrouridae	Grenadiers
Odontostomops narmalops			
Opisthoproctus grimaldii	Zugmayer 1911	Opisthoproctidae	Barreleyes
Persparsia cf kopua	Phillips 1942	Platytroctidae	Tubeshoulders
Photicthys argenteus	Hutton 1872	Phosichthyidae	Lightfishes
Prometichthys prometheus	Cuvier 1832	Gempylidae	Snake mackerels
Pseudoicichthys australis	Haedrich 1966	Stromateidae	Ruffs
Pseudoicichthys cf australis	Haedrich 1966	Stromateidae	Ruffs
Pseudopentaceros richardsoni	Smith 1844	Pentacerotidae	Armourheads
Ranzania laevis	Pennant 1776	Molidae	Ocean sunfishes
Rondeletia loricata	Abe and Hotta 1963	Rondeletiidae	Redmouth whalefishes
Rossenblattia robusta	Mead and De Falla 1965	Apogonidae	Cardinal fishes
S copelarchoides cf signifer	Johnson 1974	Scopelarchidae	Pearleyes
S copelosaurus hamintoni	Waite 1916	Notosudidae	Notosudids
Sternoptyx obscura	Garman 1899	Sternoptychidae	Hatchetfishes
S tomias boa boa	Risso 1810	Stomiidae	Scaly dragonfishes
Trachipterus trachypterus	Gmelin 1789	Trachipteridae	Ribbonfishes
Trachurus delagoa	Nekrasov 1970	Carangidae	Kingfishes
Vinciguerria nimbaria	Jordan and Williams 1896	Phosichthyidae	Lightfishes
Xenodermichthys coupei	Gill 1884	Alepocephalidae	Slickheads

 Table 7.2 Species-level identifications and corresponding authority, family, and common names.

Fish Identification	Family	Common name
Alepocephalus	Alepocephalidae	Slickheads
Argentinida	Argentinidae	Argentines
Astronesthes sp	Astronesthidae	Snaggletooths
Astronesthidae	Astronesthidae	Snaggletooths
Atherinidae sp	Atherinidae	Silversides
Batophilus sp	Melanostomiidae	Scaleless dragonfishes
Beryx sp	Berycidae	Berycids
Bregmaceros sp	Bregmacerotidae	Codlets
Brotulotaenia sp	Ohpidiidae	Cuskeels
Centrolophida	Stromateidae	Ruffs
Chauliodontidae	Chauliodontidae	Viperfishes
Chiasmodontidae	Chiasmodontidae	Swallowers
Cubiceps sp	Nomeidae	Driftfishes
Diastobranchus	Synaphobranchidae	Cutthroat eels
Diretmoides sp	Diretmidae	Diretmids
E pigonus sp	Apogonidae	Cardinal fishes
Evermannella sp	Evermannellidae	Sabretoothed fishes
Gempylidae	Gempylidae	Snake mackerels
Gonostoma sp	Gonostomatidae	Bristlemouths
Gramicolepididae	Gramicolepididae	Tinselfishes
Hatchetfish	Sternoptychidae	Hatchetfishes
Holcomycteronus sp	Ophidiidae	Cuskeels
Hyperoglyphe sp	Stromateidae	Ruffs
Idiacanthus sp	Idiacanthidae	Sawtail-fishes
Linophrynidae	Linophrynidae	Dwarf anglers
Margrethia sp	Gonostomatidae	Bristlemouths
Melanostomias sp	Melanostomiidae	Scaleless dragonfishes
Myctophid	Mytophidae	Lanternfishes
Nemichthidae	Nemichthyidae	Snipe eels
Nemichthys sp	Nemichthyidae	Snipe eels
Notolepis sp	Paralepididae	Barracudinas
Ophididae	Ohpidiidae	Cuskeels
Paraliparis	Liparididae	Snailfishes
Persparsia sp	Platytroctidae	Tubeshoulders
S corpaenid	Scorpaenidae	Scorpionfishes
Stomiidae	Stomiidae	Scaly dragonfishes
Tetragonurus sp	Tetragonuridae	Squaretails
Trachiurus	Carangidae	Kingfishes
Trichiuridae	Trichiuridae	Frostfishes
Vinciguerria sp	Phosichthyidae	Lightfishes
Winteria sp	Opisthoproctidae	Barreleyes

41 further fish identifications were made to genus or family level, representing 34 families (Table 7.3).

Table 7.3 Genus and family-level identifications with corresponding common names.

Two other fish categories are listed in the database: "unidentified" and "Telescope eye fish". A large portion of the fish categorised as "unidentified" were from the first 3 trawls when the catch was sorted and stored before we were able to identify individual samples. These will be identified at a later date and are likely to include many of the species also identified from later trawls. A small number of fish in each remaining trawl could not be immediately identified and were categorised as

"unidentified". Identification of these will also be attempted at a later date and will undoubtedly add to the total species list outline in Table 7.2. The category "Telescope eye fish" was used to distinguish a specific fish which appeared in several catches but which could not be satisfactorily identified. This species will be carefully examined at a later date.

7.3.2 Species presence-absence

The representation of each fish family in the 40 trawls undertaken is outlined in Table 7.4. There was a particularly diverse catch at Walter's Shoal probably reflecting the proximity of the large area of shallow water in this region associated with Walter's Shoals Seamount itself.

Though larval fish are not included in Table 7.4, it is worth noting that a large number of juvenile scabbardfish (Trichuiridae) were caught at the off-ridge site just after the vessel entered colder waters (Station 7). The cardinal fishes (*Rossenblattia robusta*) were also only found at this site. Larval fish were fixed in ethanol and formalin for later examination and it is not possible to quantify them at this stage.

Event 7 8 9 10 11 12 3 2 3 3 3 3 3 3 3 3 3 3 3 3<	Station	2				4 - 4	۵tla	ntie	Ran	k	5 - 9	Sann	nor	502	mou	nt	6-1	Aidd	le of	What	17	- Off-	ridae	sito	8 - (ora	Se	amoi	Int	9 - M	lville	B	ank		10 -	Wa	teon	c Sł	nal
Day/legions 1 1 0	Event	² 7	7	7	14	4-7		10	10	ົາງ	J	api	23	21 21	25	26	11	12	12	25 2	6 1	2 1/	15	16	12	12	17	10	10	15 1	6 2	0 2	211K	00 20	0	10	11	10	20
Family 1 2 3 4 5 6 7 8 0 10 11 12 13 4 15 10 17 10 12 2 23 23 23 23 34 35 30 </td <td>Day/Night/Dawn</td> <td>á</td> <td>à</td> <td>à</td> <td>d</td> <td>т d</td> <td>4</td> <td>n0</td> <td>n 10</td> <td>dw</td> <td>6</td> <td>d</td> <td>20</td> <td>27</td> <td>20</td> <td>dw</td> <td>5</td> <td>n 12</td> <td>n/dw</td> <td>20 Z</td> <td></td> <td>5 11</td> <td>4</td> <td>4</td> <td>12 d</td> <td>4</td> <td>'n</td> <td>n (</td> <td>dw</td> <td>n 1</td> <td>0 2'</td> <td></td> <td>-1 -2 -1 -1</td> <td>-020 </td> <td>n</td> <td>n</td> <td>n .</td> <td>d</td> <td>20</td>	Day/Night/Dawn	á	à	à	d	т d	4	n0	n 10	dw	6	d	20	27	20	dw	5	n 12	n/dw	20 Z		5 1 1	4	4	12 d	4	'n	n (dw	n 1	0 2'		-1 -2 -1 -1	-020 	n	n	n .	d	20
	Eamily	1	2	3	u 1	u 5	u 6	7	0 0	a	10	u 11	12	12	14	15	16	17	10	10 2		1 11	23	24	u 25	u 26	27	20	20	30 3	1 2	~ `` ? ?	u 1 22 2	u u 1/1 25	36	37	38	20 20	u 10
Chappenphile Image of the second of the s			2	5	4	5	0	'	0	3	10		12	15	14	15	10	17 V	10	19 2	0 2	1 22	23	24	25	20	21	20	23	30 3	1.5	2 3	v v	4 55	30	51	50	39	40
Appropriation Impropriation Imp	Acropomatidae	-								v							^	^			_								-				^					v	
and particing me m	Alepisaulidae	-						v		^				v				v			_								-									÷	
Arbornerindage Image: Martingerindage <td>Anogonidao</td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>^</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>^</td> <td></td> <td>_</td> <td></td> <td>^</td> <td></td> <td></td> <td></td> <td>/</td> <td></td> <td></td> <td></td> <td></td> <td>v</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>~</td> <td></td> <td>^</td> <td> </td>	Anogonidao	-			-			^		_				^		_		^				/					v		_							~		^	
Automotediane Image Image </td <td>Argontinidao</td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td>_</td> <td></td> <td>v</td> <td></td> <td></td> <td>ť</td> <td>`</td> <td></td> <td></td> <td></td> <td></td> <td>^</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>v</td> <td><u>^</u></td> <td></td> <td></td> <td>_</td>	Argontinidao	-			-											_		v			ť	`					^		_						v	<u>^</u>			_
addiminization A	Argentinidae	-			v			v	×					v		_		<u>~</u>	v			/			v	v	v		_				~		L^				~
Alternation A X	Astronestriude	_			^			^	^				v	^				^	^		- ŕ	`			^	^	^		_				^						^
Implementational Implementational <td>Amerinidae</td> <td>_</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>v</td> <td>v</td> <td>v</td> <td></td> <td></td> <td>X</td> <td></td> <td></td> <td>v</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td>	Amerinidae	_			-			v	v	v			X			v					-								_		,								_
Improve biase Improve	Bramidao	-						^	^	^						^					_								-		` <u> </u>				v			v	
manging disculate mark	Brogmacorotidao	-			-					_				v		_	v				_								_						÷			<u>~</u>	
Image Image <th< td=""><td>Carangidao</td><td>-</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td>^</td><td></td><td>-</td><td>^</td><td></td><td></td><td>v</td><td>_</td><td></td><td>v</td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td>L^</td><td></td><td></td><td>^</td><td>_</td></th<>	Carangidao	-			-					_				^		-	^			v	_		v						_						L^			^	_
Containabilità	Caratijdao	-			-											_				^	_		^						_									v	_
Caranadountada <td< td=""><td>Chauliadantidaa</td><td>_</td><td></td><td></td><td>_</td><td></td><td></td><td></td><td>v</td><td>v</td><td>v</td><td></td><td></td><td></td><td></td><td>v</td><td>v</td><td>v</td><td>v</td><td>~ `</td><td></td><td>,</td><td></td><td></td><td>v</td><td>v</td><td>v</td><td>v</td><td>_</td><td>~ `</td><td>,</td><td></td><td>~</td><td>v</td><td>v</td><td>~</td><td>v</td><td>~</td><td>~</td></td<>	Chauliadantidaa	_			_				v	v	v					v	v	v	v	~ `		,			v	v	v	v	_	~ `	,		~	v	v	~	v	~	~
Direction/Database x	Chicomodontidoo	_			-				X		X			v			X	×	X	χ,		(/ /				X	X	X	_	X	(x 	×	^	<u> </u>	X	X	X
Demicinglade X	Derichthyidee	_			-					v				X		_		X			- '						v		-				Χ	X		~			_
Dreemedichy/dae /	Denchinylude	-			v			v		X	v		v	Y		v				v	_						X		_	v			~		v	<u>×</u>		Y	~
Immonfalor Immonfalor <td>Emmoliohthuidoo</td> <td>_</td> <td></td> <td></td> <td>x</td> <td></td> <td></td> <td>X</td> <td></td> <td>x</td> <td>X</td> <td></td> <td>X</td> <td>X</td> <td></td> <td>×</td> <td></td> <td></td> <td></td> <td>X</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>X</td> <td></td> <td>_</td> <td>× ,</td> <td>,</td> <td></td> <td>x</td> <td></td> <td>~</td> <td><u>×</u></td> <td></td> <td>X</td> <td>X</td>	Emmoliohthuidoo	_			x			X		x	X		X	X		×				X	_						X		_	× ,	,		x		~	<u>×</u>		X	X
Certaminaminaminaminaminaminamina x	Emmenchanylade	_			_										v			v			_								_		(_
Generginate Image: Im	Compylidae	-			_								v		^			~				<i>v</i>							_								v		_
Balaszinalization Image: Solution and the second	Conostomotidoo	_			-					_			^			_		~	v	~ `		^	v		v			v	_						v	~	~	v	~
Oralinologicalize Important Series Important Series </td <td>Gonosionalidae</td> <td>_</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>X</td> <td>X</td> <td>χ,</td> <td>·</td> <td></td> <td>X</td> <td></td> <td>X</td> <td></td> <td></td> <td>X</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>^</td> <td><u> </u></td> <td>X</td> <td>X</td> <td>X</td>	Gonosionalidae	_			-					_						_		X	X	χ,	·		X		X			X	-						^	<u> </u>	X	X	X
India influíde Image influíd	Idiagonthidag	-			_																_				X		v		_						v		v		~
Linding x <t< td=""><td>Lipophrynidao</td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>v</td><td></td><td>-</td><td></td><td></td><td></td><td>×</td><td></td><td>X</td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td>~</td><td>—</td><td>X</td><td>v</td><td>×</td></t<>	Lipophrynidao				_														v		-				×		X		_						~	—	X	v	×
Laparticidade	Linophiynidae	-			v							v		×	v	_	v		^			~ ~							_					v		~		^	_
Image: Market relations and the state of	Macrouridao	-			^							^		^	^		~					~ ^			v	v	v	v	_					^		÷			_
Image	Malanaastidaa	_			_											_	^	v	v			^			^	^	^	^	_										_
Minicipation Mark Mark<	Melanostomiidaa	_			v			v		_	v		v			v	v	X	X		,				v		v		-				~		v	~		v	~
Imminate Imminat Imminate Imminate Immina	Molidao	~	v	v	^			^			^		^			^	^				`				^		^		-				^		<u> </u>			^	^
Nonlogge x <	Moridae	<u> </u>	^	^	-					_						_					_				v				_										_
mylophalac x	Mytophidae	-		v	v	v	v	v	v	×	v	v	v	v	v	×	v	v	v	v		v	v		Ŷ	v	v	v	v	v ,	<u> </u>	<i>,</i> ,	~	v v	v	×	v	v	×
Normeidade x <	Nemichthyidae			~	×	~		^	^	^	Ŷ	^	^	÷	Ŷ	÷	Ŷ	^	Ŷ	×	_	^	^		^	^	^	^	Ŷ	<u> </u>	<u> </u>	<u> </u>	^ v	^ ^	<u>^</u>	÷	^	÷	÷
Individual x <	Nomeidae				v					_	~	v		~	~	~	~		~	~	-												~		v			~	_
Normalization Norm	Notosudidae				^			v				^		v		-		v	v		-	v			v				v		/	,	v		Ŷ				_
Opisition 2000 Image: Second 200	Obnidiidae	-						^						^				^	x		-	x			^				Ŷ		`		^		Ê				_
A A <td>Onisthonroctidae</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>x</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>x</td> <td>¥</td> <td>^</td> <td>,</td> <td><i>,</i></td> <td>^</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td>r</td> <td></td> <td>x x</td> <td>¥</td> <td></td> <td></td> <td>¥</td> <td>¥</td>	Onisthonroctidae										x						x	¥	^	,	<i>,</i>	^									<u> </u>	r		x x	¥			¥	¥
And experience of the construction of the constru	Oreosomatidae				-					_	~					-	~	~	¥	,	`								-		. ,	<u> </u>			Â			~	-
Andresonal of the second state x <td>Paralenididae</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>~</td> <td></td> <td>-</td> <td></td> <td>¥</td> <td>_</td>	Paralenididae				-					_						_			~		-																	¥	_
Non-solution x	Pentacerotidae									¥																												~	_
Instructional production of the constraint of the	Phosichthvidae				v			¥			¥	¥	¥			¥	¥			X Y	<i>(</i>)	¥	¥		¥	¥	¥	¥			,		x	x x	x	¥		¥	¥
ndr.j.veolaticale	Platytroctidae				^			~		¥	~	~	~			^	x			<u> </u>	Ť	Y			Ŷ	x	x	x		Y	<u>`</u>		x x		Ê			~	_
Non-solution of the constraint	Rondeletiidae				-					~						-	~					~			^	~	~	~		~			~			¥			
Scorpanidae x	Scopelarchidae																													x						x			_
Society didage x	Scorpaenidae																													~					x				_
Stemolychidae x<	Squalidae									¥						¥											¥								<u>^</u>				-
Stomildae x Synaphobranchidae	Sternoptychidae		x		x	x	x	x	x	~	x	x	x	x	x	x	x	x	x	x	<i>.</i>				x	x	x		x	x	<i>(</i>)	()	x	x x	x	x	x	x	x
Stromateidae x x x x x x Synaphobranchidae x x x x x x Tetragonuridae x x x x x x Trachipteridae x x x x x x Trachipteridae x x x x x x Unidentified x x x x x x x Videntified x x x x x x x x Videntified x x x x x x x x x x	Stomiidae		~		~	-	~	~	~	х	~	~	~	~	~	~	~	~	~	/	·	< x	х		x	x	x		~		. /				Ê		~	~	
Synaphobranchidae x x Tetragonuridae x x Trachipteridae x x Trachipteridae x x Videntified x x X x x x x x x x x x x x x x x x x x x x	Stromateidae	t								X											Ť	~	X	х		X			x						×				_
Tetragonuridae x x x x x Trachipteridae x x x x x x Trichipteridae x x x x x x Unidentified x x x x x x x x x x x x x x x x x x x x x x x	Synaphobranchidae	t –																			+														1 x				_
Trachipteridae x x x x x Trichipteridae x x x x x x Unidentified x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x Unidentified x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x	Tetragonuridae																				+								+						x		х		_
x x	Trachipteridae				_			x																											Ê		~		_
Unidentified x x x x x x x x x x x x x x x x x x x	Trichiuridae							~						x							- v	< x													1	x			_
	Unidentified	x	х	х	х	х	х	х		х	х	х		X	х	х	х	х	x	x >		<u> </u>	х		х	x	x			X	(,	x	x	x	x	х	x	x
	(Telescope eve fish)	Ê	~	~	~	~	~	~		~	~	~		~	~	~	~	~	~	/	. , ,	<u>, </u>	~		Ê	~	~							~	Ê	x	~	~	Â

Table 7.4 Family-level presence and absence records for each event undertaken at each station. d=day, n=night,dw=dawn.

7.3.3 Invertebrates

The Åkra -trawl sampled a broad spectrum of invertebrate, spanning a size range from makrozooplankton to metre-long cephalopods. Results for crustaceans are discussed in detail in chapter 6. For lack of specialist taxonomic knowledge and time constraints all other invertebrate taxa remain to be identified during post-cruise analysis. Apart from Crustaceans, cephalopods and gelata were the most abundant groups (Figure 7.2).

Cephalopod diversity appeared very high north of the subtropical front, including several species from the Sepiida, Chranchiidae, Enoploteuthidae, Histioteuthidae and Chtenopterygidae. South of the front diversity appeared to be lower. Octopodids were rare, at present we are only aware of two specimens (#5353 and #5722).

The vast majority of gelatinous specimens were severely damaged by the net, hindering identification of most specimens. Hydromedusae and Siphonophores usually made up a significant proportion of the gelatinous fraction. Among scyphozoans *Atolla sp.* and *Peryphylla sp.* were common. Salps were very abundant south of the front and at Walters Shoal. At least four species of pyrosomes were collected.

Chaetognaths were abundant on most stations. Heteropods and Pteropods were taken in small numbers on most stations.

Figure 7.2 log-transformed invertebrate biomass for all trawls. The "rest" category includes the remaining invertebrates as well as the "rest of catch" lots which usually contained a number of small fishes. The category gelata includes coelenterates and pelagic tunicates.

7.4 Discussion

The trawls described here represent the largest targeted pelagic survey undertaken in this region, to the author's knowledge. The data-overview presented here is obviously a very preliminary account of the catch composition and a fraction of the analysis which will be undertaken on this dataset. Samples will be stored at The South African Institute for Aquatic Biodiversity (SAIAB) until a workshop can be arranged later in 2010 for further analysis to be undertaken. These samples will also contribute directly to the biodiversity assessments of African marine fishes being undertaken by SAIAB. This is a DNA barcoding project which is an attempt to assist with the identification of taxonomically unclear taxa, marine fishes of the Indian Ocean (WIO). The Fish Barcode of Life (FISH-BoL) project is a global initiative devoted to developing DNA barcoding as a global standard

for the identification of biological species through the coordinated assembly of a standardised reference DNA sequence library for all fish species that is derived from voucher specimens with authoritative taxonomic identifications. The gene region that has been selected as the standard barcode for almost all animal groups is a 648 base-pair region in the mitochondrial Cytochrome Oxidase I gene ("COI"). The COI region has been shown to be highly effective in identifying birds, butterflies, fish, flies and many other animal groups. High-quality DNA barcode records of identified organisms are all available on-line with images, and geospatial coordinates of specimens. The database also includes information on species distributions, nomenclature and authoritative taxonomic information. The benefits of barcoding fishes include facilitating species identification for all potential users, including taxonomists; highlighting specimens that represent a range expansion of known species; flagging previously unrecognised species; and perhaps most importantly, enabling identifications where traditional methods are not applicable. The barcode sequence data remains in the private domain (authority of project collaborators) until published and submitted to the public domain and GENBANK. The long-term goal of this project is to generate species lists and DNA barcode data for all fish species in Africa. The outcomes of this project will include improved species lists of the fish diversity of all surveyed areas, significantly enhancing knowledge of the taxonomic status, and conservation of fish.

8.0 Acoustic Sampling of Zooplankton, Micronekton and Fish

Philipp H. Boersch-Supan^{1,2,3}

Principle investigator: Andrew S. Brierley¹

¹⁾ Pelagic Ecology Research Group, Scottish Oceans Institute, University of St Andrews, Fife, KY16 8LB, United Kingdom

²⁾ Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, United Kingdom

³⁾ Email: phb4@st-andrews.ac.uk Tel: +44 (0) 1334 463457, Fax: +44 (0) 1334 463443

8.1 Summary

Acoustic samples of the pelagic realm were successfully collected at every seamount station and the two off-ridge control sites. Samples were collected using a calibrated EK-60 scientific echosounder (Simrad, Norway). A balanced line transect survey design will enable inter-site statistical comparisons of acoustic backscatter and potentially of pelagic biomass.

All acoustic survey grids were also sampled using a variety of nets, this will enable ground-truthing of acoustic data and elucidate the composition of scattering layers in the survey area.

As the echosounders were recording continuously throughout the survey further acoustic samples were collected during all other scientific operations and transit.

8.2 Introduction

A substantial proportion of zooplankton and mikronekton biomass migrates daily between the surface and deeper layers. This diurnal vertical migration is thought to be driven by predation pressures, with organisms ascending to shallower depths during night-time to feed and descending to aphotic depths at dawn to avoid visual predators. Shallow topography can block the descent of these animals, exposing them to predators and/or concentrating them on the summits and flanks of of submarine banks and seamounts.

This "topographic blockage mechanisms" was first observed with sonar technology by Isaacs and Schwartzlose (1965). Despite the rapid technological advancement in echosounder technology since, most seamount investigations to date have relied on net sampling. Only few acoustical studies of the interactions between biological scatterers and abrupt topographies have been made, mostly restricted to shallow seamounts (e.g. Genin *et al.* 1994, Wilson and Boehlert 2004, Valle-Levinson *et al.* 2004).

To our knowledge this survey is the first attempt to study the interactions between mesopelagic seamounts and associated scattering layers, as well as the first study to apply multi-frequency techniques to seamount ecosystems.

8.3 Materials and Methods

8.3.1 Acoustic equipment and data processing

Acoustic data were collected using a calibrated split-beam scientific echosounder Simrad EK60 (Kongsberg Maritime AS, Horten, Norway) operating at 18, 38, 120 and 200 kHz. The transducer array was mounted on the drop keel of *Dr. Fridtjof Nansen* at a deployed depth of 8.0 m. The EK60 was operated in synchronisation with a vessel mounted ADCP and a bottom-mapping multibeam echosounder, with the EK60 38 kHz transducer setting the master ping rate. Pings were transmitted with a pulse duration of 1024 ms.

Acoustic signals were digitised and processed with Simrad ER60 software (Kongsberg Maritime AS, Horten, Norway) and logged in a raw format for post processing. Acoustic data quality was monitored in real-time using the ER60 software and near real-time using Echoview software (Myriax Pty Ltd. Hobart, Tasmania, Australia).

Post processing will follow the recommendations of Korneliussen et al. (2008) and established PERG in-house procedures:

Integrated elementary distance acoustic sampling intervals (EDSUs, 500 m along transect distances and 20 m depth horizons) will be calculated on a common spatial grid for all frequencies. This particular grid resolution minimises errors caused by the spatial separation of transducers and the frequency-specific acoustic beam dimensions.

Time varied gain noise will be removed using the technique described by Watkins and Brierley (1996). Spurious acoustic returns (including noise spikes and dropped pings) will be identified using PERG in-house data post-processing algorithms that have been implemented in the Echoview acoustic processing software.

Combining net and acoustic samples will enable us to estimate pelagic biomass by solving the "inverse problem" (see Greenlaw, 1979; Holliday 1992). Current research at PERG involves

usage of the SIMFAMI multi-frequency inversion algorithm to identify pelagic community composition, and estimate size distributions and biomass (SIMFAMI 2005).

8.3.2 Echosounder Calibration

Transducer parameters were estimated by calibration following the procedures of Foote *et al* 1987. The most recent calibration was conducted by the *Nansen's* technical staff on 14th June 2009 at Baia dos Elefantes, Angola (13°13'S 12°44'E) at a bottom depth of 32 m (T. Mørk, personal communication).

A copper calibration sphere (diameter 64 mm) was used for the 18 kHz sounder, a copper sphere (diameter 60 mm) was used for the 38 kHz sounder and a tungsten carbide sphere (diameter 38.1 mm) was used for the 120 and 200 kHz sounders. Theoretical target strengths for those spheres were adjusted to the speed of sound as calculated from local water temperature and salinity (c=1518 m/s). Parameter estimates are given in Tables 8.1 to 8.4.

Reference Target (CU-64)	:		
TS	-34.27 dB	Min. Distance	18.00 m
TS Deviation	5.0 dB	Max. Distance	23.00 m
Transducer: ES18-11 Ser	ial No. 593		
Frequency	18000 Hz	Beamtype	Split
Gain	20.76 dB	Two Way Beam Angle	-17.0 dB
Athw. Angle Sens.	13.90	Along. Angle Sens.	13.90
Athw. Beam Angle	11.19 deg	Along. Beam Angle	11.23 deg
Athw. Offset Angle	0.04 deg	Along. Offset Angl	0.10 deg
SaCorrection	-0.62 dB	Depth	0.00 m
Transceiver: GPT 18 kHz	z 00907205973e 1-1 ES18-	11	
Pulse Duration	1.024 ms	Sample Interval	0.194 m
Power	2000 W	Receiver Bandwidth	1.57 kHz
Sounder Type:			
EK60 Version 2.2.0			
TS Detection:			
Min. Value	-50.0 dB	Min. Spacing	100 %
Max. Beam Comp.	6.0 dB	Min. Echolength	80 %
Max. Phase Dev.	8.0	Max. Echolength	180 %
Environment:			
Absorption Coeff.	2.2 dB/km	Sound Velocity	1518.0 m/s
Beam Model results:			

 Table 8.1 Calibration parameter estimates for the 18 kHz echosounder.

Transducer Gain =	22.87 dB	SaCorrection	= -0.65 dB						
Athw. Beam Angle =	10.98 deg	Along. Beam Ang	gle = 11.06 deg						
Athw. Offset Angle =	0.02 deg	Along. Offset Ang	gle= 0.08 deg						
Data deviation from beam model:									
RMS = 0.16 dB									
Max = 0.34 dB No. = 25	Max = 0.34 dB No. = 253 Athw. = -5.3 deg Along = 5.3 deg								
Min = -0.59 dB No. = 379	9 Athw. = $-1.9 \deg$ Alo	png = -7.2 deg							
Data deviation from polynom	mial model:								
RMS = 0.09 dB									
Max = 0.21 dB No. = 26	3 Athw. = $0.3 \deg$ Alo	ong = 6.1 deg							
Min = -0.29 dB No. = 37	θ Athw. = -1.9 deg Ald	png = -7.2 deg							

Reference Target (CU-6	50):		
TS	-33.60 dB	Min. Distance	18.00 m
TS Deviation	5.0 dB	Max. Distance	23.00 m
Transducer: ES38B Se	erial No. 489		
Frequency	38000 Hz	Beamtype	Split
Gain	25.82 dB	Two Way Beam Angle	-20.6 dB
Athw. Angle Sens.	21.90	Along. Angle Sens.	21.90
Athw. Beam Angle	6.99 deg	Along. Beam Angle	6.95 deg
Athw. Offset Angle	0.04 deg	Along. Offset Angl	0.11 deg
SaCorrection	-0.53 dB	Depth	0.00 m
Transceiver: GPT 38 k	KHz 009072057b8a 2-1 ES	38B	
Pulse Duration	1.024 ms	Sample Interval	0.194 m
Power	2000 W	Receiver Bandwidth	2.43 kHz
Sounder Type:			
EK60 Version 2.2.0			
TS Detection:			
Min. Value	-50.0 dB	Min. Spacing	100 %
Max. Beam Comp.	6.0 dB	Min. Echolength	80 %
Max. Phase Dev.	8.0	Max. Echolength	180 %
Environment:			
Absorption Coeff.	8.5 dB/km	Sound Velocity	1518.0 m/s
Beam Model results:			

 Table 8.2 Calibration parameter estimates for the 38 kHz echosounder.

Transducer Gain =	25.90 dB	SaCorrection =	-0.57 dB						
Athw. Beam Angle =	7.06 deg	Along. Beam Ang	le = 7.05 deg						
Athw. Offset Angle =	0.05 deg	Along. Offset Ang	gle= 0.11 deg						
Data deviation from beam model:									
RMS = 0.14 dB									
Max = 0.34 dB No. = 113	Max = 0.34 dB No. = $113 \text{ Athw.} = 3.7 \text{ deg Along} = 1.9 \text{ deg}$								
Min = -1.32 dB No. = 25	Athw. = $-3.2 \text{ deg Along} = -1.$	8 deg							
Data deviation from polynom	ial model:								
RMS = 0.10 dB									
Max = 0.26dB No. = 23	Athw. = $4.3 \deg \operatorname{Along} = 0.$	0 deg							
Min = -1.41 dB No. = 25	Athw. = $-3.2 \text{ deg Along} = -1.$	8 deg							

Reference Target (WC	-38.1):		
TS	-39.70 dB	Min. Distance	19.00 m
TS Deviation	5.0 dB	Max. Distance	22.00 m
Transducer: ES120-7	Serial No. 587		
Frequency	120000 Hz	Beamtype	Split
Gain	25.27 dB	Two Way Beam Angle	-20.8 dB
Athw. Angle Sens.	21.00	Along. Angle Sens.	21.00
Athw. Beam Angle	8.93 deg	Along. Beam Angle	8.96 deg
Athw. Offset Angle	0.04 deg	Along. Offset Angl	0.02 deg
SaCorrection	-0.33 dB	Depth	0.00 m
Transceiver: GPT 120	kHz 009072059721 1-1 ES	\$120-7	
Pulse Duration	1.024 ms	Sample Interval	0.194 m
Power	250 W	Receiver Bandwidth	3.03 kHz
Sounder Type:			
EK60 Version 2.2.0			
TS Detection:			
Min. Value	-50.0 dB	Min. Spacing	100 %
Max. Beam Comp.	6.0 dB	Min. Echolength	80 %
Max. Phase Dev.	8.0	Max. Echolength	180 %
Environment:	_		
Absorption Coeff.	45.3 dB/km	Sound Velocity	1518.0 m/s
Beam Model results:			

 Table 8.3 Calibration parameter estimates for the 120 kHz echosounder.

Transducer Gain =	25.44 dB	SaCorrection = -0.30 dB							
Athw. Beam Angle =	7.20 deg	Along. Beam Angle = 7.22 deg							
Athw. Offset Angle =	0.05 deg	Along. Offset Angle= -0.04 deg							
Data deviation from beam model:									
RMS = 0.22 dB									
Max = 0.57 dB No. = 1	Max = 0.57 dB No. = $157 \text{ Athw.} = -3.6 \text{ deg Along} = 5.3 \text{ deg}$								
Min = -0.62 dB No. = 1	46 Athw. $= 0.6 \deg$	g Along = 4.5 deg							
Data deviation from polyne	omial model:								
RMS = 0.20 dB									
Max = 0.53 dB No. = 1	23 Athw. = -1.8 deg	g Along = $3.8 \deg$							
Min = -0.53 dB No. = 2	92 Athw. = -3.5deg	g Along = -2.6 deg							

Reference Target (WC-	-38.1):		
TS	-38.85 dB	Min. Distance	19.00 m
TS Deviation	5.0 dB	Max. Distance	22.00 m
Transducer: ES200-7	Serial No. 492		
Frequency	200000 Hz	Beamtype	Split
Gain	25.38 dB	Two Way Beam Angle	-20.7 dB
Athw. Angle Sens.	23.00	Along. Angle Sens.	23.00
Athw. Beam Angle	6.55 deg	Along. Beam Angle	6.59 deg
Athw. Offset Angle	0.21 deg	Along. Offset Angl	0.11 deg
SaCorrection	-0.27 dB	Depth	0.00 m
Transceiver: GPT 200	kHz 009072057b8e 2-1 ES	5200-7	
Pulse Duration	1.024 ms	Sample Interval	0.194 m
Power	120 W	Receiver Bandwidth	3.09 kHz
Sounder Type:			
EK60 Version 2.2.0			
TS Detection:			
Min. Value	-50.0 dB	Min. Spacing	100 %
Max. Beam Comp.	6.0 dB	Min. Echolength	80 %
Max. Phase Dev.	8.0	Max. Echolength	180 %
Environment:			
Absorption Coeff.	69.1 dB/km	Sound Velocity	1518.0 m/s
Beam Model results:			

 Table 8.4 Calibration parameter estimates for the 200 kHz echosounder.

Transducer Gain =	24.93 dB	SaCorrection	= -0.29 dB						
Athw. Beam Angle =	6.23 deg	Along. Beam An	ngle = $6.64 \deg$						
Athw. Offset Angle =	0.36 deg	Along. Offset A	ngle= -0.10 deg						
Data deviation from beam model:									
RMS = 0.74 dB									
Max = 2.32 dB No. = 6	Max = 2.32 dB No. = 65 Athw. = -3.1 deg Along = 2.8 deg								
Min = -2.06 dB No. = 3	47 Athw. = -3.6deg	g Along = -2.4 deg							
Data deviation from polyn	omial model:								
RMS = 0.62 dB									
Max = 1.55 dB No. = 1.55 dB	15 Athw. = -3.5 deg	Along = $0.7 \deg$							
Min = -1.86 dB No. = 3	12 Athw. $= 4.2 \deg$	Along = -1.4 deg							

8.3.3 Survey Strategy

On full environmental stations acoustic data were observed along ten line transects with a systematic survey design (length = 10 n.miles, inter-transect spacing = 1 n.mile). Transect orientation was chosen as a compromise between minimised vessel pitch and bubble entrainment on one hand and maximised seamount coverage on the other. The centre points of the survey grids were chosen arbitrarily within the above constraints.

Acoustic grids were usually separated into two parallel, interlaced grids of 5 transects with a 2nm spacing, both parts of the complete grids were usually surveyed within 48 hours. Acoustic grids were surveyed during daytime only, usually from sunrise to mid-day.

Apart from dedicated acoustic transect surveys, the EK60 was running and logging data throughout the cruise, providing underway data as well as acoustic data (albeit of low quality) during fishing operations and CTD deployments. From these data we hope to elucidate the characteristics of the diel vertical migration.

8.4 Summary of Activities

Time constraints and weather conditions did not allow the scheme described above to be followed at all stations. As a result some transects were surveyed in the afternoon. At Station 09 (Melville Bank) a part of the acoustic grid was resurveyed to account for poor data quality caused by adverse weather conditions during the first part of the acoustic survey. An overview of all acoustic transects is given in Table 8.5.

Final	cruise r	eport: Southern	Indian	Ocean	Seamounts	2009

Station	Date	Start/End of survey (GMT)		Orientation (degrees)	Transects	Transect length (nautical miles)
02 Off-Ridge North	14/11	03:30 09:26		315	5	10
	15/11	01:59	07:53	315	5	10
04 Atlantis Bank	17/11	01:40	07:40	315	5	10
	19/11	02:45	08:40	315	5	10
05 Sapmer Bank	22/11	01:22	07:23	315	5	10.5
	24/11	03:25	09:30	315	5	10.5
06 Middle of What	25/11	06:56	12:54	315	5	10
	27/11	04:05	10:01	315	5	10
07 Off-Ridge South	30/11	01:00	11:38	350	10	10
08 Coral	2/12	02:08	08:04	340	5	10
	4/12	03:54	09:44	340	5	10
09 Melville Bank	7/12	03:47	16:15	345	9	10
	9/12	02:53	08:43	345	5	10
10 Walters NW	12/12	10:16	15:58	315	5	10
	13/12	02:45	08:23	315	5	10

Table 8.5 Summary of acoustic transect surveys

8.5 Preliminary results

Visual inspection of echograms showed distinct differences in scattering features between acousticfrequencies and between sites. While the off-ridge control sites showed a stable layer structure, the scattering layers (SL) around and over seamount summits were often perturbed. An overview of interactions between the topography, seamount associated aggregations and the scattering layers is presented in Table 8.6.

Perturbations were apparently caused by both biological (i.e. feeding aggregations of fish and other scatterers, see Figure 8.1) and physical processes (Figure 8.2). Observations of the diel vertical migration were made during steaming and other sampling activities. An example is shown in Figure 8.3.

Station	summit or bottom depth	summit intercepts main SL	summit intercepts deeper SL	summit associated aggregations	aggregations intercepting SL	perturbations of layer structure
02 Off-Ridge North		-	-	-	-	-
04 Atlantis Bank		+	+	+	+	+
05 Sapmer Bank		+	+	+	+	++
06 Middle of What		-	+	0	0	+
07 Off-Ridge South		-	-	-	-	-
08 Coral		+	+	+	+	++
09 Melville Bank		+	+	0	0	+
10 Walters NW		-	-	-	-	-

 Table 8.6 Characteristics of scattering layers (SL) and their interactions with seamounts and seamount associated aggregations. ++ strong effect observed, + effect observed, o further analysis required, - no effect observed

Figure 8.1 18 and 38 kHz echograms depicting the summit of Atlantis Bank and associated aggregations as they intercept the main deep-scattering layer. Grid spacing 0.5 nm horizontally and 200m vertically.

Figure 8.2 38 kHz echogram showing physical perturbation of the main scattering layer at an unnamed seamount. Grid spacing 1nm horizontally and 200m vertically.

Figure 8.3 38 kHz echogram showing the downward vertical movement of biological scatterers. Grid spacing 30 minutes horizontally and 100m vertically.

8.6 Discussion

Given the exploratory nature of the current survey, the acoustic sampling was limited to the systematic transect surveys as described above. Dedicated surveys to investigate seamount-specific effects on a comprehensive spatio-temporal scale, e.g. downstream patchiness of scattering layers

(Genin *et al.* 1994) or small scale bio-physical coupling (Wilson and Boehlert 2004), were not possible within the time constraints. However, a detailed analysis of the transect data may reveal evidence for these effects.

From the data we have collected during this survey we may be able to estimate the pelagic biomass at six seamounts and two off-ridge control sites. Limitations in the net sampling and the time mismatch between acoustic surveys and net/trawl deployments will, however, make this difficult. Specifically, quantitative net data is available for mesozooplankton in the shallow scattering layers only (0-250m, see Chapter 6 for details). Macrozooplankton, micronekton and fish were sampled with the Aakra trawl, however, this gear is neither quantitative nor able to sample the top 50-100 m of the water column. Interpretation of the acoustic data will therefore have to rely on inverse modeling (SIMFAMI 2005) and previously published data on scattering layers (e.g. Benoit-Bird 2009)

The vertical motions of pelagic organisms may be elucidated by comparison of day and night time net and trawl samples. The acoustic data for these movements is, however, often limited, as other sampling activities usually created acoustical or electrical noise, thus significantly deprecating data quality. Due to a lack of a surface irradiance sensor, an important environmental variable to explain variations in the vertical structure of scattering layers could not be measured.

9.0 Seabird and cetacean observations

Patrick Pinet¹ *, Etienne Bemanaja², and Matthieu Le Corre ¹

¹ ECOMAR Laboratory, Université de La Réunion, 15 avenue René Cassin, Saint Denis, 97715, France

² IHSM Institut Halieutique et des Sciences Marines, Madagascar

* Corresponding author: patrick.pinet@univ-reunion.fr

9.1 Background

The "seabird team" of the lab ECOMAR have been studying seabird ecology and conservation in the western Indian Ocean for 10 years. One of the goals of our research is to better understand the interaction between the marine environment and the ecology, behaviour and population dynamics of seabirds. We are also very interested in developing methodologies to use seabirds as indicators of marine hotspots and potential marine protected areas (MPAs) in the deep blue ocean. We use two main complementary methods to study seabirds at sea: individual tracking [remote sensing and satellite telemetry, using Argos transmitters and more recently archival tags, and at sea surveys during oceanic cruises. The opportunity to participate to the seamounts cruise co-organised by IUCN and ASCLME was really interesting for several reasons. First it allowed us to census seabirds at places where we have not been before. In particular, the transition zone between typical tropical seabird assemblages and typical sub-Antarctic assemblages around the subtropical convergence was very interesting to study. It was also a wonderful opportunity to investigate at sea the seabird assemblages and behaviour attracted by or associated with seamounts. We already knew (thanks to our tracking results) that seamounts (especially the Walter's Shoals) were important for seabirds so it was really a unique opportunity to study such behaviour "in situ". This project is part of a regional programme on seabirds as indicators of potential Marine Protected Areas, co-funded by a Pew Fellow Award in Marine Conservation, the Fondation Française pour la Recherche sur la Biodiversité, and the French Ministry for Overseas Territories.

9.2 Seabirds and Seamounts

Seamounts have been recently recognized as highly important forfisheries, biodiversity and conservation as they support often isolated but rich underwater ecosystems (Pitcher *et al.*, 2007). They tend to concentrate water currents and they can have their own localised tides, eddies and upwellings (where cold, nutrient-rich, deep water moves up along the steep sides of the seamount) and they are often called "oceanic oases (Boehlert and Genin, 1987; Genin, 2004; Pitcher *et al.*, 2007). Aggregations of zooplankton, micronekton **afixh** are common over shelf breaks or

seamounts (Boehlert and Genin, 1987; Genin, 2004) and have also been documented for krill and copepods in the southern ocean (Macaulay et al., 1984; Pauly et al., 2000; Barange, 1994). While the importance of seamounts for bottomfishes is very well documen ted (Boehlert an Sasaki, 1988; Koslow et al., 2000; Morato et al., 2006), their importance to visiting pelagic organisms has been poorly examined. In the marine environment, top predators such as seabirds are known to concentrate their foraging effort in specific oceanic features where productivity is elevated or prey concentrated (Kareiva and Odell, 1987). Tropical waters are known to be less productive with an unpredictable prey distribution. These relatively unproductive oceanic regions support far ranging upper-trophic predators that forage on widely dispersed resources and frequently exploit prey concentrated at the periphery of mesoscale eddies (Nel et al., 2001; Weimerskirch et al., 2004). Many previous studies showed that seabird distributions are clearly influenced by mesoscale hydrographic features (Hunt and Schneider 1987). In particular, many species forage and aggregate at hydrographic fronts and mesoscale eddies (Haney and McGillivary, 1985; Abrams and Lutjeharms, 1986; Haney, 1986; Nel et al., 2001; Weimerskirch et al., 2004; Hyrenbach et al., 2007). It is also known that water depth influences seabird distributions (Schneider, 1997; Louzao et al., 2006; Jaquemet et al., 2004; Hyrenbach et al., 2007), because high topographic features as seamounts, shoals or ridges can create local enrichment. Recently, Morato et al. (2008) showed an important seamount effect on aggregating visitors as seabirds or tunas. Cory's shearwater Calonectris diomedea, yellow-legged gull Larus cachinnans atlantis, Madeiran storm petrel Oceanodroma castro (Monteiro et al., 1996), Cassin's auklet Ptychoramphus aleuticus (Yen et al., 2004, 2005) and black-footed albatross Diomedea nigripes (Haney et al., 1995) have also been observed above seamount summits, where they feed on zooplankton, smallfish and small cephalopods. But this has been based on sparse records and warrants further examination. To our knowledge, in the Indian Ocean, nobody has studied the direct effects of the southwest Indian Ocean ridges and seamounts on the seabird's distribution. However, this area is known to support many sub-Antarctic seabird species, but also tropical species like (Petrodroma baraui) (Stahl and Bartle, 1991) that consistently use these areas from 2000 km distance to their breeding colonies (Pinet unpublish. data). The objectives of this cruise are to characterize the potential influence of the South West Indian Ocean Ridge and seamounts, on the seabird's at-sea distribution. At the same time, taken into account that (1) seabird species are often associated with topographic and dynamic oceanographic habitat features, and (2) seamounts are known to be exploited or over exploited by fisheries since several decades ago, an urgent understanding of these wildlife-habitat associations is critical for evaluating the feasibility and design of pelagic MPAs (Hooker and Gowans, 1999; Hyrenbach and Dayton, 2000; Louzao et al., 2006).

9.3 Materials and methods

9.3.1 Study area

We investigated seabird-seamount associations from tropical to sub-Antarctic waters of the southern Indian Ocean during a 40d cruise (November-December 2009) from Reunion Island to Port Elizabeth (South Africa) (Fig. 9.1). This trip encompasses an important part of the Southwest Indian Ocean Ridge and different hydrographic fronts. Five major frontal systems occur within the study area (Fig. 9.1) and are known to support distinct seabird assemblages (Hyrenbach *et al.*, 2007). Frontal systems structure seabird communities by delimiting species distributions and by enhancing local aggregations due to enhanced prey availability and concentration.

Figure 9.1 Map of the study area showing the location of the survey transects (black lines: T1-T15) and stations (red dots: S2, S4-S10). The insert depicts the contours of sea surface temperature (SST) from satellite altimetry (November, 2009)), indicative of the localisation of the main fronts (TRF: tropical front; NSC: northern extent of the Subtropical Convergence; SAF: Sub-Antarctic Front; PF: Polar Front).

9.3.2 Seabird and mammals surveys

During the whole mission, two observers (EB, PP) surveyed marine birds and mammals. Observations were made from the unenclosed bridge of the vessel Dr Fridtjof Nansen during daylight hours while the vessel cruised at speeds around 10 knots. Following the transect methods (Tasker et al., 1984), a 300-m strip-width transect band was used, with the two observers surveying each sides of the vessel (i.e., 600-m band). Censuses were continuous, all individuals or groups being identified at the lowest possible taxonomic level. The observer on watch estimates the number of seabirds in the flock, all taxa combined. If more than one taxon was present, percent composition of each species in the flock was also estimated. The behaviour of each bird (sitting,flying, feeding, ship following) and the presence of surface-dwelling fishes or mammals were recorded. Photography were also taken during each transect in order to help determination. Also, when the ship was stopped, many observations were made opportunistically in order to complete the seabird sightings but were not taken into account for the density analysis (presence only).

During this cruise, 2 census were down:

- 1) Classical transects between stations (see Table 9.1 Transect surveyed)
- On seamounts, four transects (10 nautical miles each) were selected along the 10 radials made for acoustic survey representing 24 km² surveying per station (see Table 9.1 Seamounts surveyed)

9.4 Preliminary results

9.4.1 Survey track

Our cruise track spanned subtropical to sub-Antarctic waters, and crossed 3 frontal systems (Fig. 9.1). We did 8 transects in the Tropical waters, 5 in the subtropical convergence and 1 crossing the southern subtropical convergence. The stations were also localized at different sea surface temperatures (S2= 22°C; S4= 18°C, S5-S6-S9= 16°C S7=8°C; S8=10°C) (Table 9.1). The environmental parameters (Wind, sea surface temperature, depth) were recorded and will be used for further analysis. For this first analysis, we aggregated the station survey on the basis of their SST characteristics, and qualified (presence/absence) seabird community structure within three large-scale biographic domains (Table 9.1): the subtropical convergence (STC), subtropical waters to the north (TR), and sub-Antarctic waters to the south (SA) (Kostianoy *et al.*, 2004)

	Tropical (TR)	Subtropical convergence (STC)	Sub-Antarctic (SA)
SST range (°C)	>17	13-17	<13
Transect surveys			
Number	8	6	1
Survey effort (km ²)	950	550	140
Seamount surveys			
Stations (24 km ² /station)	S2, S4, S10	S5, S6, S9	S7, S8

 Table 9.1 Indicators of ocean temperature in different biogeographic domains across the southern Indian Ocean and

 the position of each transect and seamounts surveyed during this cruise. (See Figure 9.1 for station's location).

9.4.2 Seabird observations

We surveyed 2630 km (1640km²) of around 6000 km cruise track over 150 hours, sighted a high number of seabirds (we have not the exact number yet) belonging to 36 taxa (Table 9.2). For this report, we will just present few qualitative results (presence/absence) of seabird's assemblage along seamounts.

ENG NAME	SCIENTIFIC NAME	FEED.	IUCN STATUS
Procellariiformes			
Barau's Petrel	Pterodroma baraui	SF	EN
White-Chinned Petrel	Procellaria aequinoctialis	SF, DI	VU
Grey Petrel	Procellaria cinerea	SF	NT
Pintado Petrel	Daption capense	SF	LC
Blue Petrel	Halobaena caerulea	SF	LC
Atlantic petrel	Pterodroma incerta	SF	EN
Great-Winged Petrel	Pterodroma macroptera	SF	LC
Soft-Plumaged Petrel	Pterodroma mollis	SF	LC
White-Headed Petrel	Pterodroma lessonii	SF	LC
Wilson's Storm-Petrel	Oceanites oceanicus	SF	LC
Black-bellied Storm-Petrel	Fregatta tropica	SF	LC
White-bellied Strom-Petrel	Fregatta grallaria	SF	LC
Northern Giant-Petrel	Macronectes halli	SF, SC	LC
Southern Giant-Petrel	Macronectes giganteus	SF, SC	LC
Light-Mantled Albatross	Phoebetria palpebrata	SF	NT
Sooty Albatross	Phoebetria fusca	SF	EN
Shy Albatross	Thalassarche cauta	SF	NT
Grey-Headed Albatross	Thalassarche chrysostoma	SF	VU
Black-Browed Albatross	Thalassarche melanophrys	SF	EN
Indian Yellow-Nosed Albatross	Thalassarche carteri	SF	EN
Wandering Albatross	Diomedea exulans	SF	VU
Northern Royal Albatross	Diomedea sanfordi	SF	EN
Wedge-tailed Shearwater	Puffinus pacificus	SF, DI	LC
Tropical Shearwater	Puffinus bailloni	SF, DI	LC
Sooty Shearwater	Puffinus griseus	SF	NT
Cory's shearwater	Calonectris diomedea	SF, DI	LC
Flesh-footed shearwater	Puffinus carneipes	SF	LC

Antarctic Fulmar Fairy Prion Broad-billed Prion Slender-Billed prion Antartic Prion Pelecaniformes	Fulmarus glacialoides Pachyptila turtur Pachyptila vittata Pachyptila belcheri Pachyptila desolata	SF SF SF SF SF	LC LC LC LC LC
White-tailed tropicbird	Phaethon lepturus	PL	LC
Charadriiformes			
Great skua	Catharacta skua lonbergii	KL, SC	LC
Roseate tern	Sterna dougalli	PL	LC
Sooty tern	Sterna fuscata	PL	LC
Arctic tern	Sterna paradisaea	PL	LC

Table 9.2 Summary of seabird taxa recorded during the whole Seamounts cruise (12 November to 18 December, 2009).
 Four feeding guilds are considered: surface-feeders (SF), divers (DI), plungers (PL), scavenger (SC), and kleptoparasites (KL). Status is based on IUCN 2009. IUCN Red List of Threatened Species. Version 2009.2.
 www.iucnredlist.org. Downloaded on 16 December 2009.EN: Endangered; NT: Near threatened; VU: Vulnerable; LC:

least Concern. Species observed on station are bolded.

9.4.3 Seabirds distribution

Higher species richness (18-20) occurred in cool (SST<10°C) sub-Antarctic waters, and intermediate (10-13) in Subtropical Convergence ($13^{\circ}C > SST < 17^{\circ}C$). Seabird's diversity declined north of the northern Subtropical Convergence and tropical stations (>17°C) supported lower specie's number (2-10) (Fig. 9.2). We documented the highest species richness (20) close to the sub-Antarctic front on the Coral seamount (41.39°S, 42.88°E).

Figure 9.2 Species richness per stations (ST2, ST4-ST10). Base on the 24km² surveyed per station. (TR: Tropical; STC: subtropical convergence; SA: sub-Antarctic).

9.4.4 Seabird assemblage

Seabird assemblage varied also substantially across the study area (Fig. 9.3). The species assemblages in sub-Antarctic, subtropical and tropical waters seem distinct. These preliminary results suggest that the avifauna of the southern Indian Ocean is structured by large-scale gradients in physical and biological properties. Cooler sub-Antarctic waters of higher ocean productivity and phytoplankton standing stocks supported an order of magnitude higher seabird diversity, than lower productivity subtropical waters.

Figure 9.3 Results of cluster analysis of seabird community (presence/absence) structure along 8 stations (ST2, ST4-ST10). (See Table 9.1 for codes and Figure 9.1 for seamount's location).

This result is consistent with past at-sea surveys, which have documented higher bird densities in sub-Antarctic waters than in less productive subtropical and tropical regions (Griffiths *et al.*, 1982; Stahl *et al.*, 1985; Hyrenbach *et al.*, 2007).

9.5 Mammals observations

Each mammal observed during the survey was recorded. However, marine mammals are very difficult to identify and we were not specialists. Photos were taken and were sent to specialists for identification. During this mission, we recorded 25 mammals that we classified in 5 sighting-categories (Table 9.3). We recorded nine whales in subtropical convergence (STC, Table 9.3) and 15 in Tropical waters (TR, Table 9.3).

Date	Sighting-Categories	Observation	Photo	Water	Species
26/11/09	1 Sperm whales	Blow, fine	No	STC	Physeter macrocephalus
26/11/09	5 Humpback whales	Blow, fine	Yes	STC	Megaptera novaeangliae
27/11/09	2 Humpback whales	Blow, fine	Yes	STC	Megaptera novaeangliae
30/11/09	1 Unidentified seal	Body	Yes	SA	
10/12/09	1 Unidentified whale	Blow	No	STC	
11/12/09	6 Humpback whales	Blow, fine	Yes	TR	Megaptera novaeangliae
11/12/09	1 Unidentified whale	Blow, fine	Yes	TR	Probably Fin whale?
12/12/09	1 Unidentified whale	Blow	No	TR	
13/12/09	1 Unidentified whale	Blow, fine	Yes	TR	Probably Blue whale?
13 /12/09	3 Short-Finned pilot whales	Blow, fine	Yes	TR	Globicephala macrorhynchus
15/12/09	1 Unidentified whale	Blow	No	TR	
17/12/09	2 Unidentified whales	Blow	No	TR	
17/12/09	1 Sperm whales	Blow	No	TR	Physeter macrocephalus
TOTAL	26 mammals recorded				

 Table 9.3 Summary of marine mammals recorded during the Seamounts cruise (12 November to 19 December, 2009).

 (TR: Tropical; STC: subtropical convergence; SA: sub-Antarctic).

9.6 Preliminary discussion

The degree of aggregation and the habitat associations of far-ranging seabirds greatly influence their susceptibility to anthropogenic threats, such as longline by-catch and oil spills, and the potential use of marine protected areas (MPAs) to mitigate those threats. Seabirds are particularly susceptible to anthropogenic impacts at certain time periods (e.g., breeding season) and localities (e.g., foraging grounds) when/where they aggregate in dense concentrations. Similarly, the feasibility and effectiveness of specific management practices depend on both the spatial extent and the degree of aggregation of the protected species and the threats in question. It is of course too early to interpret these results because we have to complete the data processing and the statistical analysis. Analysis will include in particular the comparison of seabird assemblages and seabird density during "en route" transects (off the seamounts) and during "acoustic transects" (on seamounts), to investigate the potential aggregative effects of seamounts. At first glance, it seems that seabird diversity and density was very high at seamounts, especially near the sub-Antarctic front. We can also notice the very high proportion of endangered, near threatened and vulnerable species (see Table 9.2) at these seamounts. All these species are of conservation concern because they are attracted by industrial fishing boats and are a by-catch of fishing gears, particularly long lines. Although the problem is been reduced now, thanks to international agreements on mitigation measures (no fishing during daylight), most species are still highly vulnerable and should be protected at sea. For these reasons our results will probably support the idea of implementing highseas MPAs in some of the seamounts that we prospected.

10.0 Indian Ocean Whalebone Moorings

Kirsty M Kemp

Institute of Zoology, Regent's Park, London NW1 4RY, UK

10.1 Summary

Recent studies have shown that two important sources of highly-localised and enriched organic matter in the deep sea are the sunken carcasses of dead whales and large pieces of wood which have been washed out to sea (becoming waterlogged and eventually sinking) or from shipwrecks (e.g. Dando et al., 1992; Smith & Baco, 2003; Glover *et al.*, 2005). These large inputs of organic matter can support a highly specialised microbial and invertebrate fauna. Hydrogen sulphide is created at a localised scale through the anaerobic decomposition of the soft tissue and bone lipids by the bacteria that colonise the bones and wood. This creates environmental conditions similar to those found at hydrothermal vents and cold seeps. The unique invertebrate community characteristic of all these chemosynthetic environments is dominated by polychaete worms. Whilst hydrothermal vents and cold seeps are both created by geological forces, whale and wood fall ecosystems are of biogenic origin, and are more ameanable to experimental manipulation. In particular, these habitats can be created in a chosen location by sinking large parcels of wood or bone.

During this 2009-410 Seamount cruise, two moorings, each carrying a package of minke, fin and sperm whale bones and a package of mango wood logs, were deployed to two seamount sites from the Research Vessel Dr Fridtjof Nansen. Mooring 1 was deployed north of the frontal zone in the warm water of Atlantis Bank. Mooring 2 was deployed in the colder water south of the frontal zone, on Coral Seamount. These moorings will remain in place until recovery by ROV in late 2011.

To date virtually no studies of chemosynthetic ecosystems have been carried out in this the Indian Ocean and these deployments represent the first bone and wood packages experimentally implanted in this region. It is expected that the bones will be colonised by as yet undescribed specialist organisms. Inclusion of these worms into a growing phylogenetic analysis will shed light on both the evolutionary history of these worms and also the larger ecosystem level processes of larval dispersal and transport across ocean basins, and colonisation processes in the deep sea environment.

10.2 Methods

10.2.1 Bone collection

Whale bones were collected opportunistically over several years prior to the cruise, by the author, Thomas Dahlgren of Goteborg University, Sweden, and Adrian Glover of the Natural History Museum, London. A scapula and several vertebrae were collected from a minke whale which stranded and died on Veddö Island, Sweden in December 2006. This carcass was in a very dessicated state when bones were collected from it. Four sperm whale vertebra were collected by chance in the trawl net of a vessel undertaking benthic fishing off the Swedish west coast. These have been mostly used for other whalebone deployments but half of one vertebra remained and was included in these Indian Ocean bone packages. The remaining bones (all ribs) were collected by Rob Deaville of the Institute of Zoology, London, from a Humpback whale and a Northern bottlenose whale, both stranded on the southern coast of the UK. Details are as follows:

- Three ribs from a juvenile male Humpback whale (*Megaptera novaeangliae*), found stranded near the Dartford Bridge, London, UK, on 12/09/09.
- Two ribs from a juvenile female Northern bottlenose whale (*Hyperoodon ampullatus*), found stranded at Bournemouth, UK, on 21/09/09.
- One scapula and 3 vertebrae from a juvenile Minke whale (*Balaenoptera acutorostrata*), found stranded on Veddö Island, Sweden, in December 2006.
- Half a vertebra from a Sperm whale (*Physeter macrocephalus*), found stranded on Veddö Island, Sweden, in December 2006.

The Institute of Zoology is licensed to possess and transport these specimens under Annex B of the Conservation Regulations 1994 issued by The Wildlife Licensing Unit, Natural England.

Logs of mango wood were collected from a local source in the departure port in Reunion. They came from a recently cut tree and remained moist from lying in a damp garden for approximately two weeks after cutting.

10.2.2 Mooring setup and design

The moorings were adapted from a design originally proposed by Alan Jamieson of Oceanlab, University of Aberdeen. The basic mooring is comprised of a large ballast (150kg concrete-filled tires in this case), connected to a 15m double mooring line with a 20mm rope. This rope is the weak point in the mooring but is necessary as the ROV will cut the mooring at this point during recovery. The double mooring line is in turn shackeled to a string of 8 floats (Figure 10.1). Floats are 1200m rated and give a total buoyancy of 20kg. A Sonardyne Transponder Type 7832 and compatible with ISIS ROV Homer system, is fitted to the mooring line. A mesh net was added around the ballast block. This net is fixed directly to the mooring line and is intended to act as a safety catch should the steel fittings of the ballast prove unreliable and corrode during the two year deployment period.

All bones were individually drilled and fitted with loops of 8mm polypropylene line. They were then sewed into a course net bags with the loops of polypropylene line protruding through the mesh. These lines were spliced onto a single lifting ring which in turn is connected directly to the ballast (not to the mooring line) by a single 14mm polypropylene line. A separate parcel was prepared in the same way for wood.

Figure 10.1 Mooring setup. The scissor symbol designates where the ROV should cut during recovery. See details later in the text.

10.2.3 Bone and wood package preparation

Figure 10.2 Mooring preparation. (a -b) Bones were drilled and fitted with individual loops of line. They were then sewn up into mesh bags. (c-d) Wood was prepared in the same way. (e-f) These lines were fitted to lifting rings (visible in the right of image f) which were attached directly to the ballast.
10.2.4 Deployment details

Mooring 1		and the second second
Date 18/11/09 Time 15.22 UTC Latitude 32°42.71'S Longitude 57°16.31E Depth		Sound in defense Type No. 7835-000-01 Serial No.2640655-002 CE Depth Rating: 4000 Metres ID / 9-6 Battery Start Date: 19/10/09 Understeinse Romes Park: Anteury Hondres Houter Bounders Park: Anteury Hondres Houter Soundersteinse Romes Park: Anteury Hondres Houter Mathematical Park Houter Boundersteinse Romes Park: Anteury Hondres Houter Mathematical Park Boundersteinse Park: Anteury Hondres Houter Mathematical Park Boundersteinse Park: Anteury Hondres Houter Mathematical Park Mathematical Park Houter Description Boundersteinse Houter Boundersteinse Houter Battery Start Park Boundersteinse Houter Boundersteinse Houter Boundersteinse Houter Boundersteinse Houter Boundersteinse Houter Boundersteinse Houter Bounderstein Houter Bounderstein
Wood:		
Mango log	4.4kg	
Mango log	4.8kg	
Mango log	10.9kg	
Wood subtotal:	19.1kg	
Bones: Sperm whale 1/2vertebra Minke whale vertebra	12.65kg 1.05kg	
Humpback and northern		
bottlenose whale ribs	4.15kg	
Bones subtotal: Beacon: Mooring line (estimated):	17.85кg 1.2kg	
Bouve		
Douys.		
Total payload in air:	36.95kg	CONTRACT.
Ballast:	150.00kg	
Est wood bouyancy		
Est bone bouyancy		
Buoy bouyancy 20kg		
Est total payload in wate	r:	

Figure 10.3 Deployment details for Mooring 1.

Mooring 2

Date 04/12/09
Time 15.24UTC
Latitude 41°22.381S
Longitude 42°54.636E
Depth

Wood:

Mango log	4.5kg
Mango log	2.15kg
Mango log	6.15kg
Mango log	5.3kg
Wood subtotal:	18.10kg

Bones:

Bones subtotal:	13.65kg
bottlenose whale ribs	4.50kg
Humpback and northern	
bottlenose whale ribs	4.15kg
Humpback and northern	
Minke vertebra cap 0.20kg	
Minke whale vertebra	1.20kg
Minke whale vertebra	3.60kg

Beacon: Mooring line (estimated): Bouys:

Total payload in air: Ballast:

Est wood bouyancy Est bone bouyancy Buoy bouyancy 20kg

1.2kg

150.00kg

Est total payload in water:	Est total payload in water:
-----------------------------	-----------------------------

Figure 10.4 Deployment details for Mooring 2.

10.2.5 Deployment procedure

The deployment sites were chosen after multibeam surveys of the areas were completed. Flat or shallow-sloping areas were chosen. The bottom sediment of these seamount sites appears fairly hard, though more detail than that is not available at this point.

Figure 10.5 The moorings were deployed by the ship's crane over the side of the ship.

10.3 Discussion

10.3.1 Recovery procedure and recommendations

Recovery will be undertaken from the James Cook cruise XXX in 2011 using the ISIS ROV. The packages should be filmed in detail prior to any disturbance of the site by the ROV. The bone and wood packages should then be recovered by cutting the individual 14mm polypropylene lines which attach them directly to the ballast.

The mooring package can be retrieved by securing it with one manipulator, and cutting it free from the ballast below the SS swivel. It may be possible to then attach the mooring to the ISIS elevator system using the two lifting rings.

Once on deck the bone and wood parcels should be immediately transferred to dark seawater containers and examination and sampling for associated fauna should be undertaken as early as possible after recovery.

10.3.2 Analysis

Though the diversity of hydrothermal vent-associated polychaetes is well documented, we have poor knowledge of woodfall and whalefall polychaete assemblages, even at the level of basic identifications. Worms collected from these moorings upon recovery will add to an ongoing phylogenetic analysis of these geni and greater clarify the evolutionary history (evolutionary relatedness) of these organisms, and the processes underlying their dispersal and distribution on a global scale.

11.0 Communications activities

By Sarah Gotheil

International Union for Conservation of Nature (IUCN), Rue Mauvernay 28, 1196 Gland, Switzerland

11.1 Initial activities

The major communications work around the cruise started at the beginning of November, with a "media advisory" sent out to international media. Although it did not receive high media attention in quantitative terms, the qualitative outcomes were immense, as it opened up the opportunity to publish a weekly seamount diary on BBC Earth News website. The "Die Burger Newspaper" of Cape Town also contacted IUCN's communications department following the advisory, and Scuba news advertised the cruise on their website.

A reception day was organized on November 10 for 4 classes of St-Denis, the local media and the local authorities to visit the vessel and meet with the scientists. A special media advisory in French had been sent out to the media in Reunion. The media presence was successful, and we regretted that the Director of Maritime Affairs was not able to join in the end. Two out of the three newspapers of the island turned up, as well as the local television. The articles (in French) are available on the cruise blog and the seamounts project website. The school kids seem to have appreciated their tour on the Nansen, and wrote about their experience in the December edition of the school journal (available on the blog). 56 promotional t-shirts were designed, with a seabird in the front and the 9 logos of the organisations associated with the cruise in the back. They were distributed to all cruise participants to be worn during the reception day.

A cruise launch webstory went up on November 12, the day of departure, on the homepages of IUCN, IUCN Global Marine Programme and the seamounts project.

11.2 Cruise blog (http://seamounts2009.blogspot.com/)

The cruise blog, set up in September, was used as the main communications tool to report on the life and work on the vessel, as well as to introduce the cruise participants. Posts were published on a daily basis since the first day of work on Reunion island (November 8).

Several websites created a link to the blog, including IUCN Global Marine Programme, ASCLME and the EAF-Nansen project.

A statistics tool was introduced on November 26 to analyse the success of the blog (using <u>www.statcounter.com</u>):

		Page	Unique	First Time	Returning
		Loads	Visitors	Visitors	Visitors
Total		2272	1351	959	392
Average		103	61	44	18
		Page	Unique	First Time	Returning
Day	Date	Loads	Visitors	Visitors	Visitors
Thursday	26th November 2009	61	36	36	0
Friday	27th November 2009	108	61	51	10
Saturday	28th November 2009	99	55	40	15
Sunday	29th November 2009	121	58	42	16
Monday	30th November 2009	110	68	51	17
Tuesday	1st December 2009	125	72	54	18
Wednesday	2nd December 2009	172	104	90	14
Thursday	3rd December 2009	120	87	69	18
Friday	4th December 2009	85	55	33	22
Saturday	5th December 2009	74	44	22	22
Sunday	6th December 2009	83	59	30	29
Monday	7th December 2009	99	67	46	21
Tuesday	8th December 2009	123	74	54	20
Wednesday	9th December 2009	86	48	21	27
Thursday	10th December 2009	108	47	29	18
Friday	11th December 2009	191	103	81	22
Saturday	12th December 2009	89	53	37	16
Sunday	13th December 2009	75	52	35	17
Monday	14th December 2009	127	80	59	21
Tuesday	15th December 2009	97	55	36	19
Wednesday	16th December 2009	93	56	35	21
Thursday	17th December 2009	27	17	8	9

Table 11.1 Visitors to the cruise blog

Figure 11.1 Visitors records for the cruise website.

Returning Visitors - Based purely on a cookie, if this person is returning to your website for another visit an hour or more later

First Time Visitors - Based purely on a cookie, if this person has no cookie then this is considered their first time at your website.

Unique Visitor - Based purely on a cookie, this is the total of the returning visitors and first time visitors - all your visitors.

Page Load - The number of times your page has been visited².

Although not 100% accurate, it gives a good idea of the success of the blog. On average, there have been about 60 visitors per day. A notable increase in the number of visitors can be observed on the day following a story on BBC Earth News (December 2 and December 11).

² Notes from Statcounter

	Num	Perc.	Country Name		
Ŧ	257	51.40%	Norway		
Ŧ	59	11.80%	United Kingdom		
Ŧ	57	11.40%	Switzerland		
Ŧ	20	4.00%	France		
Ŧ	17	3.40%	Germany		
Ŧ	15	3.00%	South Africa	\geq	
Ŧ	13	2.60%	Netherlands		
Ŧ	12	2.40%	Sweden		
Ŧ	9	1.80%	New Zealand	1	
Ŧ	9	1.80%	United States		
Ŧ	5	1.00%	Brazil	۲	
Ŧ	4	0.80%	Italy		
Ŧ	4	0.80%	Reunion		
Ŧ	4	0.80%	India	0	
Ŧ	3	0.60%	Spain	2	
Ŧ	2	0.40%	Ireland		
Ŧ	2	0.40%	Canada	+	
Ŧ	2	0.40%	Mozambique		
Ŧ	1	0.20%	Iran, Islamic Republic Of	*	
Ŧ	1	0.20%	Indonesia		
Ŧ	1	0.20%	Morocco		
Ŧ	1	0.20%	Singapore	Co	
Ŧ	1	0.20%	Ukraine		
Ŧ	1	0.20%	Thailand		

Country | State/Region | City | ISP

Figure 11.2 The countries where the blog was most popular include (based on 500 logs only!).

11.3 Google Earth & ProtectPlanetOcean

Through an arrangement with Google Earth and ProtectPlanetOcean (a marine protected areas portal set up by the IUCN World Commission on Protected Areas-Marine in collaboration with Google Earth, and launched at the 2008 IUCN Congress), the geolocated daily posts of the blog were featured on <u>www.protectplanetocean.org</u> and on the expeditions layer of Google Earth, thereby potentially accessible to millions of people.

11.4 BBC Earth News (http://news.bbc.co.uk/earth/hi/earth_news/newsid_8363000/8363108.stm)

We have had a special "seamount diary" featured on BBC Earth News website, updated on a weekly basis and accompanied each time with a picture gallery. This represented an unparalleled opportunity to publicise the cruise and the work onboard. BBC Earth News is said to attract 1.3 million visitors a day. Links to the diary also appeared on BBC Science and Nature website. The updates were made on November 17, November 24, December 1, December 10 and the last one planned on December 21.

The pictures on BBC Earth News led to Oddgeir Alvheim's picture of a hatchetfish to be featured on Fox News as the best science photo of the week, on 18 November.

11.5 Photography

Photographs of the life, the work and the people onboard were taken, as well as many pictures of seabirds and marine species. They will be used for several purposes, including illustrations (articles, reports, Powerpoints, etc.), species identification sheets, a possible future pictorial book and displays.

The photographs of marine species include about 300 pictures, representing over 200 species.

11.6 On the web

A quick, non exhaustive, research on Google shows the fame of the seamounts cruise (mostly gained through BBC):

http://www.propeller.com/story/2009/12/02/revaeling-the-strange-lifeforms-of-the-deep-indianocean-seamounts/

http://www.widgetbox.com/network/politics/post/seamount-diary-december-2009/2538023 http://esciencenews.com/dictionary/seamount

http://www.ubervu.com/conversations/news.bbc.co.uk/earth/hi/earth_news/newsid_8363000/83633 07.stm

http://www.news.scubatravel.co.uk/2009/11/iucn-to-unveil-mysteries-of-deep.html

http://www.academici.com/news/2355054/seamount_diary_december_2009.html

http://businessdailyreview.com/teasers/think/seamount-diary-in-pictures.html

http://www.elertgadget.com/elertlibrary/News/Media/seamount_diary_november_2009_189171.ht

<u>m</u>

http://www.silobreaker.com/seamount-diary-december-2009-5_2262785120257703981

http://www.heralddeparis.com/seamount-diary-november-2009/64361

http://www.developpementdurablelejournal.com/spip.php?page=article_esd&id_article=5671

http://bx.businessweek.com/africa-energy/seamount-diary-december-

2009/13558019725529782489-95d6303fd27ff405b818050401261828/

12.0 Final Comments

12.1 Conclusions

The Southern Indian Ocean seamounts expedition achieved many of its sampling objectives. The data gathered are likely to form a significant contribution to knowledge in the following areas:

- Hydrographic structure of the Sub-Tropical Convergence zone
- Patterns of chlorophyll concentration, nutrient chemistry and phytoplankton diversity from the oligotrophic Sub-Tropical Anticyclonic Gyre system through the Sub-Tropical Front to Sub-Antarctic waters
- Small scale current topography interactions around seamounts with differing summit heights, including evidence of tidally driven concentration and / or mixing of water and phytoplankton and influence on the distribution of zooplankton
- Trapping of multiple deep-scattering layers of zooplankton and predation by resident seamount predators
- Evidence supporting proposed biogeographic zones within the southern Indian Ocean
- Evidence of the significance of both water masses and the presence of elevated topography on seabird distributions
- Connectivity of populations of pelagic organisms across the South West Indian Ocean Ridge

The extremely large number of specimens gathered during this expedition (see Chapters 6,7) means that a large post-cruise effort will be required in order to extract the maximum information from the cruise. These data will be most significant when combined across the disciplines of oceanography, biogeochemistry, botany and zoology represented on the cruise by the scientists. Additional benefits of the cruise included:

- Training of regional scientists
- Training of international Ph.D. students
- Public awareness and education
- Increased networking of regional scientists with the international research community

12.2 Sampling limitations and other comments on cruise organisation

Specific comments relating to the limitations of sampling equipment are noted under specific chapters. We would point out that one particularly area of sampling deficiency for this cruise was in the area of macrozooplankton / micronekton which would have been covered by the METHOT net.

This equipment was not delivered on time for the cruise on the Dr Fridtjof Nansen and we would recommend it is made available for future cruises of this nature.

When operating in remote locations single-points of failure for cruise equipment become critical and it should be noted that a full range of spares was not available for the multiple trawl net when it was damaged during its first two deployments. Thus maintenance of an up-to-date spares list for crusie equipment is vitally important for future operations within the limitations of operations in the region.

Organisation of the cruise would have benefited by a tick list for equipment for the vessel made available to scientists at least 6-12 months ahead of the cruise date. Such a tick list would enable equipment requirements to be identified a long way ahead of the cruise departure to avoid last moment losses of equipment through failure of deliveries which in the region can be slow. It should also be noted that basic consumables such as salinity standards for the salinometer and consumables for the oxygen electrode should be maintained in good supply on the vessel or scientists should be notified that they have to supply their own materials for such equipment well in advance of the cruise. These instruments, which are critical to modern oceanographers, should be kept at a high level of maintenance and service.

Finally we would note that the laboratories on the Dr Fridtjof Nansen is small and so it is essential that scientific crews leave the laboratories in a clean and tidy state prior to leaving the ship. If necessary the officers of the vessel should undertake an inspection of the laboratories prior to departure of scientists so that the laboratories are prepared for follow-on cruises.

12.3 Acknowledgements

Dr Alex Rogers would like to acknowledge the technical scientists, crew and officers of the R/V Dr Fridtjof Nansen for the superb and seemless operation of the vessel throughout the Southern Indian Ocean Seamounts expedition in what were sometimes less than ideal weather conditions. Special thanks are also due to Dr A. Hoines for his excellent and valuable advice on operation of the vessel and other matters during the cruise. Without the excellent, professional and good-humoured service provided by everyone on the vessel we would not have achieved a fraction of what was actually done during the cruise. We point out that the EAF Nansen Project is a huge asset to environmental science and management of the oceans within the region and sincerely hope that the programme continues into the future.

Finally, this project would not have been possible without funding from the Global Environment Facility project Applying an ecosystem-based approach to fisheries management: focus on seamounts in the Southern Indian Ocean, with supporting funding from the UNDP Aghulas Somali Current Large Marine Ecosystem project (ASCLME), the Natural Environment Research Council, U.K., the NORAD programme which funds the EAF-Nansen project and FAO who administer the programme. We also acknowledge the contributions in terms of data made by SIODFA (Graham Patchell and Ross Shotton). AD Rogers and K Kemp also acknowledge the Leverhulme Trust and Zoological Society of London for funding during the present cruise.

13.0 References

- Abrams, R., Lutjeharms, J. (1986) Relationships between seabirds and mesoscale hydrographic features in the Agulhas Current Relatorion region. Proc XIX Int Ornithol Congr. University of Ottawa Press, Ottawa, pages 991–996.
- Banse, K. (1994) Overview of research efforts and results in the Arabian Sea, 1960–1990. In: D. Lal (Editor), *Biogeochemistry of the Arabian Sea*. Proceedings of the Indian Academy of Sciences, Lotus Printers, New Delhi, India, pp. 7–25.
- Barange, M. (1994) Acoustic identification, classification and structure of biological patchiness on the edge of the Agulhas Bank and its relation to frontal features. South African Journal of Marine Science, 14: 333–347.
- Barange, M., Pakhomov, E.A., Perissinotto, R. et al. (1998) Pelagic community structure of the subtropical convergence region south of Africa and in the mid-Atlantic Ocean. Deep-Sea Research I, 45: 1663–1687.
- Bathmann, U., Priddle, J., TreHguer, P., Lucas, M.I., Hall, J., Parslow, J. (2000) Plankton ecology and biogeochemistry in the Southern Ocean: a review of Southern Ocean JGOFS. In: Hanson, R.B., Ducklow, H., Field, J.G. (Eds.), The Changing Ocean Carbon Cycle: A Midterm Synthesis of the Joint Global Ocean Flux Study International Geosphere * Biosphere Programme Series, 5. Cambridge University Press, Cambridge, pp. 300-337.
- Benoit-Bird, K. (2009) 'The effects of scattering-layer composition, animal size, and numerical density on the frequency response of volume backscatter'. *ICES Journal of Marine Science* 66: 582.
- Bensch, A., Gianni, M., Grébroval, D., Sanders, J.S., Hjort, A. (2008) Worldwide review of bottom fisheries in the high seas. FAO Fisheries and Aquaculture Technical Paper No. 522, Food and Agricultural Organisation of the UN, Rome, 145pp.
- Boehlert, G., Genin, A. (1987) A review of the effects of seamounts on biological processes.Seamounts, Islands, and Atolls: American Geophysical Union. Geophysical Monographs, 43: 319–334.
- Boehlert, G., Sasaki, T. (1988) Pelagic biogeography of the armorhead, *Pseudopentaceros wheeleri*, and recruitment to isolated seamounts in the North Paci Ocean. Fishery Bulletin, 86(3): 453–466.
- Boswell, S.M., Smythe-Wright, D. (2002) The tracer signature of Antarctic Bottom Water and its spread in the Southwest Indian Ocean: Part IFCFC-derived translation rate and topographic control around the Southwest Indian Ridge and the Conrad Rise. Deep-Sea Research I, 49: 555-573.

- Clark, A. M. 1972. Some crinoids from the Indian Ocean. Bulletin of the British Museum (Natural History), 24: 73-156.
- Clark, M.R., Vinnichenko, V.I., Gordon, J.D.M., Beck-Bulat, G.Z., Kukharev, N.N., Kakora, A.F.
 (2007) Large-scale distant-water trawl fisheries on seamounts. In: (eds Pitcher T.J., Morato, T., Hart, P.J.B., *et al.*) *Seamounts: Ecology, Fisheries & Conservation*, Fish and Aquatic Resources Series 12, Blackwell Publishing, Oxford, U.K., pp 361-399.
- Collette, B.B., Parin, N.V. (1991) Shallow-water fishes of Walter's Shoals, Madagascar Ridge. Bulletin of Marine Science, 48: 1-22.
- Coogan, L.A., Thompson, G.M., MacLeod, C.J., Dick, H.J.B., Edwards, S.J., Hosford Scheirer A., Barry, T.L. (2004) A combined basalt and peridotite perspective on 14 million years of melt generation at the Atlantis Bank segment of the Southwest Indian Ridge: evidence for temporal changes in mantle dynamics? Chemical Geology, 207: 13-30.
- Dando, P.R., Southward, A.F., Southward, E.C., Dixon, D.R., Crawford, A., Crawford, M. (1992) Shipwrecked tube worms. Nature 356: 667.
- Demopoulos, A.W.J., Smith, C.R., Tyler, P.A. (2003) Ecology of the deep Indian Ocean floor. In: *Ecosystems of the World Volume 28: Ecosystems of the Deep Ocean*, P.A. Tyler, ed., Elsevier, Amsterdam. 569 pp.
- Dick, H.J.B. (1998) Indian Ocean's Atlantis Bank yields deep-Earth insight. Oceanus, 41: 29-32.
 FAO (2009) *State of World Fisheries and Aquaculture 2008*. Food and Agricultural Organisation of the UN (FAO), Rome, Italy, 176pp.
- Dick, J.H.B., Lin, J., Schouten, H. (2003) An ultra-slow spreading class of ocean ridge. Nature, 426: 405-412.
- Falkenhaug, T., Gislason, A., Gaard, E. (2007) Vertical distribution and population structure of copepods along the northern Mid-Atlantic Ridge. *ICES CM 2007/F:07*
- Foote, K.G., Knudsen, H.P., Vestnes, G., MacLennan, D.N., Simmonds, E.J. (1987) Calibration of acoustic instruments for fish density estimation: a practical guide. ICES Cooperative Research Report, 144: 57.
- Genin, A. (2004) Bio-physical coupling in the formation of zooplankton and fish aggregations over abrupt topographies. Journal of Marine Systems, 50: 3–20.
- Genin, A., Greene, C., Haury, L., Wiebe, P., Gal, G., Kaartvedt, S., Meir, E., Fey, C., Dawson, J.
 (1994) Zooplankton patch dynamics: daily gap formation over abrupt topography. *Deep Sea Research Part I: Oceanographic Research Papers* 41: 941-951.
- German, C.R., Baker, E.T., Mével, C. and Tamaki, K. and the FUJI Scientific team (1998) Hydrothermal activity along the South West Indian Ridge. Nature, 395: 490-493.

- Gershanovich, D.Y., Dubinets, G.A. (1991) Geomorphology of Indian Ocean seamounts. International Geology Review, 33: 903-913.
- Glover, A.G., Källström, B., Smith, C.R., Dahlgren, T. (2005) World-wide whale worms? A new species of *Osedax* from the shallow north Atlantic. Proceedings of the Royal Society Series B 272, 2587-2592
- Greenlaw, C.F. (1979) Acoustical estimation of zooplankton populations. *Liminology and Oceanography* 24: 226-242.
- Griffiths, A.M., Siegfried, W.R., Abrams, R.W. (1982) Ecological structure of a pelagic seabird community in the Southern Ocean. Polar Biology 1: 39–46.
- Groeneveld, J.C., Griffiths, C.L., Van Dalsen, A.P. (2006) A new species of spiny lobster, *Palinurus barbarae* (Decapoda, Palinuridae) from Walter's Shoals on the Madagascar Ridge. Crustaceana, 79: 821-833.
- Haney, J. (1986) Seabird segregation at Gulf Stream frontal eddies. Marine Ecology Progress Series, 28: 279–285.
- Haney, J., Haury, L., Mullineaux, L., Fey, C. (1995) Sea-bird aggregation at a deep North Pacific seamount. Marine Biology, 123: 1–9.
- Haney, J. and McGillivary, P. (1985). Aggregations of Cory's Shearwaters (*Calonectris diomedea*) at Gulf Stream fronts. The Wilson Bulletin, 97: 191–200.
- Hashimoto, J., Ohta, S., Gamo, T., Chiba, H., Yamaguchi, T., Tsuchida, S., Okudaira, T., Watabe,
 H., Yanamaka, T., Kitazawa, M. (2001) First hydrothermal vent communities from the
 Indian Ocean discovered. *Zoological Science*, 5: 717-721.
- Holliday, D.V. (1992) Zooplankton acoustics. Oceanography of the Indian Ocean. B.N. Desai (Ed.):733-740.
- Hooker, S. K., H. W. and Gowans, S. (1999). Marine protected area design and the spatial and temporal distribution of cetaceans in a submarine canyon. Conservation Biology, 13: 592– 602.
- Hosia, A., Stemmann, L., Youngbluth, M. (2008) Distribution of net-collected planktonic cnidarians along the northern Mid-Atlantic Ridge and their associations with the main water masses. Deep-Sea Research II 55: 106-118.
- Hyrenbach, K.D., Veit, R.R., Weimerskirch, H., Metzl, N., Hunt, G.L. (2007) Community structure across a large-scale productivity gradient: Marine bird assemblages of the Southern Indian Ocean. Deep-Sea Research I, 54: 1129-1145.
- Hyrenbach, K. D., Forney, K. A., Dayton, P. K. (2000) Marine protected areas and ocean basin management. Aquatic Conservation, 10: 437–458.

- Ingole, B., Koslow, J.A. (2005) Deep-sea ecosystems of the Indian Ocean. Indian Journal of Marine Sciences, 34: 27-34.
- Isaacs, J., Schwartzlose, R. (1965) Migrant sound scatterers: interaction with the sea floor. *Science* 150: 1810-1813.
- Jaquemet, S., Le Corre, M., Weimerskirch, H. (2004) Seabird community structure in a coastal tropical environment: importance of natural factors afish aggregating devices (FADs). Marine Ecology Progress Series, 268: 281–292.
- Karayanni, H., Christaki, U., Van Wambeke, F., Dalby, A.P. (2004) Evaluation of double formalin-Lugol's fixation in assessing number and biomass of ciliates: an example of estimations at mesoscale in NE Atlantic. *Journal of Microbiological Methods* 56: 349-358.
- Kareiva, P., Odell, G. (1987) Swarms of predators exhibit" preytaxis" if individual predators use area-restricted search. American Naturalist, 130: 233.
- Kensley, B. (1975) Five species of *Jaeropsis* from the southern Indian Ocean (Crustacea, Isopoda, Asellota). Annals of the South African Museum 67: 367-380.
- Kensley, B. (1981) On the zoogeography of southern African decapod Crustacea, with a distributional checklist of the species. Smithsonian Contributions to Zoology, 338: 64 pp.
- Kimani, E.N., Okemwa, G.M., Kazungu, J.M. (2009) Fisheries In the Southwest Indian Ocean: Trends and Governance Challenges. In: Laipson, E., Pandya, A. (eds.) *The Indian Ocean; Resource and Governance Challenges*. The Henry L. Stimson Centre, Washington, D.C., USA, p3-90.
- Komai, T., Giere, O. and Segonzac, M. -- New record of alvinocaridid shrimps (Crustacea: Decapoda: Caridae) from hydrothermal vant fields on the southern Mid-Atlantic Ridge, including a new species of the genus *Opaepele*, 12: 237-253.
- Komai T & Segonzac M (2008) Taxonomic Review of the Hydrothermal Vent Shrimp Genera
 Rimicaris Williams & Rona and *Chorocaris* Martin & Hessler (Crustacea: Decapoda: Caridea: Alvinocarididae). Journal of Shellfish Research, 27: 21-41.
- Korneliussen, R.J., Diner, N., Ona, E., Berger, L. and Fernandes, P.G. (2008). Proposals for the collection of multifrequency acoustic data. *ICES Journal of Marine Science*, 65: 982–994.
- Koslow, J., Boehlert, G., Gordon, J., Haedrich, R., Lorance, P., and Parin, N. (2000). Continental slope and deep-sea fisheries: implications for a fragile ecosystem. ICES Journal of Marine Science, 57: 548.
- Kostianoy, A.G., Ginzburg, A.I., Frankignoulle, M., Delille, B. (2004) Fronts in the southern Indian Ocean as inferred from satellite temperature data. Journal of Marine Systems, 45: 55–73.
- Llido, J., Garçon, V., Lutjeharms, J.R.E. et al. (2005) Event-scale blooms drive enhanced primary

productivity at the subtropical convergence. Geophysical Research Letters, 32: L15611.

Longhurst, A.R. (1998) Ecological Geography of the Sea. Academic Press, San Diego.

- López-Abellán, L.J., Santamaría, M.T.G., González, J.F. (2008) Approach to ageing and growth back-calculation based on the otolith of the southern boarfish *Pseudopentaceros richardsoni* (Smith, 1844) from the south-west Indian Ocean seamounts. Marine and Freshwater Research 59: 269-278.
- Louzao, M., Hyrenbach, K., Arcos, J., Abelló, P., Sola, L., and Oro, D. (2006). Oceanographic habitat of an endangered Mediterranean procellariiform: implications for marine protected areas. Ecological Applications, 16: 1683–1695.
- Lutjeharms, J.R.E. (1985) Location of frontal systems between Africa and Antarctica; some preliminary results. Deep-Sea Research, 32: 1499-1509.
- Lutjeharms, J.R.E., Valentine, H.R. (1984) Southern Ocean thermal fronts south of Africa. Deep-Sea Research, 31: 1461-1475.
- Lutjeharms, J.R.E., Valentine, H.R., van Ballegooyen, R.C. (1993) On the Subtropical Convergence in the South Atlantic Ocean. South African Journal of Marine Science, 89: 552-559.
- Lutjeharms, J.R.E., van Ballegooyen, R.C. (1988) The retroflection of the Agulhas Current. Journal of Physical Oceanography, 18: 1570-1583.
- Lutjeharms, J.R.E., Walters, N.M., Allanson, B.R. (1985) Oceanic frontal systems and biological enhancement. In: Siegfried, W.R., Condy, P.R., Laws, R.M. (eds.), Antarctic Nutrient Cycles and Food Webs. Springer-Verlag, Berlin, pp. 11–21.
- Macaulay, M., English, T., Mathisen, O. (1984) Acoustic characterization of swarms of Antarctic krill (*Euphausia superba*) from Elephant Island and Bransfield Strait. Journal of Crustacean Biology, 4: 16–44.
- McDonagh, E.L., Bryden, H.L., King, B.A., Sanders, R.J. (2008) The circulation of the Indian Ocean at 32°S. Progress in Oceanography 79: 20-36.
- Monteiro, L., Ramos, J., Furness, R., and Del Nevo, A. (1996). Movements, morphology, breeding, molt, diet and feeding of seabirds in the Azores. Colonial waterbirds, 19: 82–97.
- Morato, T., Varkey, D., Damaso, C., Machete, M., Santos, M., Prieto, R., Santos, R., Pitcher, T. (2008) Evidence of a seamount effect on aggregating visitors. Marine Ecology Progress Series, 357: 23–32.
- Morato, T., Watson, R., Pitcher, T., Pauly, D. (2006) Fishing down the deep. Fish and Fisheries, 7: 24–34.
- Münch, U., Lalou, C., Halbach, P., Fujimoto, H. (2001) Relict hydrothermal events along the super-

slow Southwest Indian spreading ridge near 63°56'E—mineralogy, chemistry and chronology of sulfide samples. Chemical Geology 177: 341-349.

- Nel, D., Lutjeharms, J., Pakhomov, E., Ansorge, I., Ryan, P., Klages, N. (2001) Exploitation of mesoscale oceanographic features by grey-headed albatross Thalassarche chrysostoma in the southern Indian Ocean. Marine Ecology Progress Series, 217: 15–26.
- Pauly, T., Nicol, S., Higginbottom, I., Hosie, G., Kitchener, J. (2000) Distribution and abundance of Antarctic krill (*Euphausia superba*) off East Antarctica (80–150 E) during the Austral summer of 1995/1996. Deep-Sea Research Part II, 47: 2465–2488.
- Pitcher, T., Morato, T., Hart, P., Clark, M., Haggan, N., and Santos, R. (2007). *Seamounts: Ecology, Fisheries & Conservation.*
- Read, J.F., Lucas, M.I., Holley, S.E., Pollard, R.T. (2000) Phytoplankton, nutrients and hydrography in the frontal zone between the Southwest Indian Subtropical gyre and the Southern Ocean. Deep-Sea Research I, 47: 2341-2368.
- Richoux, N.B., Froneman, P.W. (2009) Plankton trophodynamics at the sub-tropical convergence, Southern Ocean. Journal of Plankton Research, 31: 1059-1073.
- Romanov, E.V. (ed.) (2003) Summary and Review of Soviet and Ukrainian scientific and commercial fishing operations on the deepwater ridges of the Southern Indian Ocean. FAO Fisheries Circular No. 991, 84pp.
- Rowden, A.A., Clark, M.R., Wright, I.C. (2005) Physical characterisation and a biologically focused classification of 'seamounts' in the New Zealand region. New Zealand Journal of Marine and Freshwater Research, 39: 1039-1059.
- Sauter, D., Parson, L., Mendel, V., Rommevaux-Jestin, C., Gomez, O., Briais, A., Mével, C., Tamaki, K., The FUJI Scientific Team (2002) TOBI sidescan sonar imagery of the very slow-spreading Southwest Indian Ridge: evidence for along-axis magma distribution. Earth and Planetary Science Letters, 199: 81-95.
- Schneider, D. (1997) Habitat selection by marine birds in relation to water depth. Ibis (London. 1859), 139: 175–178.
- Shotton, R. (2006) Managment of demersal fisheries resources of the Southern Indian Ocean. *FAO Fisheries Circular No. 1020*, FAO, Rome, Italy, 90pp.
- SIMFAMI, (2005). Species Identification Methods From Acoustic Multi-frequency Information. Report number Q5RS-2001-02054. pp 486.
- Smith CR & Baco A 2003 Ecology of whale falls at the deep-sea floor. Oceanography and Marine Biology: an Annual Review 41: 311-354
- Stahl, J., Bartle, J. (1991). Distribution, abundance and aspects of the pelagic ecology of Barau's

Petrel (Pterodroma baraui) in the south-west Indian Ocean. Notornis, 38: 211-225.

- Sultan, E., Mercier, H., Pollard, R.T. (2007) An inverse model of the large-scale circulation in the Southern Indian Ocean. Progress in Oceanography, 74: 71-94.
- SWIOFC (2005) South West Indian Ocean Fisheries Commission, First Session, Mombasa, Kenya, 18-20 April, 2005. Resolution and Statues of the South West Indian Ocean Fisheries Commission. SAFR/DM/SWIOFC/05/INF 4 E, FAO Rome, Italy, 5pp.
- SWIOFC (2009) South West Indian Ocean Fisheries Commission, Report of the Third Session of the Scientific Committee, Maputo, Mozambique, 16–19 September 2008, 85pp.
- Tao, C., J. Lin, S. Guo, Y.J. Chen, G. W. X. Han, C.R. German, D.R. Yoerger, J. Zhu, N. Zhou, X. Su, E.T. Baker, and DY115-19 Science Party (2007) First discovery and investigation of a high-temperature hydrothermal vent field on the ultra-slow spreading Southwest Indian Ridge. *EOS Trans AGU, Fall Meet Suppl*, Abstract T52B-07.
- Tasker, M., Jones, P., Dixon, T., Blake, B. (1984) Counting seabirds at sea from ships: a review of methods employed and a suggestion for a standardized approach. The Auk, 101: 567–577.
- Valle-Levinson, A., Trasvica Castro, A., Gutiérrez de Velasco, G., González Armas, R. (2004)
 Diurnal vertical motions over a seamount of the southern Gulf of California', *Journal of Marine Systems* 50: 61--77.
- Van Aken, H., Ridderinkhof, H., de Ruijter, W.P.M. (2004) North Atlantic deep water in the southwestern Indian Ocean. Deep-Sea Research I, 51: 755-776.
- Van Dover, C.L., Humphris, S.E., Fornari, D., Cavanaugh, C.M., Collier, R., Goffredi, S.K.,
 Hashimoto, J., Lilley, M.D., Reysenbach, A.L., Shank, T.M., Von Damm, K.L., Banta, A.,
 Gallant, R.M., Götz, D., Green, D., Hall, J., Harmer, T.L., Hurtado, L.A., Johnson, P.,
 McKiness, Z.P., Meredith, C., Olson, E., Pan, I.L., Turnipseed, M., Won, Y., Young III,
 C.R., Vrijenhoek, R.C. (2001) Biogeography and ecological setting of Indian Ocean
 hydrothermal vents. *Science*, 294: 818-823.
- Vereshchaka, A.L. (1995) Macroplankton in the near-bottom layer of continental slopes and seamounts. Deep-Sea Research I, 42: 1639-1668.
- Vierros, M., Cresswell, I., Briones, E.E., Rice, J., Ardron, J. (2009) Global Open Oceans and Deep Seabed (GOODS) – Biogeographic Classification. Paris, UNESCO-IOC. IOC Technical Series, 84: 87pp.
- Watkins, J., Brierley, A. (1996) A post-processing technique to remove background noise from echo integration data. *ICES Journal of Marine Science* 53: 339.
- Weeks, S.J., Shillington, F.A. (1996) Phytoplankton pigment distribution and frontal structure in the Subtropical Convergence region south of Africa. Deep-Sea Research I, 43: 739-768.

- Weimerskirch, H., Le Corre, M., Jaquemet, S., Potier, M., Marsac, F. (2004). Foraging strategy of a top predator in tropical waters: great frigatebirds in the Mozambique Channel. Marine Ecology Progress Series, 275: 297–308.
- Wenneck, T.L., Falkenhaug, T., Bergstad, O.A. (2008) Strategies, methods, and technologies adopted on the R.V. G.O. Sars MAR-ECO expedition to the Mid-Atlantic Ridge in 2004. Deep-Sea Research II 55: 6-28.
- Watabe, H., Hashimoto, J. (2002) A New Species of the Genus *Rimicaris* (Alvinocarididae: Caridea: Decapoda) from the Active Hydrothermal Vent Field, "Kairei Field," on the Central Indian Ridge, the Indian Ocean. *Zoological Science*, 19: 1167-1174.
- White, M., Bashmachnikov, I., Arístegui, J., Martins, A. (2007) Physical processes and seamount productivity. In: (eds Pitcher T.J., Morato, T., Hart, P.J.B., et al.) Seamounts: Ecology, Fisheries & Conservation, Fish and Aquatic Resources Series 12, Blackwell Publishing, Oxford, U.K., pp 65-84.
- Whitworth III, T., Nowlin Jr, W.D. (1987) Water masses and currents of the Southern Ocean at the Greenwich Meridian. Journal of Geophysical Research, 92: 6462-6476.
- Wilson, C., Boehlert, G. (2004) Interaction of ocean currents and resident micronekton at a seamount in the central North Pacific. *Journal of Marine Systems* 50: 39-60.
- Yen, P., Sydeman, W., Hyrenbach, D.K. (2004) Marine bird and cetacean associations with bathymetric habitats and shallow-water topographies: implications for trophic transfer and conservation. Journal of Marine Systems, 50: 79–100.
- Yen, P., Sydeman, W., Morgan, K., Whitney, F. (2005) Top predator distribution and abundance across the eastern Gulf of Alaska: Temporal variability and ocean habitat associations. Deep-Sea Research Part II, 52: 799–822.
- Zeitzschel B, Gerlach S (1973) Standing Stock and Distribution of Zooplankton. In: *The Biology of the Indian Ocean*. Springer-Verlag Berlin Heidelberg, New York, pp 243-414.

Appendix A: List of CTD stations and depths sampled for phytoplankton, nutrients and POM

Final cruise report: Southern Indian Ocean Seamounts 2009

No.	Station	n Date Latitude	Longitude	Time	Event	Bottle	Depths	Nutrients	s Chl-a	Phyto ID	POM	Phyto-Net	Notes	No. Station Date Latitude Longitude Time Event Bottle Depths Nutrients ChI-a Phyto ID POM Phyto-Net Notes
	1 121	14 2009/11/13 24 48.12 S	055 49.41 E	14:15	Off-mount	1	1500	у						98 1270 2009/11/19 32 41.40 S 057 18.13 E 15:03 Atlantis Transect 1 878 y
	2 121	14 2009/11/13 24 48.12 S	055 49.41 E	14:15	Off-mount	2	1502							99 1270 2009/11/19 32 41.40 S 057 18.13 E 15:03 Atlantis Transect 2 750 y
	3 121	14 2009/11/13 24 48.12 S	055 49.41 E	14:15	Off-mount	3	1249	У					DNG	100 1270 2009/11/19132 41.40 S 057 18.13 E 15:03 Atlantis Transect 3 499 y
	• 121 5 121	14 2009/11/13 24 46.12 3	055 49.41 E	14.15	Off-mount	4	999						DINC	101 12/0 2009/11/19 32 41.40 S 105/18.13 E 15:03 Attaints (ransect 4 250 y)
i	121	14 2009/11/13 24 48 12 S	055 49 41 E	14:15	Off-mount	6	497	y v						102 1270 2009/17/1932 41:40 5 057 16:15 E 15:05 Addinits Transact 6 96
	121	14 2009/11/13 24 48.12 S	055 49.41 E	14:15	Off-mount	7	211	ý	v					104 1270 2008/17/19/32 41.40 5 1057 16 15 E 15:05 Atlantis Transect 7 86 v v v 51
8	3 121	14 2009/11/13 24 48.12 S	055 49.41 E	14:15	Off-mount	8	86		ý	y	5 L			105 1270 2009/11/19/32/41.40 S 057 18.13 E 15:03 Attantis Transect 8 50 y y
\$	9 121	14 2009/11/13 24 48.12 S	055 49.41 E	14:15	Off-mount	9	86	у			5 L			106 1270 2009/11/19 32 41.40 S 057 18.13 E 15:03 Atlantis Transect 9 25 y y
10	121	14 2009/11/13 24 48.12 S	055 49.41 E	14:15	Off-mount	10	44	У	У					107 1270 2009/11/19 32 41.40 S 057 18.13 E 15:03 Atlantis Transect 10 2.2 y y J 5L 100 m Isotopes 1 x 5L Surface Bucket
11	121	14 2009/11/13 24 48.12 S	055 49.41 E	14:15	Off-mount	11	25	У	У					108 1271 2009/11/19 32 42.01 S 057 17.26 E 16:19 Atlantis Transect 1 712 y
12	2 121	14 2009/11/13 24 48.12 S	055 49.41 E	14:15	Off-mount	12	1.7	у	У	У	2 X 5 L	100 m	Isotopes 2 x 5 L Surface Bucket	109 1271 2009/11/19 32 42.01 S 057 17.26 E 16:19 Atlantis Transect 2 500 y
15	5 121	15 2009/11/14 26 56.49 S	056 14.32 E	10:08	Off-mount	1	2003	У					Duralizata	110 1271 2009/11/19 32 42.01 S 057 17.26 E 16:19 Atlantis Transect 3 248 y
14	121	15 2009/11/14 26 56.49 5 15 2009/11/14 26 56 49 5	056 14.32 E	10:08	Off-mount	2	1499	v					Duplicate	111 1271 2009/11/19 32 42.01 S 057 17.26 E 16:19 Atlantis Transect 4 151 y y
16	121	15 2009/11/14 26 56 49 S	056 14 32 E	10:08	Off-mount	4	997	v						112 1271 2009/11/19 22 42.01 S 1057 17.26 E 16:19 Atlantis Transect 5 86 y y y y
17	121	15 2009/11/14 26 56.49 S	056 14.32 E	10:08	Off-mount	5	498	v						113 12/1 2009/11/19 32 42.01 S US/ 17.26 E 16:19 Attaints (ransect 6 85 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
18	3 121	15 2009/11/14 26 56.49 S	056 14.32 E	10:08	Off-mount	6	299	ý						114 12/1 2009/11/19 32 42.01 S US/ 17.26 E 16:19 Attaints (ransect / 52 y y
19	121	15 2009/11/14 26 56.49 S	056 14.32 E	10:08	Off-mount	7	124	ý	У					115 127 2009/11/19)25 42.01 S 1057 17.20 E 16.19 Audittis 1141590. 0 24 y y 116 1271 2009/11/19)24 0.01 S 1657 17.20 E 16.10 Audit is transport 0 2.2 y y y El lettrops 1 y El Suffree Bucket
20	121	15 2009/11/14 26 56.49 S	056 14.32 E	10:08	Off-mount	8	98						Duplicate	107 127 2009/17/19 24 25/15 05 77.20 E 10.19 Admits Transect 1 715 v
21	121	15 2009/11/14 26 56.49 S	056 14.32 E	10:08	Off-mount	9	98	У	У	У	5 L			118 1722 2009/11/19/32 43.28 S 057 158 9 E 17:19 Additantis Transact 2 501 y
22	2 121	15 2009/11/14 26 56.49 S	056 14.32 E	10:08	Off-mount	10	50	У	У					119 1272 2009/11/19/32 43.28 S 057 158 PE 17:19 Attantis Transect 3 250 y
23	3 121	15 2009/11/14 26 56.49 S	056 14.32 E	10:08	Off-mount	11	23	У	У					120 1272 2009/11/19 32 43.28 S 057 15.89 E 17:19 Atlantis Transect 4 150 v v
24	1 121	15 2009/11/14 26 56.49 S	056 14.32 E	10:08	Off-mount	12	3	у	у	У	2 x 5 L	110 m	D . F	121 1272 2009/11/19 32 43.28 S 057 15.89 E 17:19 Atlantis Transect 5 99 Duplicate
25	121	16 2009/11/16 29 00.06 S	056 34.57 E	02:18	Off-mount	1	2003						Duplicate	122 1272 2009/11/19 32 43.28 S 057 15.89 E 17:19 Atlantis Transect 6 100 y y 5 L
20	121	16 2003/11/16 29 00.00 3	056 34.57 E	02.10	Off-mount	3	1408	y V						123 1272 2009/11/19 32 43.28 S 057 15.89 E 17:19 Atlantis Transect 7 50 y y
28	121	16 2009/11/16 29 00 06 S	056 34 57 E	02.18	Off-mount	4	999	v						124 1272 2009/11/19 32 43.28 S 057 15.89 E 17:19 Atlantis Transect 8 22 y y
29	121	6 2009/11/16 29 00.06 S	056 34.57 E	02:18	Off-mount	5	749	v						125 1272 2009/11/1932 43.28 S 057 15.89 E 17:19 Atlantis Transect 9 1.2 y y y 5L 110 m Isotopes 1 x 5L Surface Bucket
30	121	6 2009/11/16 29 00.06 S	056 34.57 E	02:18	Off-mount	6	400	ý						125 1273 2009/11/19 22 43.88 S 1057 15.22 E 18:18 Atlantis Fransect 1 See notes Niskin Bottle Lost
31	121	16 2009/11/16 29 00.06 S	056 34.57 E	02:18	Off-mount	7	143	у	У					12/1 12/3 2009/11/19/32 43.88 S U5/15.22 E 18:18 Attaints (ransect 2 999 y 1
32	2 121	16 2009/11/16 29 00.06 S	056 34.57 E	02:18	Off-mount	8	104	У	У	У	5 L			120 1273 2009/11/19/20 43.06 S 1057 15.22 E 16.16 August 11/19/04 13/19/04 S 750 y y
33	121	16 2009/11/16 29 00.06 S	056 34.57 E	02:18	Ott-mount	9	104	1	1	1	1		Duplicate	130 1273 200911/19132 43.88 S 1057 15 22 F 18:18 Attaints Transect 5 247 v
34	121	15 2009/11/16 29 00.06 S	US6 34.57 E	02:18	Off-mount	10	49	У	У	1	1			131 1273 2009/11/19132 43.88 S 1057 15.22 E 18:18 Atlantis Transect 6 See notes Niskin Britle Lost
35	121	10 2009/11/16 29 00.06 S	USD 34.57 E	02:18	Off mount	11	25	У	У		2	110 -		132 1273 2009/11/19 32 43.88 S 057 15.22 E 18:18 Atlantis Transect 7 See notes Niskin Bottle Lost
36	121	10 2009/11/16 29 00.06 S	057 17 8/ E	02:18	Atlantis	12	700	у У	У	У	ZX5L	110 m		133 1273 2009/11/19 32 43.88 S 057 15.22 E 18:18 Attantis Transect 8 97 y y 2.5 L
24	121	17 2009/11/17 32 42.87 9	057 17 84 F	08:24	Atlantis	2	649	y v	1	1	1			134 1273 2009/11/19 32 43.88 S 057 15.22 E 18:18 Atlantis Transect 9 51 y y 2.5 L
39	121	17 2009/11/17 32 42 87 S	057 17 84 E	08:24	Atlantis	3	499	v						135 1273 2009/11/19 32 43.88 S 057 15.22 E 18:18 Atlantis Transect 10 See notes Niskin Bottle Lost
40	121	17 2009/11/17 32 42.87 S	057 17.84 E	08:24	Atlantis	4	199	v	v					136 1273 2009/11/19 32 43.88 S 057 15.22 E 18:18 Atlantis Transect 11 urface buck y y 5 L 110 m Surface Bucket, Isotopes 1 x 5 L Surface Bucket
4	121	17 2009/11/17 32 42.87 S	057 17.84 E	08:24	Atlantis	5	89		1		5 L		Duplicate	137 1274 2009/11/19 32 44.72 S 057 14.11 E 19:35 Atlantis Transect 1 2051 y
43	2 121	17 2009/11/17 32 42.87 S	057 17.84 E	08:24	Atlantis	6	83				5 L		Duplicate	138 1274 2009/11/19 32 44.72 S 057 14.11 E 19:35 Atlantis Transect 2 1498 y
43	3 121	17 2009/11/17 32 42.87 S	057 17.84 E	08:24	Atlantis	7	79	у	У	У				139 1274 2009/11/19 32 44.72 S 057 14.11 E 19:35 Atlantis Transect 3 999 y
44	121	17 2009/11/17 32 42.87 S	057 17.84 E	08:24	Atlantis	8	49	У	У					140 1274 2009/11/19132 44.72 S 057 14.11 E 19:35 Atlantis Transect 4 498 y
4	5 121	17 2009/11/17 32 42.87 S	057 17.84 E	08:24	Atlantis	9	24	У	У					141 1274 2009/11/1912 44.72 S 1057 14.11 E 19:33 Atlantis Transect 5 148 y y
46	5 121	17 2009/11/17 32 42.87 S	057 17.84 E	08:24	Atlantis	10	2	у	У	У	2 X 5 L	150 m	Isotopes 2 x 5 L Surface Bucket	142 12/4 2009/11/19 32 44./2 S US/ 14.11 E 19:33 Atlantis (ransect 6 100 y 5L
4	122	25 2009/11/17 32 42.68 5	057 16.29 E	18:58	Atlantis CTD Yo-Yo	1	F01	У						143 1274 2009/11/19/25 44.12 S 1057 14.11 E 19.35 Automitis intribution / 999
40	122	25 2009/11/17 32 42.00 3	057 16 29 E	18:58	Atlantis CTD Yo-Yo	3	250	y V						145 1274 2000/11/19/12/44/2/S 05/14/11/E 19/3 Atlantia Instance 0 49 y y y y
50	122	25 2009/11/17 32 42 68 S	057 16 29 E	18:58	Atlantis CTD Yo-Yo	4	149	v	v					146 1274 2009/11/19/32/44 72 S 057 141 E 19/35 Atlantis Transect 10 urface buck y y y
5	122	25 2009/11/17 32 42 68 S	057 16 29 E	18:58	Atlantis CTD Yo-Yo	5	103	v	v	v	51			147 1275 2009/11/21385 DS 24 8 E 2027 Samer 1 542 v
52	122	25 2009/11/17 32 42.68 S	057 16.29 E	18:58	Atlantis CTD Yo-Yo	6	105	,		, í	5 L		Duplicate	148 1275 2009/11/21 36 50.87 S 052 04.88 E 20:27 Sapmer 2 485 v
53	3 122	25 2009/11/17 32 42.68 S	057 16.29 E	18:58	Atlantis CTD Yo-Yo	7	49	у	У					149 1275 2009/11/21 36 50.87 S 052 04.88 E 20:27 Sapmer 3 248 y
54	122	25 2009/11/17 32 42.68 S	057 16.29 E	18:58	Atlantis CTD Yo-Yo	8	25	ý	ý					150 1275 2009/11/21 36 50.87 S 052 04.88 E 20:27 Sapmer 4 99 y y
55	5 122	25 2009/11/17 32 42.68 S	057 16.29 E	18:58	Atlantis CTD Yo-Yo	9	0.4	у	у	у	2 x 5 L	110 m	Isotopes 2 x 5 L Surface Bucket	151 1275 2009/11/21 36 50.87 S 052 04.88 E 20:27 Sapmer 5 49 y y
56	5 123	39 2009/11/18 32 42.71 S	057 16.26 E	01:26	Atlantis CTD Yo-Yo	1	730	У						152 1275 2009/11/21 36 50.87 S 052 04.88 E 20:27 Sapmer 6 9 Duplicate
57	123	39 2009/11/18 32 42.71 S	057 16.26 E	01:26	Atlantis CTD Yo-Yo	2	697	У						153 1275 2009/11/21 36 50.87 S 052 04.88 E 20:27 Sapmer 7 9 DNC
58	3 123	39 2009/11/18 32 42.71 S	057 16.26 E	01:26	Atlantis CTD Yo-Yo	3	548	У						154 1275 2009/11/21 36 50.87 S 052 04.88 E 20.27 Sapmer 8 1.9 y y y 100 m Phyto ID 2 x 1 L
55	123	39 2009/11/18 32 42.71 S	057 16.26 E	01:26	Atlantis CTD Yo-Yo Atlantis CTD Yo Yo	4	351	У						155 1275 2009/11/21 36 50.87 S 1052 04.88 E 2022 Sapmer 9 1.9 2 x 5 L Duplicate, Isotopes 1 x 5 L Surface Bucket,
6	123	2008/11/18 32 42 71 5	057 16 26 E	01.20	Atlantis CTD Yo-Yo	6	80	У	У				Duplicate	1350 1276 2009/11/22 46 50.59 S 1052 08.48 E 15:02 Sapiner CTD Yo-Yo 1 S10 Y
62	123	9 2009/11/18 32 42.71 S	057 16.26 E	01:26	Atlantis CTD Yo-Yo	7	79	v	v	v	5 L			157 1276 2009/11/22 36 50 5 5 5 5 5 5 2 50 48 E 1 5:02 Sapara CTD Yo, Yo 3 300 y
63	3 123	89 2009/11/18 32 42.71 S	057 16.26 E	01:26	Atlantis CTD Yo-Yo	8	56	ý	ý	, í	5 L			150 1276 2009/11/22 36 50 5 5 5 5 5 5 2 68 4 E 1 5:02 Sapara CTD Yo, Yo 4 190 y
64	123	39 2009/11/18 32 42.71 S	057 16.26 E	01:26	Atlantis CTD Yo-Yo	9	20	ý	y	1	1			160 1276 2009/11/22 36 50.59 S 052 08.48 E 15:02 Saprer CTD Yo-Yo 5 100 y
65	5 123	39 2009/11/18 32 42.71 S	057 16.26 E	01:26	Atlantis CTD Yo-Yo	10	4	у	У	у	2 x 5 L	85 m	Isotopes 2 x 5 L Surface Bucket	161 1276 2009/11/22 36 50 59 S 052 08.48 E 15:02 Sapmer CTD Yo-Yo 6 70 y
66	5 125	51 2009/11/18 32 42.68 S	057 16.30 E	07:39	Atlantis CTD Yo-Yo	1	738	У	1	I –	1			162 1276 2009/11/22 36 50.59 S 052 08.48 E 15:02 Sapmer CTD Yo-Yo 7 36 y y y
67	125	2009/11/18 32 42.68 S	U57 16.30 E	07:39	Atlantis CTD Yo-Yo	2	499	У	1		1			163 1276 2009/11/22 36 50.59 S 052 08.48 E 15:02 Sapmer CTD Yo-Yo 8 36 5 5L Duplicate
68	125	2009/11/18 32 42.68 S	057 16.30 E	07:39	Auantis CTD Yo-Yo	3	298	У	l		1			164 1276 2009/11/22 36 50.59 S 052 08.48 E 15:02 Sapmer CTD Yo-Yo 9 25 y y
5	125	1 2009/11/18 32 42.68 5	057 16 30 E	07.39	Atlantis CTD Yo Yo	5	08	У	У	1	1			165 1276 2009/11/2236 50.59 S 052 08.48 E 15:02 Sapmer CTD Yo-Yo 10 2 y y y 5L 100 m Isotopes 1 x 5 L Surface Bucket,
7	125	51 2009/11/18 32 42 68 5	057 16.30 E	07:39	Atlantis CTD Yo-Yo	6	72	y V	v	v	1			166 1287/200911722/35 50.60 S 1052 208.51 E 19:45[Sapmer CTD Yo-Yo 1 508 y
73	125	51 2009/11/18 32 42.68 S	057 16.30 E	07:39	Atlantis CTD Yo-Yo	7	76	· ′	1 '	Ľ	2 x 5 L		Duplicate	107 1287/2009/11/22/3 90:00 S US2 08:51 E 19:45 (Sapmer CID Yo-Yo 2 400 y 469 4701 2009/14/20 26 50 60 50 26 50 26 10 45 (Sapmer CID Yo-Yo 2 400 y
73	3 125	51 2009/11/18 32 42.68 S	057 16.30 E	07:39	Atlantis CTD Yo-Yo	8	49	v	v		1			100 1201/20091112230530505 U52 U531E 19:493580000 CTD 10-10 3 301 9 1 100000000000000000000000000
74	125	51 2009/11/18 32 42.68 S	057 16.30 E	07:39	Atlantis CTD Yo-Yo	9	25	ý	ý	1	1			1201 2207 20091 1722 19 00:00 5 1052 00:01 E 13:49 0 abrille 11:01:10 14 200 y y y
75	5 125	51 2009/11/18 32 42.68 S	057 16.30 E	07:39	Atlantis CTD Yo-Yo	10	0.4	у	у	у	2 x 5 L	80 m	Isotopes 2 x 5 L Surface Bucket	121 1227 20091122 36 50 60 S 1052 8 51 91 94 55 Some CTD Ye Yo 6 49 y
76	5 126	58 2009/11/18 32 42.67 S	057 16.24 E	14:28	Atlantis CTD Yo-Yo	1	739	У	1	I –	1			172 1287 2009/11/22136 50.60 S 1052 08.51 E 19:45 Saprer CTD Yo-Yo 7 25 y y y 2.5 L
7	126	58 2009/11/18 32 42.67 S	057 16.24 E	14:28	Atlantis CTD Yo-Yo	2	502	У	I	1	1			173 1287 2009/11/22 36 50.60 S 052 08.51 E 19:45 Saprer CTD Yo-Yo 8 25 2.5 L Duplicate
78	126	2009/11/18 32 42.67 S	057 10.24 E	14:28	Atlantic CTD Yo-Yo	3	249	У	У	1	1		Publicato	174 1287 2009/11/22 36 50.60 S 052 08.51 E 19:45 Sapmer CTD Yo-Yo 9 1.2 y y 5L 100 m Isotopes 1 x 5 L Surface Bucket.
75	126	2009/11/18 32 42.67 S	057 16 24 E	14:28	Atlantic CTD Vo V-	4	74	У	1		5 L		Dupilicale	175 1305 2009/11/23 36 50.63 S 052 08.53 E 02:42 Sapmer CTD Yo-Yo 1 509 y
8	126	30 2009/11/10 32 42.6/ S	057 16 24 5	14.28	Atlantis CTD Yo Yo	6	74	v	- v	v	1			176 1305 2009/11/23 36 50.63 S 052 08.53 E 02:42 Sapmer CTD Yo-Yo 2 399 y
8	126	58 2009/11/18 32 42 67 S	057 16.24 E	14:28	Atlantis CTD Yo-Yo	7	75	у	,	, v	5 L		Duplicate	1777 1305 2009/11/23 36 50.63 S 052 08.53 E 02:42 Sapmer CTD Yo-Yo 3 299 y
8	126	58 2009/11/18 32 42.67 S	057 16.24 F	14:28	Atlantis CTD Yo-Yo	8	51	v	v	1	1			178 1305 2009/11/2336 50.63 S 052 08.53 E 02:42 Sapmer CTD Yo-Yo 4 198 y y
8	126	58 2009/11/18 32 42.67 S	057 16.24 E	14:28	Atlantis CTD Yo-Yo	9	26	ý	ý		1			179 1305/2009/11/23/36 50.63 S [052 08:53 E [02:42]Sapmer CTD Yo-Yo 5 99 y
8	5 126	38 2009/11/18 32 42.67 S	057 16.24 E	14:28	Atlantis CTD Yo-Yo	10	3	ý	y y	У	2 x 5 L	110 m	Isotopes 2 x 5 L Surface Bucket	13/05 20/09/11/23/36 50.63 S 1052 208.53 E 102.42/Sapmer CTD Yo-Yo 6 4 45 Duplicate
86	5 126	59 2009/11/19 32 40.06 S	057 19.66 E	13:07	Atlantis Transect	1	1638	У						181 1305 2009/11/23/35 90:05 5 U52 08:33 E 102:42[Sapmer CID Yo-Yo 7 46 y 5 L 5 L 5 L 5 L 5 L 5 L 5 L 5 L 5 L 5
87	126	59 2009/11/19 32 40.06 S	057 19.66 E	13:07	Atlantis Transect	2	1500	У	1	1	1			102 1030 2009117251050005 5 1052 08:53 E 102/42580mmer CLD 10-10 8 23
88	3 126	59 2009/11/19 32 40.06 S	057 19.66 E	13:07	Atlantis Transect	3	1250	У	1	1	1			1001 1009 1009111/23126 00 05 3 U52 40:33 E 102:42/380mmer CTU 10:10 9 3 y y y 5 L 100 m Isotopes 1 x 5 L Surface Bucket,
89	126	59 2009/11/19 32 40.06 S	057 19.66 E	13:07	Atlantis Transect	4	999	У	1	1	1			197 1322 200911723195 00:00 5 052 00:22 E 10:39030101101 010 101 1 511 511 9 1985 1322 200911723195 00:00 5 052 08:50 18:390 samp CTD YV V
90	126	2009/11/19 32 40.06 S	US7 19.66 E	13:07	Atlantis Transect	5	750	У	1	1	1			186 1322 20091/1/23365 06 05 052 2 10350 30mm CTD 1/0 2 102 y
9	126	2009/11/19/32 40.06 S	057 19.66 E	13:07	Auantis Transect	7	400	У		1	1			187 1322 2009/11/23/36 50.60 S 052 08.52 E 08:36 Sammer CTD Yo-Yo 4 198 y (250 m) Filtered 250 m for Chi a
9.	126	39 2009/11/19 32 40.06 S	057 10 66 5	13:07	Atlantis Transect	ĺ á	00	у	У	1	51		Duplicate	188 1322 2009/11/23 36 50.60 S 052 08.52 E 08.36 Saprer CTD Yo-Yo 5 101 v
9.	120	59 2009/11/19 32 40 06 5	057 19 66 F	13:07	Atlantis Transect	Å	90	v	v	v	1			189 1322 2009/11/23 36 50.60 S 052 08.52 E 08:36 Sapmer CTD Yo-Yo 6 50 y y J 5 L
94	126	59 2009/11/19 32 40 06 5	057 19.66 F	13:07	Atlantis Transect	10	49	v	ý	'	1			190 1322 2009/11/23 36 50.60 S 052 08.52 E 08:36 Sapmer CTD Yo-Yo 7 28 y y
96	126	59 2009/11/19 32 40.06 S	057 19.66 E	13:07	Atlantis Transect	11	25	ý	ý	1	1			191 1322 2009/11/23 36 50.60 S 052 08.52 E 08:36 Sapmer CTD Yo-Yo 8 29 Duplicate
97	126	59 2009/11/19 32 40.06 S	057 19.66 E	13:07	Atlantis Transect	12	2.36	ý	ý	у	5 L	110 m	Isotopes 1 x 5 L Surface Bucket	192 1322 2009/11/23 36 50.60 S 052 08.52 E 08.36 Sapmer CTD Yo-Yo 9 5 y y 5 L 100 m Isotopes 1 x 5 L Surface Bucket,

289 1363 2009/11/28 37.57.4 290 1363 2009/11/28 37.57.4 291 1363 2009/11/28 37.57.4 291 1363 2009/11/28 37.57.4 292 1363 2009/11/28 37.57.4 293 1363 2009/11/28 37.57.4 294 1363 2009/11/28 37.57.4 295 1363 2009/11/28 37.57.4 298 1363 2009/11/28 37.57.4	278 1348 200911/128 37.57.4 279 1356 200911/128 37.57.4 280 1355 200911/128 37.57.4 281 1356 200911/128 37.57.4 281 1356 200911/128 37.57.4 281 1356 200911/128 37.57.4 281 1356 200911/128 37.57.4 281 1356 200911/128 37.57.4 284 1356 200911/128 37.57.4 286 1356 200911/128 37.57.4 286 1356 200911/128 37.57.4 286 1356 200911/128 37.57.4 287 1356 200911/128 37.57.4 288 1356 200911/128 37.57.4	267 1347 200911/126 375.4 268 1348 200911/126 375.4 269 1348 200911/126 375.4 270 1348 200911/126 375.4 271 1348 200911/126 375.4 272 1348 200911/126 375.4 273 1348 200911/126 375.4 274 1348 200911/126 375.4 275 1348 200911/126 375.4 276 1348 200911/126 375.4 276 1348 200911/126 375.4 276 1348 200911/126 375.4 276 1348 200911/126 375.4 276 1348 200911/126 375.4 276 1348 200911/126 375.4 277 1348 200911/126 375.4	260 1346 2009/11/24 36 46.6.6 261 1347 2009/11/25 37 57.5 262 1347 2009/11/25 37 57.5 263 1347 2009/11/25 37 57.5 263 1347 2009/11/25 37 57.5 264 1347 2009/11/25 37 57.5 265 1347 2009/11/25 37 57.5 266 1347 2009/11/25 37 57.5 266 1347 2009/11/25 37 57.5	252 1346 2009/11/24 36 46.6 253 1346 2009/11/24 36 46.6 254 1346 2009/11/24 36 46.6 255 1346 2009/11/24 36 46.6 256 1346 2009/11/24 36 46.6 257 1346 2009/11/24 36 46.6 258 1346 2009/11/24 36 46.6 258 1346 2009/11/24 36 46.6	242 1345 2009/11/24 36 48.1 243 1345 2009/11/24 36 48.1 244 1345 2009/11/24 36 48.1 245 1345 2009/11/24 36 48.1 246 1345 2009/11/24 36 48.1 246 1345 2009/11/24 36 48.1 247 1345 2009/11/24 36 48.1 248 1345 2009/11/24 36 48.1 249 1345 2009/11/24 36 48.6 249 1346 2009/11/24 36 48.6 249 1346 2009/11/24 36 48.6 250 1346 2009/11/24 36 48.6 260 1346 2009/11/24 36 48.6	2.34 1344 2009/11/24 36 8.49 234 1344 2009/11/24 36 8.49 235 1344 2009/11/24 36 8.49 236 1344 2009/11/24 36 8.49 237 1344 2009/11/24 36 8.49 238 1344 2009/11/24 36 8.49 239 1345 2009/11/24 36 4.81 240 1345 2009/11/24 36 4.81 241 1345 2009/11/24 36 4.81	225 1343 20091124 36 49.6 226 1343 20091124 36 49.6 226 1343 20091124 36 49.6 227 1343 20091124 36 49.6 228 1343 20091124 36 49.6 229 1343 20091124 36 49.6 230 1343 20091124 36 49.6 231 1343 20091124 36 49.6 231 1344 20091124 36 49.6 232 1344 20091124 36 49.6 233 1344 20091124 36 49.6 234 1344 20091124 36 49.6 235 1344 20091124 36 49.6 236 1344 20091124 36 49.6 237 1344 20091124 36 49.6 238 1344 20014 1345 49.6 238 1344 20014 1345 49.6 238 1344 20014 1345 49.6 248 1345 49.6 258 1345	215 1342 2009/11/24 36 51 2 216 1342 2009/11/24 36 51 2 217 1342 2009/11/24 36 51 2 218 1342 2009/11/24 36 51 2 219 1342 2009/11/24 36 51 2 220 1342 2009/11/24 36 51 2 221 1342 2009/11/24 36 51 2 222 1342 2009/11/24 36 51 2 223 1342 2009/11/24 36 51 2 224 1342 2009/11/24 36 51 2 224 1342 2009/11/24 36 51 2 234 1342 2009/11/24 36 51 2 23	204 1341 2069/11/24 85.2.1 205 1341 2009/11/24 85.2.1 206 1341 2009/11/24 85.2.1 207 1341 2009/11/24 85.2.1 208 1341 2009/11/24 85.2.1 209 1341 2009/11/24 85.2.1 201 1341 2009/11/24 85.2.1 201 1341 2009/11/24 85.2.1 201 1341 2009/11/24 85.2.1 201 1342 2009/11/24 85.2.1 201 1341 2009/11/24 85.2.1 201 1342 2009/11/24 85.2.1 201 1342 2009/11/24 85.2.1 211 1342 2009/11/24 85.2.1 214 1342 2009/11/24 85.2.1	193 1340 2009/11/23 38 5.0.5 194 1340 2009/11/23 38 5.0.5 195 1340 2009/11/23 38 5.0.5 196 1340 2009/11/23 38 5.0.5 197 1340 2009/11/23 38 5.0.5 199 1340 2009/11/23 38 5.0.5 201 1340 2009/11/23 38 5.0.5 201 1340 2009/11/23 38 5.0.5 202 1341 2009/11/23 38 5.0.5 202 1341 2009/11/23 38 5.0.5 202 1341 2009/11/23 38 5.0.5 202 1341 2009/11/23 38 5.0.5 202 1341 2009/11/23 38 5.0.5 202 1341 2009/11/23 38 5.0.5 202 1341 2009/11/24 36 5.2.1
53 002 244 E 1444 MOW Yo-Yo 55 002 244 E 1444 MOW Yo-Yo 55 002 244 E 1444 MOW Yo-Yo 53 002 244 E 1444 MOW Yo-Yo 33 002 248 E 1444 MOW Yo-Yo 53 002 248 E 1444 MOW Yo-Yo 55 002 248 E 1444 MOW Yo-Yo 55 002 248 E 1444 MOW Yo-Yo 55 002 248 E 1444 MOW Yo-Yo	25 3050 2443 E 10249 MOW Yo-Yo 35 3050 24430 E 10817 MOW Yo-Yo	$\begin{array}{c} 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 $	35 052 0.3.4 BE 16:0B Sapmer Transect 55 050 27.9 E 13:41 Middle of What 55 050 24.79 E 13:41 Middle of What 55 050 24.79 E 13:41 Middle of What 56 050 24.79 E 13:41 Middle of What 56 050 24.79 E 13:41 Middle of What	S 05203.46 16:00 Sapmer Transect S 05203.46 16:00 Sapmer Transect	7 5 1052 0537 E 11503 Sapmer Transect 7 5 1052 0537 E 11608 Sapmer Transect 7 5 1052 0537 E 11608 Sapmer Transect 7 5 1052 0537 E 11608 Sapmer Transect 7 5 1052 0346 E 11608 Sapmer Transect 7 5 1052 0346 E 11608 Sapmer Transect	5 0x20x39 142-42 spmter Transect 7 0x20x37 15:03 Spmter Transect	8 052 07.24 13.42 Sapmar Transect 9 052 07.03.92 14.24 Sapmar Transect 9 052 07.03.92 14.24 Sapmar Transect 9 052 07.03.92 14.24 Sapmar Transect	8 0520013E 1231Sapmer Transact 8 0520013E 1231Sapmer Transact 8 0520013E 1231Sapmer Transact 8 0520013E 1231Sapmer Transact 8 0520013E 1231Sapmer Transact 9 0520013E 1231Sapmer Transact	8 052 10:43 Sagmert Transect 8 052 10:43 Sagmert Transect 8 052 10:43 Sagmert Transect 9 052 10:43 Sagmert Transect 9 052 10:43 Sagmert Transect 9 052 10:42 12:43 Sagmert Transect	3 B25 (08.50 € 14.37 Sagnet C1D Vo Yo 3 B25 (08.50 € 14.37 Sagnet C1D Vo Yo 3 B25 (08.50 € 14.37 Sagnet C1D Vo Yo 3 B25 (08.50 € 14.37 Sagnet C1D Vo Yo 3 B25 (08.50 € 14.37 Sagnet C1D Vo Yo 3 B25 (08.50 € 14.37 Sagnet C1D Vo Yo 3 B25 (08.50 € 14.37 Sagnet C1D Vo Yo 3 B25 (08.50 € 14.37 Sagnet C1D Vo Yo 3 B25 (08.50 € 14.37 Sagnet C1D Vo Yo 3 B25 (08.50 € 14.37 Sagnet C1D Vo Yo 3 B25 (08.50 € 14.37 Sagnet C1D Vo Yo 3 B25 (08.50 € 14.37 Sagnet C1D Vo Yo 3 B25 (08.50 € 14.37 Sagnet C1D Vo Yo 3 B25 (08.50 € 14.37 Sagnet C1D Vo Yo 3 B25 (04.50 € 14.37 Sagnet C1D Vo Yo 3 B25 (04.50 € 10.43 Sagnet Tanaet
1 960 y 2 749 y 3 499 y 4 249 y 5 149 y 6 100 y 7 50 y 9 28 y 9 29 10 15 y 11 1.7 y 11 1.7 y	11 3 y 1 962 y 2 750 y 3 500 y 4 249 y 5 101 y 6 49 y 7 40 8 8 41 y 9 19 y 10 3.3 v	7 1.8 y 1 960 y 2 750 y 3 500 y 4 250 y 5 100 y 6 49 y 7 49 y 8 30 y 9 31 y 10 15 y	12 3.2 y 1 301 y 2 150 y 3 97 y 4 52 y 5 9 6 10 y	4 749 y 5 500 y 6 251 y 7 150 y 8 100 y 9 40 10 10 41 y 11 24 y	4 347 y 5 202 y 6 102 y 7 51 y 8 50 9 26 y 10 0.2 y 1 2002 y 2 1499 y 3 1001 y	2 196 y 3 100 y 4 50 y 5 49 6 18 y 7 3.3 y 1 960 y 2 749 y 3 501 y	2 349 y 3 199 y 4 97 y 5 49 y 6 31 y 7 30 8 0.7 y 1 326 y 2 10 0 0 0	2 749 y 3 498 y 4 350 y 5 198 y 6 100 y 7 49 y 8 25 y 9 25 y 10 1 y	3 998 y 4 747 y 5 448 y 6 250 y 7 98 y 8 73 y 9 44 10 10 44 y 11 24 y 12 1.9 y	1 508 y 2 400 y 3 298 y 4 200 y 5 98 y 6 47 y 7 29 y 9 2.3 y 1 1985 y 2 1501 y
y y y	у	у	y y y	y y y	y y y	у	y y y	y y y	у	y y y
y y	у	у	у	у	y y	y y	у	y y	у	y y
5L 5L 1	5L 1 5L	5 L	5L 1	5L	5L 5L 1	5L 5L 1	5L 5L 1	2.5 L 2.5 L 5 L 2>	5 L 5 L love	2.5 L 2.5 L 3.5 L 1
	00 m 14	50 m M	00 m li	c	E 00 m 15	00 m E	00 m li	100 m (s	d to 134 E	E 00 m li
uplicate	oropes 1 x 5 L Surface Bucket,	uplicate	uplicate	upicate	uplicate dopes 1 x 5 L Surface Bucket,	uplicate NG used Surface Bucket, Isotopes 1 x 5 L Surfac	otopes 1 x 5 L Surface Bucket,	NC otope 1 x 5 L Sufface Bucket,	NC, lootopes 1 x 5 L Surface Bucket	uplicate
393 394 395 396 397 398 399 400 401 402 403	382 383 384 385 386 387 388 389 390 391 392	372 373 374 375 376 377 378 379 380 381 382	365 366 367 368 369 370 371	357 358 359 360 361 362 363 363 364	348 349 350 351 352 353 354 355 356	339 340 341 342 343 344 345 346 347	331 332 333 334 335 336 337 338	321 322 323 324 325 326 327 328 329 330	311 312 313 314 315 316 317 318 319 320	300 301 302 303 304 305 306 307 308 309 310
1390 2009/ 1390 2009/ 1390 2009/ 1390 2009/ 1390 2009/ 1390 2009/ 1390 2009/ 1390 2009/ 1390 2009/ 1390 2009/ 1390 2009/ 1390 2009/ 1390 2009/	1389 2009/ 1389 2009/ 1389 2009/ 1389 2009/ 1389 2009/ 1389 2009/ 1389 2009/ 1389 2009/ 1389 2009/ 1389 2009/ 1389 2009/ 1389 2009/ 1389 2009/ 1389 2009/	1388 2009/ 1388 2009/ 1388 2009/ 1388 2009/ 1388 2009/ 1388 2009/ 1388 2009/ 1388 2009/ 1388 2009/ 1388 2009/ 1388 2009/ 1389 2009/ 1389 2009/	1387 2009/ 1387 2009/ 1387 2009/ 1387 2009/ 1388 2009/ 1388 2009/ 1388 2009/	1387 2009/ 1387 2009/ 1387 2009/ 1387 2009/ 1387 2009/ 1387 2009/ 1387 2009/ 1387 2009/ 1387 2009/	1386 2009/ 1386 2009/ 1386 2009/ 1386 2009/ 1386 2009/ 1386 2009/ 1386 2009/ 1386 2009/ 1386 2009/ 1386 2009/	1385 2009/ 1385 2009/ 1385 2009/ 1385 2009/ 1385 2009/ 1385 2009/ 1386 2009/ 1386 2009/ 1386 2009/ 1386 2009/	1384 2009/ 1384 2009/ 1385 2009/ 1385 2009/ 1385 2009/ 1385 2009/ 1385 2009/ 1385 2009/ 1385 2009/	1384 2009/ 1384 2009/	1383 2009 1383 2009 1383 2009 1383 2009 1383 2009 1383 2009 1383 2009 1383 2009 1383 2009 1383 2009 1383 2009 1383 2009 1383 2009 1383 2009 1383 2009	1372 2009/ 1372 2009/
11/28 38 59.84 11/28 38 59.84	11/27 38 00.01 11/27 38 00.01	11/27 37 58.95 11/27 38 00.01 11/27 38 00.01	11/27 37 58.57 11/27 37 58.57 11/27 37 58.57 11/27 37 58.57 11/27 37 58.57 11/27 37 58.95 11/27 37 58.95 11/27 37 58.95 11/27 37 58.95	11/27 37 58.57 11/27 37 58.57	11/27 37 58.09 11/27 37 58.09	11/27 37 57.07 11/27 37 57.07 11/27 37 57.07 11/27 37 57.07 11/27 37 57.07 11/27 37 57.07 11/27 37 58.09 11/27 37 58.09 11/27 37 58.09 11/27 37 58.09	11/27 37 55.98 11/27 37 55.98 11/27 37 55.98 11/27 37 57.07 11/27 37 57.07 11/27 37 57.07 11/27 37 57.07 11/27 37 57.07 11/27 37 57.07	11/27 37 55.98 11/27 37 55.98	11/27 37 57.44 11/27 37 57.44	11/27 37 57.41 11/27 37 57.41
\$ 050 10.95 E	S 050 27.60 E	S 050 26.22 E S 050 27.60 E S 050 27.60 E S 050 27.60 E S 050 27.60 E	5 050 25.79 E 5 050 25.79 E 5 050 25.79 E 5 050 25.79 E 5 050 26.22 E 5 050 26.22 E 5 050 26.22 E 5 050 26.22 E	050 25.79 E	5 050 25.16 E 5 050 25.16 E	s u50 23.88 E S 050 25.16 E S 050 25.16 E S 050 25.16 F	5 050 22.42 E 5 050 22.42 E 5 050 23.88 E	5 050 22.42 E 6 050 22.42 E 050 22.42 E 8 050 22.42 E 8 050 22.42 E 8 050 22.42 E	5 050 24.87 E	S 050 24.86 E S 050 24.86 E
65:30 SC21 65:30 SC21	22:02 MOW Transect 22:02 MOW Transect 05:30 SCZ1	20:40 MOW Transect 20:40 MOW Transect 22:02 MOW Transect 22:02 MOW Transect 22:02 MOW Transect	19:44 MOW Transect 19:44 MOW Transect 19:44 MOW Transect 19:44 MOW Transect 20:40 MOW Transect 20:40 MOW Transect 20:40 MOW Transect	19:44 MOW Transect 19:44 MOW Transect	18:42 MOW Transect 18:42 MOW Transect	17:41 MOW Transect 17:41 MOW Transect 17:41 MOW Transect 17:41 MOW Transect 17:41 MOW Transect 17:41 MOW Transect 18:42 MOW Transect 18:42 MOW Transect	16:23 MOW Transect 16:23 MOW Transect 17:41 MOW Transect 17:41 MOW Transect 17:41 MOW Transect 17:41 MOW Transect 17:41 MOW Transect 17:41 MOW Transect	16:23 MOW Transect 16:23 MOW Transect	2023 MCW Yo-Yo 2238 MCW Yo-Yo	20:20 MOW Yo-Yo 20:20 MOW Yo-Yo
2 3 4 5 6 7 8 9 10 11 12	4 5 6 7 8 9 10 11 12 1	4 5 6 7 8 9 10 11 1 2 3	9 10 11 12 1 2 3	1 2 3 4 5 6 7 8	4 5 6 7 8 9 10 11 12	7 8 9 10 11 12 1 2 3	11 12 1 2 3 4 5 6	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9 10	1 2 3 4 5 6 7 8 9 10 11
1499 1248 1000 749 248 101 49 7 6 0.1	751 500 348 269 108 54 55 19 2.9 2001	499 250 132 89 48 48 19 1.9 1676 1299 1000	40 40 20 1.1 1449 1000 749	1171 1000 749 500 350 176 110 80	350 178 105 80 39 40 20 2 1	129 79 39 20 2 1071 749 500	19 3.7 1214 999 750 500 351 170	1481 999 750 501 349 179 141 80 40 40	960 749 499 250 100 50 30 15 15 15 2.7	970 748 499 249 149 100 49 32 32 32 15 4
y y y y y	y y y y y y y	y y y y y y y	y y y y y y	у у у у у у у	у у у у у у	y y y y y y	у у у у у у у	у у у у у у	у у у у у у у	y y y y y y
y y y	y y y	y y y	y y y	у	у У У У	y y y	ý	у	у у у	у у у
y y	у	y y	y y		y y	y y	ý		у	y y
5 L 5 L	5 L 3.5 L	5 L 5 L	5 L 5 L		5 L 5 L W	4L 5L	5L	5 L	5 L 5 L	5 L
50 m	ind too stror	ind too stror	ind too stror		ind too stror	ind too stror	ind too stror		50 m	100 m
NNC NNC Duplicate solopes 1 x 5 L Surface Bucket,	Suplicate NC used Surface Bucket, Isotopes 1 x 3.5 L Surfr	DNC solopes 1 x 5 L Surface Bucket,	sotopes 1 x 5 L Surface Bucket,		Duplicate sotopes 1 x 5 L Surface Bucket, upplicate	Duplicate DNC used Surface Bucket, Isotopes 1 x 5 L Surfac	NNC used Surface Bucket, Isotopes 1 x 5 L Surfac	Duplicate	Support 1 of 2 Johnson Bucket,	Suplicate

404 1391	Date Latitude Longitude	Time Event	Bot	tle Dep	oths Nu	trients	Chl-a F	nyto ID	POM	Phyto-Net	Notes	No. 3	station I	Date	Latitude	Longitude	Time Event		Depuis				-		
104	2009/11/28 39 15.02 S 050 07.48 E	08:37 SCZ1	1	1 2	2002	у						500	1399	2009/11/29	41 14.83 S	049 34.53 E	09:05 SCZ1	1	2001	У					
405 1391	2009/11/28 39 15.02 S 050 07.48 E	08:37 SCZ1	2	2 1	1499	У						501	1399	2009/11/29	41 14.83 S	049 34.53 E	09:05 SCZ1	2	1496	У					
406 1391	2009/11/28 39 15.02 S 050 07.48 E	08:37 SCZ1	3	3 1	1249	У						502	1399	2009/11/29	41 14.83 5	049 34.53 E	09:05 SC21	3	1247	У					
407 1391	2009/11/28 39 15.02 S 050 07.48 E	08:37 SCZ1	4	1 1	998	У						503	1399	2009/11/29	41 14.83 5	049 34.53 E	09:05 SC21	4	999	У					
408 1391	2009/11/28 39 15.02 S 050 07.48 E	08:37 SCZ1	ŧ	5	747	У						504	1399	2009/11/29	41 14.03 5	049 34.53 E	09:05 5021	5	F00	У					
409 1391	2009/11/28 39 15.02 S 050 07.48 E	08:37 SCZ1	6	5 .	498	У						506	1300	2003/11/23	41 14 83 5	049 34.53 E	09:05 SC71	7	250	y V	v				
410 1391	2009/11/28 39 15.02 S 050 07.48 E	08:37 SCZ1	7	r :	350	у						507	1300	2000/11/20	41 14 83 5	049 34 53 E	09:05 5C71	8	96	y	,				
411 1391	2009/11/28 39 15.02 S 050 07.48 E	08:37 SCZ1	8	3	101	У	У					508	1399	2009/11/29	41 14 83 S	049 34 53 E	09:05 SC71	9	95	,					Duplicate
412 1391	2009/11/28 39 15.02 S 050 07.48 E	08:37 SCZ1	ę)	48	У						509	1399	2009/11/29	41 14 83 S	049 34 53 E	09:05 SC71	10	50	v	v	v	5 L		
413 1391	2009/11/28 39 15.02 S 050 07.48 E	08:37 SCZ1	1	0	20				61		Duplicate	510	1399	2009/11/29	41 14 83 S	049 34 53 E	09:05 SCZ1	11	11	ý	ý	'			
1391	2009/11/28 39 15.02 S 050 07.48 E	08:37 SCZ1	1	1	21	у	У	у	52			511	1399	2009/11/29	41 14.83 S	049 34.53 E	09:05 SCZ1	12	1.7	ý	ý	v	5 L	100 m	Isotopes 1 x 5 L Surface Bucket.
115 1391	2009/11/28 39 15.02 S 050 07.48 E	08:37 SCZ1	1	2	2	у	у	у	5 L	100 m	Isotopes 1 x 5 L Surface Bucket,	512	1400	2009/11/29	41 30.00 S	049 30.04 E	12:11 SCZ1	1	2001	ý					
116 1392	2009/11/28 39 30.13 S 050 03.45 E	11:40 SCZ1	1	2	2001	у						513	1400	2009/11/29	41 30.00 S	049 30.04 E	12:11 SCZ1	2	1496	ý					
17 1392	2009/11/28 39 30.13 S 050 03.45 E	11:40 SCZ1	2	2 1	498	y						514	1400	2009/11/29	41 30.00 S	049 30.04 E	12:11 SCZ1	3	1249	ý					
18 1392	2009/11/28 39 30.13 S 050 03.45 E	11:40 SCZ1	3	3 1	250	ý						515	1400	2009/11/29	41 30.00 S	049 30.04 E	12:11 SCZ1	4	998	ý					
19 1392	2009/11/28 39 30.13 S 050 03.45 E	11:40 SCZ1	4	1	000	y						516	1400	2009/11/29	41 30.00 S	049 30.04 E	12:11 SCZ1	5	748	ý					
20 1392	2009/11/28 39 30.13 S 050 03.45 E	11:40 SCZ1	5	5 .	750	v						517	1400	2009/11/29	41 30.00 S	049 30.04 E	12:11 SCZ1	6	500	ý					
21 1392	2009/11/28 39 30.13 S 050 03.45 E	11:40 SCZ1	e		499	ý						518	1400	2009/11/29	41 30.00 S	049 30.04 E	12:11 SCZ1	7	249	ý	У				
1303	2009/11/28 39 30 13 S 050 03 45 F	11:40 SC71	-		207	, v						519	1400	2009/11/29	41 30.00 S	049 30.04 E	12:11 SCZ1	8	99	ý					
3 1303	2009/11/28/39/30 13/S/050 03:45 F	11:40 SC71			101	ý.	v					520	1400	2009/11/29	41 30.00 S	049 30.04 E	12:11 SCZ1	9	63	y	y	y	C 1		
1303	2009/11/28 39 30 13 S 050 03 45 E	11:40 SCZ1		5	52	, ,	,					521	1400	2009/11/29	41 30.00 S	049 30.04 E	12:11 SCZ1	10	48	ý	ý		5 L		
5 1392	2009/11/28 39 30 13 S 050 03 45 E	11:40 SCZ1	1	0	41	,			51		Dunlicate	522	1400	2009/11/29	41 30.00 S	049 30.04 E	12:11 SCZ1	11	24	У	У				
1303	2009/11/28 39 30 13 S 050 03 45 E	11:40 SCZ1	1	1	41		v	v	0.2		Dopilotito	523	1400	2009/11/29	41 30.00 S	049 30.04 E	12:11 SCZ1	12	0.6	у	У	у	5 L	100 m	Isotopes 1 x 5 L Surface Bucket,
1201	2000/11/28 20 20 12 S 050 03 45 E	11:40 8021	1		2.2	,	, y	,	61	90 m	Instance 1 x 6 L Surface Bucket	524	1401	2009/12/01	41 25.44 S	042 50.82 E	22:45 Coral	1	303	У					
1202	2000/11/28 20 45 01 S 040 50 56 5	14:61 SC71		-	2002	2	2	,	02	00 111	isotopos 1 x o E oundee Busitet,	525	1401	2009/12/01	41 25.44 S	042 50.82 E	22:45 Coral	2	200	У					
1203	2008/11/28 39 45.01 5 049 59.50 E	14.51 SCZ1			601	y						526	1401	2009/12/01	41 25.44 S	042 50.82 E	22:45 Coral	3	98	У	У				
1393	2000/11/20 39 40.01 5 049 59.56 E	14-51 8021		: 1 3	1001	у						527	1401	2009/12/01	41 25.44 S	042 50.82 E	22:45 Coral	4	39						Duplicate
1393	2000/11/20 39 40.01 0 049 59.56 E	14.51 5021		11	1000	у	1	l.				528	1401	2009/12/01	41 25.44 S	042 50.82 E	22:45 Coral	5	39	У			5 L		1
1393	2000/11/20 39 45.01 S 049 59.56 E	14.51 3621		: 1 3	740	У						529	1401	2009/12/01	41 25.44 S	U42 50.82 E	22:45 Coral	6	20	У	У	У			h
1393	2009/11/28 39 45.01 5 049 59.56 E	14.51 5021			600	y .	1	l.				530	1401	2009/12/01	41 25.44 S	U42 50.82 E	22:45 Coral	7	2.7	у	у	у	5 L	80 m	isotopes 1 x 5 L Surface Bucket,
1393	2000/11/20 39 45.01 S 049 59.56 E	14.51 3621		: 1	000	У						531	1402	2009/12/03	41 25.35 S	U42 50.69 E	uz:58 Coral Yo-Yo	1	802	У					1
1393	2009/11/28 39 45.01 S 049 59.56 E	14:51 SCZ1		. 1 3	200	У						532	1402	2009/12/03	41 25.35 S	U42 50.69 E	uz:58 Coral Yo-Yo	2	600	У					1
1393	2009/11/28 39 45.01 S 049 59.56 E	14:51 SCZ1	1		100	У	У	l.				533	1402	2009/12/03	41 25.35 S	042 50.69 E	U2:58 Coral Yo-Yo	3	399	У					1
1393	2009/11/28 39 45.01 S 049 59.56 E	14:51 SCZ1	ę		/0	у						534	1402	2009/12/03	41 25.35 S	042 50.69 E	U2:58 Coral Yo-Yo	4	201	У					1
1393	2009/11/28 39 45.01 S 049 59.56 E	14:51 SCZ1	1	0	13	У	У	У	51			535	1402	2009/12/03	41 25.35 S	042 50.69 E	U2:58 Coral Yo-Yo	5	118	У	У				1
1393	2009/11/28 39 45.01 S 049 59.56 E	14:51 SCZ1	1	1	14				~ L		Duplicate	536	1402	2009/12/03	41 25.35 S	042 50.69 E	U2:58 Coral Yo-Yo	6	80	У					1
1393	2009/11/28 39 45.01 S 049 59.56 E	14:51 SCZ1	1	2	1.4	у	у	у	5 L	50 m	Isotopes 1 x 5 L Surface Bucket,	537	1402	2009/12/03	41 25.35 S	U42 50.69 E	U2:58 Coral Yo-Yo	7	40	У					1
1394	2009/11/28 40 00.02 S 049 55.58 E	18:00 SCZ1	1	2	2001	у						538	1402	2009/12/03	41 25.35 S	042 50.69 E	UZ:58 Coral Yo-Yo	8	15	У	У	У	5 L		Duralization
1394	2009/11/28 40 00.02 S 049 55.58 E	18:00 SCZ1	2	2 1	1498	у						539	1402	2009/12/03	41 25.35 S	042 50.69 E	02:50 Coral Yo-Yo	9	15				51	50 m	Jupicale
1394	2009/11/28 40 00.02 S 049 55.58 E	18:00 SCZ1	3	3 1	1250	у						540	1402	2009/12/03	41 25 27 9	042 51 24 E	02.30 C018I T0-T0 08:41 Corel Vo-Vo	10	407	У	у	у	ΒL	50 m	noviopes i x 5 L Sunace Bucket,
1394	2009/11/28 40 00.02 S 049 55.58 E	18:00 SCZ1	4	1 1	999	у						541	1422	2008/12/03	41 25.27 3	042 51.24 E	08:41 Corol Vo Vo	2	200	y					
1394	2009/11/28 40 00.02 S 049 55.58 E	18:00 SCZ1	ŧ	5	751	у						542	1422	2008/12/03	41 25.27 3	042 51.24 E	08:41 Coral Vo Vo	2	200	y					
1394	2009/11/28 40 00.02 S 049 55.58 E	18:00 SCZ1	e	s .	499						DNC	543	1422	2009/12/03	41 25.27 5	042 51.24 E	08:41 Coral Vo Vo	3	200	У					
1394	2009/11/28 40 00.02 S 049 55.58 E	18:00 SCZ1	7	7	199	v						544	1422	2008/12/03	41 25.27 3	042 51.24 E	08:41 Corol Vo Vo	-	69	y	у				
1394	2009/11/28 40 00.02 S 049 55.58 E	18:00 SCZ1	8	3 .	100	ý						546	1422	2008/12/03	41 25 27 S	042 51.24 E	08:41 Coral Yo-Yo	6	20	y V	v	v			
1394	2009/11/28 40 00.02 S 049 55.58 E	18:00 SCZ1	9		71	ý	у					547	1422	2009/12/03	41 25.27 S	042 51.24 F	08:41 Coral Yo-Yo	7	26	,	,	,			Duplicate
1394	2009/11/28 40 00.02 S 049 55.58 E	18:00 SCZ1	1	0	17						Duplicate	548	1422	2009/12/03	41 25.27 8	042 51.24 F	08:41 Coral Yo-Yo	8	15	v	v		5 L		1
1394	2009/11/28 40 00.02 S 049 55.58 E	18:00 SCZ1	1	1	16	у	у	у	5 L			549	1422	2009/12/03	41 25.27 S	042 51.24 F	08:41 Coral Yo-Yo	9	3.2	ý	ý	y	5 L	50 m	Isotopes 1 x 5 L Surface Bucket.
1394	2009/11/28 40 00.02 S 049 55.58 E	18:00 SCZ1	1	2	2.9	y j	1 1	ý	5 L	50 m	DNC used Surface Bucket, Isotopes 1 x 5 L Surfac	550	1443	2009/12/03	41 25.27 S	042 51.19 E	14:34 Coral Yo-Yo	1	405	ý	- 1	- 1	-		
1395	2009/11/28 40 15.09 S 049 51.62 E	20:51 SCZ1	1	2	2001	y						551	1443	2009/12/03	41 25.27 S	042 51.19 E	14:34 Coral Yo-Yo	2	298	ý					1
1395	2009/11/28 40 15.09 S 049 51.62 E	20:51 SCZ1	2	2 1	499	y.						552	1443	2009/12/03	41 25.27 S	042 51.19 E	14:34 Coral Yo-Yo	3	199	у					1
139	2009/11/28 40 15.09 S 049 51 62 F	20:51 SCZ1		3 1	251	ý	1	l.				553	1443	2009/12/03	41 25.27 S	042 51.19 E	14:34 Coral Yo-Yo	4	101	У	У				1
1395	2009/11/28 40 15 09 S 049 51 62 F	20:51 SCZ1	4		999	ý						554	1443	2009/12/03	41 25.27 S	042 51.19 E	14:34 Coral Yo-Yo	5	51	У					
1395	2009/11/28 40 15.09 S 049 51.62 E	20:51 SCZ1	5		749	ý						555	1443	2009/12/03	41 25.27 S	042 51.19 E	14:34 Coral Yo-Yo	6	19				51		Duplicate
1395	2009/11/28 40 15 09 S 049 51 62 F	20:51 SCZ1	e		499	· ·					DNC	556	1443	2009/12/03	41 25.27 S	042 51.19 E	14:34 Coral Yo-Yo	7	19	У	У	У	0.2		
1395	2009/11/28 40 15 09 S 049 51 62 F	20:51 SCZ1	-		199	v						557	1443	2009/12/03	41 25.27 S	042 51.19 E	14:34 Coral Yo-Yo	8	1.9	у	У	у	5 L	50 m	Isotopes 1 x 5 L Surface Bucket,
1304	2009/11/28 40 15 09 S 049 51 62 E	20:51 SCZ1			149	y						558	1466	2009/12/03	41 25.29 S	042 51.21 E	20:45 Coral Yo-Yo	1	400	У					
1304	2009/11/28 40 15 09 S 049 51 62 E	20:51 SCZ1		5	70	y	v					559	1466	2009/12/03	41 25.29 S	042 51.21 E	20:45 Coral Yo-Yo	2	302	У					
1304	2009/11/28 40 15 09 S 049 51 62 E	20:51 SCZ1	1	0	41	,	y	v				560	1466	2009/12/03	41 25.29 S	042 51.21 E	20:45 Coral Yo-Yo	3	200	У					
1200	2008/11/28 40 15:09 5 049 51:02 E	20.51 SCZ1	1	1	1.6	y	У	y	5 L			561	1466	2009/12/03	41 25.29 S	042 51.21 E	20:45 Coral Yo-Yo	4	98	У					
1200	2008/11/28 40 15:09 5 049 51:02 E	20.51 SCZ1	1	2	0.0	y	2		61	60 m	DNC used Surface Bucket Jestenes 1 x EL Surface	562	1466	2009/12/03	41 25.29 S	042 51.21 E	20:45 Coral Yo-Yo	5	50	У	У				
1306	2009/11/28 40 30 10 S 049 31.02 E	23:55 SC71		- 2	2002	v		y	JL	30 111	Dive used Surface Backet, Isotopes 1 x 3 E Surface	563	1466	2009/12/03	41 25.29 5	042 51.21 E	20:45 Coral Yo-Yo	5	14	У			5 L		Duplicate
1306	2009/11/28 40 30 10 S 049 47 45 E	23:55 SC71			498	, ,						504	1400	2009/12/03	41 25.29 5	042 51.21 E	20:45 Coral Vo Vo		13		У	y	C 1	F0	Instance 4 of 51. Conferent Duration
1306	2009/11/28 40 30 10 S 049 47 45 E	23:55 SC71			250	, ,						500	1400	2009/12/03	41 25.29 5 41 25 27 C	042 51.21 E	20:45 Coral Vo Vo	0	1.3	y V	У	y	5 L	50 m	Isolopes 1 x 5 L Surface Bucket,
1300	2009/11/28 40 30 10 5 049 47 45 E	23:55 SC71			000	2						500	1400	2009/12/04	41 25 27 9	042 51 21 5	02-19 Coral Yo-Yo	2	343	y V					1
1390	2000/11/28 40 30 10 5 049 47 45 E	23:55 SC71			748	7						568	1488	2009/12/04	41 25 27 9	042 51 21 E	02:19 Coral Yo-Yo	3	199	y					1
1390	2000/11/20 40 20 10 5 040 47.45 E	22-55 9021			400	7						569	1488	2009/12/04	41 25 27 9	042 51 21 F	02-19 Coral Yo-Yo	4	150	, v					1
1396	2000/11/20 40 30 10 5 049 47.45 E	23.33 3621		: :	100	у						570	1488	2009/12/04	41 25.27 S	042 51.21 F	02:19 Coral Yo-Yo	5	81	y y	v				1
1390	2000/11/28 40 30 10 5 049 47.45 E	23:55 SC71		. 1	100	y v	v					571	1488	2009/12/04	41 25.27 S	042 51.21 F	02:19 Coral Yo-Yo	6	29	ý	ý I				1
1304	2009/11/28 40 30 10 5 049 47 45 E	23:55 SC71			52	2	7					572	1488	2009/12/04	41 25.27 S	042 51.21 E	02:19 Coral Yo-Yo	7	14	· ·	1				Duplicate
1300	2000/11/28 40 30 10 5 049 47 45 E	23:55 SC71	4		26	7	v	v				573	1488	2009/12/04	41 25.27 S	042 51.21 E	02:19 Coral Yo-Yo	8	14	у		у	5 L		1
1300	2000/11/28 40 30 10 5 049 47 45 E	23:55 SC71		ĭ	26	y	У	у	5 L		Dunlicate	574	1488	2009/12/04	41 25.27 S	042 51.21 E	02:19 Coral Yo-Yo	9	2.7	ý	у	ý	5 L	80 m	Isotopes 1 x 5 L Surface Bucket,
1304	2009/11/28 40 30 10 5 049 47 45 E	23:55 SC71		2	14		v	v	51	50 m	DNC used Surface Bucket Isotones 1 x 51 Surface	575	1490	2009/12/04	41 29.13 S	042 54.01 E	10:29 Coral Transect	1	1557	У					
130	2000/11/20 40 44 96 5 040 42 14 E	03:05 SCZ1			2004	7	× 1	,	~ -	90111	Enter and a contract boomer, solupes i x a c ounad	576	1490	2009/12/04	41 29.13 S	042 54.01 E	10:29 Coral Transect	2	1248	У					1
1307	2009/11/29 40 44 96 5 049 43 14 E	03:05 SC71		5 1 4	500	, ,	1	l.				577	1490	2009/12/04	41 29.13 S	042 54.01 E	10:29 Coral Transect	3	1002	У					1
1307	2000/11/20 40 44 96 5 040 42 14 E	03:05 SCZ1			249	7						578	1490	2009/12/04	41 29.13 S	042 54.01 E	10:29 Coral Transect	4	752	У					1
1307	2009/11/29 40 44 96 S 049 43 14 E	03:05 SCZ1		11	999	, v						579	1490	2009/12/04	41 29.13 S	042 54.01 E	10:29 Coral Fransect	5	497	У					1
1397	2009/11/29 40 44.96 S 049 43 14 F	03:05 SCZ1		5	750	ý						581	1490	2009/12/04 2009/12/04	41 29.13 8	042 54.01 E	10:29 Coral Transect	7	390	у					1
139	2009/11/29 40 44 96 5 049 43 14 F	03:05 SC71			497	ý	1	l.				201	1400	2000/12/04	41 20 12 0	042 54 04 5	10:20 Coral Transect	é	50	у	у				1
1397	2009/11/29 40 44 96 5 049 43 14 F	03:05 SC71			200	ý	1	l.				582	1400	2009/12/04	41 29 13 9	042 54 01 5	10:29 Coral Transect	å	31	у					Duplicate
1307	2009/11/29 40 44 96 5 049 43 14 E	03:05 SC71			101	, v	v	l.				58/	1400	2009/12/04	41 29 13 9	042 54 01 5	10:29 Coral Transect	10	31	v	~	v	5 L		- openeded
1303	2009/11/29 40 44 96 S 049 43 14 E	03:05 SC71			38	, v	'					585	1490	2009/12/04	41 29.13 S	042 54.01 F	10:29 Coral Transect	11	14	y y	ý	,			1
1397	2009/11/29 40 44 96 S 049 43 14 E	03:05 SC71	1		38	,					Duplicate	586	1490	2009/12/04	41 29.13 S	042 54.01 E	10:29 Coral Transect	12	2.3	ý	ý	y	5 L	50 m	Isotopes 1 x 5 L Surface Bucket,
1307	2009/11/29 40 44 96 5 049 43 14 E	03:05 SC71		1	19	v	(250 m	v	5 L			587	1492	2009/12/04	41 25.71 S	042 52.51 F	14:21 Coral Transect	1	566	ý		ć	-		
139	2009/11/29 40 44 96 5 049 43 14 F	03:05 SC71		2	1.7	v	(250 m	ý	51	50 m	Isotopes 1 x 5 L Surface Bucket	588	1492	2009/12/04	41 25.71 S	042 52.51 E	14:21 Coral Transect	2	499	ý					1
1398	2009/11/29 40 59.65 S 049 38 82 F	06:01 SCZ1			2002	v	1.000.00					589	1492	2009/12/04	41 25.71 S	042 52.51 E	14:21 Coral Transect	3	247	y					1
130	2009/11/29 40 59 65 S 049 38 82 F	06-01 SCZ1			498	, v						590	1492	2009/12/04	41 25.71 S	042 52.51 E	14:21 Coral Transect	4	99	у	у				1
1398	2009/11/29 40 59.65 S 049 38 82 F	06:01 SCZ1		3 1	247	ý						591	1492	2009/12/04	41 25.71 S	042 52.51 E	14:21 Coral Transect	5	47	У			51		L .
130	2009/11/29 40 59 65 S 049 38 82 F	06:01 SC71		. 1 .	999	, v						592	1492	2009/12/04	41 25.71 S	042 52.51 E	14:21 Coral Transect	6	23						Duplicate
1300	2000/11/20 40 50 65 5 040 20 92 5	06:01 SC71			750	7 V						593	1492	2009/12/04	41 25.71 S	042 52.51 E	14:21 Coral Transect	7	24	У	У	У			1
1046	2000/11/20 40 50.00 0 049 38.82 E	06-01 SC71			407	y						594	1492	2009/12/04	41 25.71 S	042 52.51 E	14:21 Coral Transect	8	2.7	у	У	у	5 L	50 m	Isotopes 1 x 5 L Surface Bucket,
1204	2000/11/20 40 50 65 5 049 38.82 E	06:01 SC71		: `	108	y V						595	1493	2009/12/04	41 24.28 S	042 51.67 E	15:47 Coral Transect	1	191	у	Т	Т	T		1
1398	2009/11/29 40 59 65 5 049 38 92 5	06:01 SC71		. I -	149	7 V	v					596	1493	2009/12/04	41 24.28 S	U42 51.67 E	15:47 Coral Transect	2	150	У					1
1398	2000/11/20 40 00.00 0 049 08.82 E	06:01 SC71		1	90	y V	y V	, I				597	1493	2009/12/04	41 24.28 S	U42 51.67 E	15:47 Coral Transect	3	101	У	У				1
1398 1398 1398		06-01 SC71	4	, I	00	у	У	у	5 L		Duplicato	598	1493	2009/12/04	41 24.28 S	U42 51.67 E	15:4/ Coral Transect	4	50	У			2.5 L		1
1398 1398 1398 1398	2009/11/29 40 59.65 5 049 38.82 E	• • • • • • • • • • • • • • • • • • •	1.1	v 1	00		1 I.				Dublicate	599	1493	2009/12/04	41 24.28 S	U42 51.67 E	15:47 Coral Transect	5	29	v	v	V V			1
1398 1398 1398 1398 1398	2009/11/29 40 59.65 S 049 38.82 E 2009/11/29 40 59.65 S 049 38.82 E 2009/11/29 40 59.65 S 049 38.82 E	06:01 8021		4	20							000	4.400	000040/2 *	44 04 00 0	040 54 67 5	45.47 Correl Terranes'	~	20		· · ·		0.51		Dualizata
1398 1398 1398 1398 1398 1398	2009/11/29 40 59.65 S 049 38.82 E 2009/11/29 40 59.65 S 049 38.82 E 2009/11/29 40 59.65 S 049 38.82 E 2009/11/29 40 59.65 S 049 38.82 E	06:01 SCZ1	1	1	30	у	У	.,	61	100 m	Instance 1 x E Surface Bucket	600	1493	2009/12/04	41 24.28 S	042 51.67 E	15:47 Coral Transect	6	28	ĺ.	Ú.		2.5 L	80 m	Duplicate

No.	Station Date	Latitude Longitude	Time	Event	Bottle	Depths	Nutrients	Chl-a	Phyto ID	POM I	Phyto-Net	Notes	No. S	Station Date	Latitude	Longitude	Time Event Bott	le Depths	Nutrients	Chl-a P	hyto ID	POM F	Phyto-Net	Notes
602	1494 2009/12/04	41 23.50 S 042 51.26 E	16:21	Coral Transect	1	902	У						696	1502 2009/1	2/05 40 00.03	S 044 41.85 E	14:46 SCZ2 2	1500	y y					
604	1494 2009/12/04	41 23 50 S 042 51 26 E	16:21	Coral Transect	3	600	y v						698	1502 2009/1	2/05 40 00.03	S 044 41.85 E	14:48 SCZ2 3	1249	ý					
605	1494 2009/12/04	41 23.50 S 042 51.26 E	16:21	Coral Transect	4	400	ý						699	1502 2009/1	2/05 40 00.03	S 044 41.85 E	14:48 SCZ2 4	998	У					
606	1494 2009/12/04	41 23.50 S 042 51.26 E	16:21	Coral Transect	5	200	ý						700	1502 2009/1	2/05 40 00.03	5 044 41.85 E	14:48 SG22 5	/48	У					
607	1494 2009/12/04	41 23.50 S 042 51.26 E	16:21	Coral Transect	6	101	У	У					702	1502 2009/1	2/05 40 00.03	S 044 41.85 E	14:48 SCZ2 7	250	ý					
608	1494 2009/12/04	41 23.50 S 042 51.26 E	16:21	Coral Transect	7	50	У					Destation	703	1502 2009/1	2/05 40 00.03	S 044 41.85 E	14:48 SCZ2 8	147	У	У				
609	1494 2009/12/04	41 23.50 S 042 51.26 E	16:21	Coral Transect	8	18				5 L		Duplicate	704	1502 2009/1	2/05 40 00.03	S 044 41.85 E	14:48 SCZ2 9	49	м			5 L		Duplicate
611	1494 2009/12/04	41 23.50 5 042 51.20 E	16-21	Coral Transect	9	10	y y	У	У	61 6	ind too etro	Isotopos 1 x 6 Surface Bucket	705	1502 2009/1	2/05 40 00.03	S 044 41.85 E	14:48 SCZ2 11	19	y V	v v	v			
612	1495 2009/12/04	41 21 23 S 042 50 30 E	17:23	Coral Transect	10	1870	y v	y	у	36	110 100 3110	Isotopes 1 x 3 E Sunace Bucket,	707	1502 2009/1	/05 40 00.03	6 044 41.85 E	14:48 SCZ2 12	6.7	ý	ý	ý	5 L	100 m	Isotopes 1 x 5 L Surface Bucket,
613	1495 2009/12/04	41 21.23 S 042 50.30 E	17:23	Coral Transect	2	1501	ý						708	1503 2009/1	2/05 39 48.06	S 044 58.37 E	18:03 SCZ2 1	2001	У					
614	1495 2009/12/04	41 21.23 S 042 50.30 E	17:23	Coral Transect	3	999	ý						709	1503 2009/1	2/05 39 48.06	S 044 58.37 E	18:03 SCZ2 2	1249	y					
615	1495 2009/12/04	41 21.23 S 042 50.30 E	17:23	Coral Transect	4	754	У						711	1503 2009/1	2/05 39 48.06	S 044 58.37 E	18:03 SCZ2 4	997	ý					
616	1495 2009/12/04	41 21.23 S 042 50.30 E	17:23	Coral Transect	5	502	У						712	1503 2009/1	2/05 39 48.06	6 044 58.37 E	18:03 SCZ2 5	750	У					
619	1495 2009/12/04	41 21.23 S 042 50.30 E	17:23	Coral Transect	5	297	У						713	1503 2009/1	2/05 39 48.06	5 044 58.37 E	18:03 SCZ2 6	498	У					
619	1495 2009/12/04	41 21 23 S 042 50.30 E	17.23	Coral Transect	8	70	y v	(250 m	\				714	1503 2009/1	2/05 39 48.06	S 044 58.37 E	18:03 SCZ2 /	249	У	У				DNC
620	1495 2009/12/04	41 21 23 S 042 50 30 E	17:23	Coral Transect	9	50	,	(200 111	′			Duplicate	716	1503 2009/1	2/05 39 48.06	6 044 58.37 E	18:03 SCZ2 9	50						Duplicate
621	1495 2009/12/04	41 21.23 S 042 50.30 E	17:23	Coral Transect	10	51	у			5 L			717	1503 2009/1	2/05 39 48.06	S 044 58.37 E	18:03 SCZ2 10	49	У	У	У	5 L		
622	1495 2009/12/04	41 21.23 S 042 50.30 E	17:23	Coral Transect	11	25	ý	у	у				718	1503 2009/1	2/05/39/48.06	5 044 58.37 E	18:03 SC22 11	20	У	У	v	51	100 m	Introne 1 v 5 I. Surface Bucket
623	1495 2009/12/04	41 21.23 S 042 50.30 E	17:23	Coral Transect	12	5.5	у	у	у	5 L 1	ind too stro	Isotopes 1 x 5 L Surface Bucket,	720	1504 2009/1	2/05 39 36.00	S 045 15.04 E	21:18 SCZ2 1	2003	y	-	,	02	100 111	longes 1 x o e condec books,
624	1496 2009/12/04	41 12.18 S 043 00.05 E	19:40	SCZ2	1	1573	У						721	1504 2009/1	2/05 39 36.00	6 045 15.04 E	21:18 SCZ2 2	1500	ý					
625	1496 2009/12/04	41 12.18 5 043 00.05 E	19:40	SCZ2 SCZ2	2	1251	У						722	1504 2009/1	2/05 39 36.00	S 045 15.04 E	21:18 SCZ2 3	1249	У					
627	1496 2009/12/04	41 12 18 S 043 00.05 E	19:40	SC72	4	801	y v						724	1504 2009/1	2/05 39 36.00	3 045 15.04 E	21:18 SCZ2 5	748	y V					
628	1496 2009/12/04	41 12.18 S 043 00.05 E	19:40	SCZ2	5	601	ý						725	1504 2009/1	2/05 39 36.00	6 045 15.04 E	21:18 SCZ2 6	499	ý					
629	1496 2009/12/04	41 12.18 S 043 00.05 E	19:40	SCZ2	6	400	ý						726	1504 2009/1	2/05 39 36.00	6 045 15.04 E	21:18 SCZ2 7	251	У					
630	1496 2009/12/04	41 12.18 \$ 043 00.05 E	19:40	SCZ2	7	200	у						727	1504 2009/1	2/05 39 36.00	S 045 15.04 E	21:18 SCZ2 8	100	У	У				Destanta
631	1496 2009/12/04	41 12.18 \$ 043 00.05 E	19:40	SCZ2	8	89	У	У					729	1504 2009/1	2/05 39 36.00	045 15.04 E	21:18 SCZ2 10	50	v	v	v	5 L		Dupicate
632	1496 2009/12/04	41 12.18 S 043 00.05 E	19:40	SCZ2	9	30				5 L		Duplicate	730	1504 2009/1	2/05 39 36.00	6 045 15.04 E	21:18 SCZ2 11	19	ý	ý	1			
633	1496 2009/12/04	41 12.18 S 043 00.05 E	19:40	SCZ2	10	29	У	У	У				731	1504 2009/1	2/05 39 36.00	6 045 15.04 E	21:18 SCZ2 12	2.06	у	У	у	5 L	100 m	Isotopes 1 x 5 L Surface Bucket,
636	1496 2009/12/04	41 12.18 S 043 00.05 E	19:40	SCZ2 SCZ2	11	13	У	У		61 6	ind too etro	Isotopos 1 x 6 Surface Bucket	732	1505 2009/1	2/06 39 23.97	S 045 31.16 E	00:48 SCZ2 1	2002	У					
636	1497 2009/12/04	40 59 95 S 043 12 34 E	22:31	SC72	14	2003	y v	y	y	36		Isotopes 1 x 3 E Sunace Bucket,	734	1505 2009/1	2/06 39 23.97	S 045 31.16 E	00:48 SCZ2 3	1249	y V					
637	1497 2009/12/04	40 59.95 S 043 12.34 E	22:31	SCZ2	2	1499	v						735	1505 2009/1	2/06 39 23.97	S 045 31.16 E	00:48 SCZ2 4	999	ý					
638	1497 2009/12/04	40 59.95 S 043 12.34 E	22:31	SCZ2	3	1246	ý						736	1505 2009/1	2/06 39 23.97	S 045 31.16 E	00:48 SCZ2 5	750	У					
639	1497 2009/12/04	40 59.95 S 043 12.34 E	22:31	SCZ2	4	1001	У						737	1505 2009/1	2/06 39 23.97	S 045 31.16 E	00:48 SC22 6	498	У					
640	1497 2009/12/04	40 59.95 S 043 12.34 E	22:31	SCZ2	5	750	У						739	1505 2009/1	2/06 39 23.97	S 045 31.16 E	00:48 SCZ2 8	100	y V	v				
641	1497 2009/12/04	40 59.95 S 043 12.34 E	22:31	SCZ2	6	501	У						740	1505 2009/1	2/06 39 23.97	G 045 31.16 E	00:48 SCZ2 9	50	ý	ý				
642	1497 2009/12/04	40 59.95 S 043 12.34 E	22:31	SCZ2	7	249	У						741	1505 2009/1	2/06 39 23.97	G 045 31.16 E	00:48 SCZ2 10	28	У			5 L		
643	1497 2009/12/04	40 59.95 5 043 12.34 E	22:31	SCZ2 SCZ2	8	40	У	У					742	1505 2009/1	2/06 39 23.97	S 045 31.16 E	00:48 SC22 11	14	У		2 × 11	51	100 m	DNC used Surface Bucket Jeotopes 1 x 5 J. Surface
645	1497 2009/12/04	40 59.95 5 043 12.34 E	22.31	SCZ2	9	49	y			51		Dunlicate	743	1506 2009/1	2/06 39 11.96	S 045 47.40 E	04:02 SCZ2 1	2000	y V	У	2.8.1.6	31	100111	Divo used Sunace Bucket, Isolopes 1 x 5 E Sunac
646	1497 2009/12/04	40 59.95 S 043 12.34 E	22:31	SCZ2	11	17	v	v	v	02		Sopheate	745	1506 2009/1	2/06 39 11.96	G 045 47.40 E	04:02 SCZ2 2	1499	ý					
647	1497 2009/12/04	40 59.95 S 043 12.34 E	22:31	SCZ2	12	3.65	ý	ý	ý	5 L	ind too stro	Isotopes 1 x 5 L Surface Bucket,	746	1506 2009/1	2/06 39 11.96	S 045 47.40 E	04:02 SCZ2 3	1250	У					
648	1498 2009/12/05	40 48.02 S 043 35.03 E	01:36	SCZ2	1	2003	У						747	1506 2009/1	2/06/39 11.96	S 045 47.40 E	04:02 SC22 4	1000	У					
649	1498 2009/12/05	40 48.02 S 043 35.03 E	01:36	SCZ2	2	1493	У						749	1506 2009/1	2/06 39 11.96	S 045 47.40 E	04:02 SCZ2 6	500	ý					
650	1498 2009/12/05	40 48.02 S 043 35.03 E	01:36	SCZ2	3	1249	У						750	1506 2009/1	2/06 39 11.96	S 045 47.40 E	04:02 SCZ2 7	249	ý					
651	1498 2009/12/05	40 48.02 S 043 35.03 E	01:36	SCZ2	4	994	У						751	1506 2009/1	2/06 39 11.96	S 045 47.40 E	04:02 SCZ2 8	179	У	У				
652	1498 2009/12/05	40 48.02 5 043 35.03 E	01:36	SCZ2 SCZ2	5	/52	У						752	1506 2009/1	2/06/39 11.96	045 47.40 E	04:02 SC22 9	100	У	У				
654	1498 2009/12/05	40 48 02 S 043 35 03 E	01:36	SC72	7	248	y v						754	1506 2009/1	2/06 39 11.96	S 045 47.40 E	04:02 SCZ2 11	26	ý	v	y	5 L		
655	1498 2009/12/05	40 48.02 S 043 35.03 E	01:36	SCZ2	8	99	ý	v					755	1506 2009/1	2/06 39 11.96	G 045 47.40 E	04:02 SCZ2 12	1.1	ý	ÿ	ý	5 L	100 m	DNC used Surface Bucket, Isotopes 1 x 5 L Surface
656	1498 2009/12/05	40 48.02 S 043 35.03 E	01:36	SCZ2	9	49	ý	ý					756	1507 2009/1	2/06 38 55.99	5 046 03.53 E	07:23 SCZ2 1	2002	У					
657	1498 2009/12/05	40 48.02 S 043 35.03 E	01:36	SCZ2	10	19	У			51			758	1507 2009/1	2/06 38 55 99	S 046 03.53 E	07:23 SCZ2 2	1250	y					
658	1498 2009/12/05	40 48.02 S 043 35.03 E	01:36	SCZ2	11	20				02		Duplicate	759	1507 2009/1	/06 38 55.99	046 03.53 E	07:23 SCZ2 4	999	ý					
659	1498 2009/12/05	40 48.02 S 043 35.03 E	01:36	SCZ2	12	3.7	у	У	2x1L	5 L i	ind too stro	Isotopes 1 x 5 L Surface Bucket,	760	1507 2009/1	2/06 38 55.99	S 046 03.53 E	07:23 SCZ2 5	748	ý					
660	1499 2009/12/05	40 36.09 S 043 51.98 E	04:49	SCZ2	1	2002	У						761	1507 2009/1	2/06 38 55.99	S 046 03.53 E	07:23 SCZ2 6	500	У					
662	1499 2009/12/05	40 36.09 5 043 51.98 E	04:49	SCZ2 SCZ2	2	1251	У						762	1507 2009/1	2/06 38 55 99	S 046 03.53 E	07:23 SCZ2 7	250	y	v				
663	1499 2009/12/05	40 36 09 S 043 51 98 E	04:49	SC72	4	1000	y v						764	1507 2009/1	/06 38 55.99	6 046 03.53 E	07:23 SCZ2 9	73	ý	ý		E 1		
664	1499 2009/12/05	40 36.09 S 043 51.98 E	04:49	SCZ2	5	748	ý						765	1507 2009/1	2/06 38 55.99	6 046 03.53 E	07:23 SCZ2 10	25				51		Duplicate
665	1499 2009/12/05	40 36.09 S 043 51.98 E	04:49	SCZ2	6	498	ý						766	1507 2009/1	2/06 38 55.99	5 046 03.53 E	07:23 SCZ2 11	24	У	У	У	C 1	400	DNO used Confere During Instance 4 of 51 Confere
666	1499 2009/12/05	40 36.09 S 043 51.98 E	04:49	SCZ2	7	252	У						767	1508 2009/1	2/06 38 44.95	S 046 03.53 E	10:55 SCZ2 12	2003	y v	У	У	5 L	100 m	DNC used Sunace Bucket, isotopes 1 x 5 L Sunaci
667	1499 2009/12/05	40 36.09 S 043 51.98 E	04:49	SCZ2	8	99	У	У					769	1508 2009/1	/06 38 44.95	6 046 22.97 E	10:55 SCZ2 2	1497	ý					
668	1499 2009/12/05	40 36.09 S 043 51.98 E	04:49	SCZ2	9	49	У	У					770	1508 2009/1	2/06 38 44.95	S 046 22.97 E	10:55 SCZ2 3	1250	У					
670	1499 2009/12/05	40 36.09 5 043 51.98 E	04:49	SCZ2 SCZ2	10	29	У	У	У	5 L		Duplicato	772	1508 2009/1	2/06 38 44.95	S 046 22.97 E	10:55 SC22 4	751	У					
671	1499 2009/12/05	40 36.09 5 043 51.98 E	04.49	SC72	12	29	v	v		51	100 m	Isotones 1 x 5 L Surface Bucket	773	1508 2009/1	2/06 38 44.95	S 046 22.97 E	10:55 SCZ2 6	501	y V					
672	1500 2009/12/05	40 23.98 S 044 08.93 E	08:16	SCZ2	1	2001	v	,		02	100 111		774	1508 2009/1	2/06 38 44.95	6 046 22.97 E	10:55 SCZ2 7	251	ý					
673	1500 2009/12/05	40 23.98 S 044 08.93 E	08:16	SCZ2	2	1500	ý						775	1508 2009/1	2/06 38 44.95	S 046 22.97 E	10:55 SCZ2 8	148	У	У				
674	1500 2009/12/05	40 23.98 S 044 08.93 E	08:16	SCZ2	3	1248	У						777	1508 2009/1	2/06 38 44 95	S 046 22.97 E	10:55 SC22 9	41	y	y y	У	5 L		
675	1500 2009/12/05	40 23.98 S 044 08.93 E	08:16	SCZ2	4	1001	У						778	1508 2009/1	2/06 38 44.95	S 046 22.97 E	10:55 SCZ2 11	19	ý	ý				
676	1500 2009/12/05	40 23.98 S 044 08.93 E	08:16	SCZ2	5	750	У						779	1508 2009/1	2/06 38 44.95	S 046 22.97 E	10:55 SCZ2 12	2.5	ý	ý	у	5 L	100 m	Isotopes 1 x 5 L Surface Bucket,
670	1500 2009/12/05	40 23.98 S 044 08.93 E	08:16	5022	5	499	У						780	1509 2009/1	2/06 38 31.56	S 046 45.74 E	14:56 Melville Transect 1	1862	У					
670	1500 2009/12/05	40 23.98 5 044 08.93 E	08:16	SCZ2 SCZ2	<i>'</i>	250	У						781	1509 2009/1	2/06 38 31.56	S 046 45.74 E	14:56 Melville Transect 2 14:56 Melville Transect 3	1500	y					
680	1500 2009/12/05	40 23 98 S 044 08 93 E	08.16	SC72	9	49	y v	у					783	1509 2009/1	2/06 38 31.56	S 046 45.74 E	14:56 Melville Transect 4	1000	ý					
681	1500 2009/12/05	40 23.98 S 044 08.93 E	08:16	SCZ2	10	30	, '			5 L		Duplicate	784	1509 2009/1	2/06 38 31.56	S 046 45.74 E	14:56 Melville Transect 5	748	y			1		
682	1500 2009/12/05	40 23.98 S 044 08.93 E	08:16	SCZ2	11	29	у	У	у				785	1509 2009/1	2/U6 38 31.56	046 45.74 E	14:56 Melville Transect 6	499	У					
683	1500 2009/12/05	40 23.98 S 044 08.93 E	08:16	SCZ2	12	1.8	у	у	у	5 L	80 m	Isotopes 1 x 5 L Surface Bucket,	787	1509 2009/1	2/06/38/31.56	3 046 45.74 E	14:56 Melville Transect 7	149	y v			1		
684	1501 2009/12/05	40 12.13 S 044 25.63 E	11:30	SCZ2		2003	У	1 7	7	Т			788	1509 2009/1	2/06 38 31.56	S 046 45.74 E	14:56 Melville Transect 9	70	ý	у				
685	1501 2009/12/05	40 12.13 S 044 25.63 E	11:30	SCZ2	2	1499	У						789	1509 2009/1	2/06 38 31.56	3 046 45.74 E	14:56 Melville Transect 10	33	1					
607	1501 2009/12/05	40 12 13 5 044 25.63 E	11:30	SC72	3	1249	У						790	1509 2009/1	2/06 38 31.56	5 U46 45.74 E	14:56 Melville Transect 11	34	У	y .	у	5 L	100 ~	DNC used Surface Bucket Jentones 1 x 51 Surface
680	1501 2009/12/05	40 12 13 5 044 25.63 E	11.30	SC72	5	999 748	У						791	1510 2009/1	2/06/38/30.17	3 046 45.74 E	16:28 Melville Transect 12	1063	y v	y	у	5L	100 m	Divo useu Sunace Buckel, Isolopes 1 x 5 L Sunaci
689	1501 2009/12/05	40 12.13 \$ 044 25 63 6	11:30	SCZ2	6	499	y v						793	1510 2009/1	/06 38 30.17	S 046 45.32 E	16:28 Melville Transect 2	749	ý			1		
690	1501 2009/12/05	40 12.13 S 044 25.63 E	11:30	SCZ2	7	249	ý						794	1510 2009/1	/06 38 30.17	6 046 45.32 E	16:28 Melville Transect 3	498	У			1		
691	1501 2009/12/05	40 12.13 S 044 25.63 E	11:30	SCZ2	8	99	ý	у					795	1510 2009/1	/U6 38 30.17	5 046 45.32 E	16:28 Melville Transect 4	251	У			1		
692	1501 2009/12/05	40 12.13 S 044 25.63 E	11:30	SCZ2	9	38	1			51		Duplicate	790	1510 2009/1	2/06 38 30.17	3 046 45.32 E	16:28 Melville Transect 6	50	y y	y		1		
693	1501 2009/12/05	40 12.13 S 044 25.63 E	11:30	SCZ2	10	39	У	У	у	~ L			798	1510 2009/1	/06 38 30.17	3 046 45.32 E	16:28 Melville Transect 7	29	ý	У	у	51		
694	1501 2009/12/05	40 12.13 S 044 25.63 E	11:30	SU22 SC72	11	20	У	У	.,	61	100 m	Instance 1 x 6 L Surface Bucket	799	1510 2009/1	2/06 38 30.17	S 046 45.32 E	16:28 Melville Transect 8	14	I				400.00	Duplicate
692	1301 2009/12/05	12.13 3 U44 25.63 E	. [11:30	3044	ιZ	1.8	у	У	У	υĽ	IUU M	aoropes 1 x 5 L outlabe bdCKet,	800	1510 2009/1	206 38 30.17	5 U46 45.32 E	10:28 Melville fransect 9	1.7	У	У	у	ъL	100 m	Isolopes I x 5 L Sufface Bucket,
													1											

1 1 1 1 1 1	b. Station Date La	atitude	Longitude	Time E	vent	Bottle	Depths	Nutrients	Chl-a	Phyto ID	POM	Phyto-Net	Notes	No. 5	Station	n Date Latitude	Longitude	Time	Event	Bottle	Depths 1	lutrients	Chl-a I	Phyto ID	POM	Phyto-Net	t Notes
	801 1511 2009/12/06 38	8 29.23 5	046 44.98 E	17:47 N	Aelville Transect	1	512	У						897	152	22 2009/12/08 38 28.67 5	046 42.80 8	E 23:16	Melville Transect 2 Melville Transect 2	1	420	У					
Image: Probability Image:	803 1511 2009/12/06 38	8 20 23 5	046 44.96 E 046 44 98 E	17:47 N	Aelville Transect	2	218	y						899	152	22 2009/12/08 38 28.67 5	046 42.80 8	E 23:16	Melville Transect 2	3	200	y V					
	804 1511 2009/12/06 38	8 29 23 S	046 44 98 E	17:47 N	Aelville Transect	4	191	y V						900	152	22 2009/12/08 38 28.67 9	046 42.80 8	E 23:16	Melville Transect 2	4	122	ý					
M M M M M M	805 1511 2009/12/06 38	8 29.23 S	046 44.98 E	17:47 N	Alleville Transect	5	149	v						901	152	22 2009/12/08 38 28.67 5	046 42.80 E	E 23:16	Melville Transect 2	5	99	у					
Image: 1	806 1511 2009/12/06 38	8 29.23 S	046 44.98 E	17:47 N	Alville Transect	6	100	ý	v					902	152	22 2009/12/08 38 28.67 5	046 42.80 E	E 23:16	Melville Transect 2	6	71	У					
	807 1511 2009/12/06 38	8 29.23 S	046 44.98 E	17:47 N	Aelville Transect	7	49	ý						903	152	22 2009/12/08 38 28.67 9	046 42.80 E	E 23:16	Melville Transect 2	7	48	У			5 L		
Image: 1	808 1511 2009/12/06 38	8 29.23 S	046 44.98 E	17:47 N	Aelville Transect	8	28	У	У	У	51			904	152	22 2009/12/08 38 28.67 5	046 42.80 5	E 23:16	Melville Transect 2 Melville Transect 2	8	20	У	У	У	61	100 m	Instance 1 x E I. Surface Bucket
No. 1 No. 1 <th< td=""><td>809 1511 2009/12/06 38</td><td>8 29.23 S</td><td>046 44.98 E</td><td>17:47 N</td><td>Aelville Transect</td><td>9</td><td>14</td><td></td><td></td><td></td><td>02</td><td></td><td>Duplicate</td><td>906</td><td>152</td><td>23 2009/12/08 38 28 66 9</td><td>046 42 32 6</td><td>E 23:53</td><td>Melville Transect 2</td><td>1</td><td>430</td><td>y V</td><td>y</td><td>у</td><td>JL</td><td>100 111</td><td>isotopes 1 x 3 E Surface Bucket</td></th<>	809 1511 2009/12/06 38	8 29.23 S	046 44.98 E	17:47 N	Aelville Transect	9	14				02		Duplicate	906	152	23 2009/12/08 38 28 66 9	046 42 32 6	E 23:53	Melville Transect 2	1	430	y V	y	у	JL	100 111	isotopes 1 x 3 E Surface Bucket
1 1 1 1 1 1	810 1511 2009/12/06 38	8 29.23 S	046 44.98 E	17:47 N	Aelville Transect	10	2.7	у	у	у	5 L	100 m	Isotopes 1 x 5 L Surface Bucket,	907	152	23 2009/12/08 38 28.66 5	046 42.32	E 23:53	Melville Transect 2	2	249	ý					
1 1 1 1 1 1	311 1512 2009/12/06 38	8 28.68 S	046 44.75 E	18:57 N	Aelville Transect	1	361	У						908	152	23 2009/12/08 38 28.66 9	046 42.32 E	E 23:53	Melville Transect 2	3	195	ý					
1 1	512 1512 2009/12/06 38 4540 2000/42/06 38	8 28.68 5	046 44.75 E	18:57 N	Aelville Transect	2	247	У						909	152	23 2009/12/08 38 28.66 5	046 42.32 E	E 23:53	Melville Transect 2	4	124	у					
Image: 1	513 1512 2009/12/06 38	8 28.68 5	046 44.75 E	18:57 N	Aelville Transect	3	198	У						910	152	23 2009/12/08 38 28.66 5	046 42.32 E	E 23:53	Melville Transect 2	5	100	у	У				
	315 1512 2009/12/06 38	8 28 68 S	046 44.75 E	18:57 M	Aelville Transect	4	129	У	v					911	152	23 2009/12/08 38 28.66 5	046 42.32 E	E 23:53	Melville Transect 2	6	59	У					
	316 1512 2009/12/06 38	8 28 68 S	046 44 75 E	18:57 N	Aelville Transect	6	49	v	y y	v				912	152	23 2009/12/08 38 28.66 5	046 42.32 E	E 23:53	Melville Transect 2	7	37	У			5 L		
	317 1512 2009/12/06 38	8 28.68 S	046 44.75 E	18:57 N	Aelville Transect	7	30	v	,	,				913	152	23 2009/12/08 36 26.66 3	046 42.32	E 23.53	Mehville Transect 2	ŝ	20	y y	У	У	61	100 m	Instance 1 x E I. Surface Busket
1 1	318 1512 2009/12/06 38	8 28.68 S	046 44.75 E	18:57 N	Aelville Transect	8	16				5 L		Duplicate	915	152	24 2009/12/09 38 28 33 5	046 41 25 6	E 00:37	Melville Transect 2	1	1052	y v	y	у	JL	100 111	Isotopes 1 x 3 E Suitace Bucket
0 0 0 0 0 0	319 1512 2009/12/06 38	8 28.68 S	046 44.75 E	18:57 N	Aelville Transect	9	1.4	y	v	v	5 L	100 m	Isotopes 1 x 5 L Surface Bucket,	916	152	24 2009/12/09 38 28.33 5	046 41.25 E	E 00:37	Melville Transect 2	2	749	ý I					
10 10 10 10 10 10 <td>320 1513 2009/12/06 38</td> <td>8 28.29 S</td> <td>046 44.67 E</td> <td>19:59 N</td> <td>Aelville Transect</td> <td>1</td> <td>101</td> <td>ý</td> <td>У</td> <td></td> <td></td> <td></td> <td></td> <td>917</td> <td>152</td> <td>24 2009/12/09 38 28.33 5</td> <td>046 41.25 E</td> <td>E 00:37</td> <td>Melville Transect 2</td> <td>3</td> <td>501</td> <td>ý</td> <td></td> <td></td> <td></td> <td></td> <td></td>	320 1513 2009/12/06 38	8 28.29 S	046 44.67 E	19:59 N	Aelville Transect	1	101	ý	У					917	152	24 2009/12/09 38 28.33 5	046 41.25 E	E 00:37	Melville Transect 2	3	501	ý					
11 11 10 10 10 10 <td>321 1513 2009/12/06 38</td> <td>8 28.29 S</td> <td>046 44.67 E</td> <td>19:59 N</td> <td>Aelville Transect</td> <td>2</td> <td>80</td> <td>У</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>918</td> <td>152</td> <td>24 2009/12/09 38 28.33 5</td> <td>046 41.25 E</td> <td>E 00:37</td> <td>Melville Transect 2</td> <td>4</td> <td>251</td> <td>ý</td> <td></td> <td></td> <td></td> <td></td> <td></td>	321 1513 2009/12/06 38	8 28.29 S	046 44.67 E	19:59 N	Aelville Transect	2	80	У						918	152	24 2009/12/09 38 28.33 5	046 41.25 E	E 00:37	Melville Transect 2	4	251	ý					
10.1 10.1 10.2 <td< td=""><td>322 1513 2009/12/06 38</td><td>8 28.29 S</td><td>046 44.67 E</td><td>19:59 N</td><td>Aelville Transect</td><td>3</td><td>49</td><td>У</td><td></td><td></td><td>51</td><td></td><td></td><td>919</td><td>152</td><td>24 2009/12/09 38 28.33 5</td><td>046 41.25 E</td><td>E 00:37</td><td>Melville Transect 2</td><td>5</td><td>201</td><td>У</td><td></td><td></td><td></td><td></td><td></td></td<>	322 1513 2009/12/06 38	8 28.29 S	046 44.67 E	19:59 N	Aelville Transect	3	49	У			51			919	152	24 2009/12/09 38 28.33 5	046 41.25 E	E 00:37	Melville Transect 2	5	201	У					
B B B C	323 1513 2009/12/06 38	8 28.29 S	046 44.67 E	19:59 N	Aelville Transect	4	23	У	У	У	02			920	152	24 2009/12/09 38 28.33 5	046 41.25 E	E 00:37	Melville Transect 2	6	126	У					
0 0 0 0 0 0	324 1513 2009/12/06 38	8 28.29 S	046 44.67 E	19:59 N	Melville Transect	5	2	у	у	у	5 L	50 m	Isotopes 1 x 5 L Surface Bucket,	921	152	24 2009/12/09 38 28.33 5	046 41.25 E	E 00:37	Melville Transect 2	7	100	У					
Dist Dis Dist Dist	1514 2009/12/06 38	8 27.83 S	046 44.42 E	20:39 N	nerville Transect	1	852	У	1					922	152	24 2009/12/09 38 28.33 5	046 41.25 8	E 00:37	Melville Transect 2	ŏ	/1 52	y .	У				1
	526 1514 2009/12/06 38	8 27.83 S	046 44.42 E	20:39 N	neiville Transect	2	743	У						923	152	24 2009/12/09 36 28.33 2	046 41 25 5	E 00:37	Melville Transect 2	9	21	y I	~	~	5 L		
	1514 2009/12/06 38	0 27.83 5	040 44.42 E	20:39 N	Adville Transect	3	204	У						925	152	24 2009/12/09 38 28 33 9	046 41 25 F	E 00:37	Melville Transect 2	11	1.12	ý	y v	, v	51	100 m	Isotopes 1 x 5 L Surface Bucket
	20 1514 2009/12/06 38	0 21.83 S	046 44 42 E	20.39 0	Aelville Transect	4	201 00	У	1					926	152	25 2009/12/09 38 28.07 5	046 40.60 E	E 01:39	Melville Transect 2	1	1350	ý		· /	~ ~		, to the element burnet
	320 1514 2009/12/06 38	8 27 83 5	046 44 42 E	20.39 N	Aelville Transect	6	99 69	y	v					927	152	25 2009/12/09 38 28.07 5	046 40.60 E	E 01:39	Melville Transect 2	2	996	ý					
bit bit <td>331 1514 2009/12/06 38</td> <td>8 27.83 5</td> <td>046 44.42 F</td> <td>20:39 N</td> <td>Aelville Transect</td> <td>7</td> <td>29</td> <td>, v</td> <td>y y</td> <td></td> <td></td> <td></td> <td></td> <td>928</td> <td>152</td> <td>25 2009/12/09 38 28.07 5</td> <td>046 40.60 E</td> <td>E 01:39</td> <td>Melville Transect 2</td> <td>3</td> <td>749</td> <td>У</td> <td></td> <td></td> <td></td> <td></td> <td></td>	331 1514 2009/12/06 38	8 27.83 5	046 44.42 F	20:39 N	Aelville Transect	7	29	, v	y y					928	152	25 2009/12/09 38 28.07 5	046 40.60 E	E 01:39	Melville Transect 2	3	749	У					
101 101 101 101 101	332 1514 2009/12/06 38	8 27.83 S	046 44.42 E	20:39 N	Alville Transect	8	15	,			5 L			929	152	25 2009/12/09 38 28.07 5	046 40.60 E	E 01:39	Melville Transect 2	4	248	У					
	333 1514 2009/12/06 38	8 27.83 S	046 44.42 E	20:39 N	Aelville Transect	9	2.4	v	У	2 x 1 L	5 L	100 m	Isotopes 1 x 5 L Surface Bucket,	930	152	25 2009/12/09 38 28.07 5	046 40.60 E	E 01:39	Melville Transect 2	5	199	У					
	334 1515 2009/12/06 38	8 26.81 S	046 44.03 E	21:50 N	Aelville Transect	1	1681	ý						931	152	25 2009/12/09 38 28.07 5	046 40.60 E	C 01:39	werville Transect 2	5	1/21	y .					
Bit Bit <td>335 1515 2009/12/06 38</td> <td>8 26.81 S</td> <td>046 44.03 E</td> <td>21:50 N</td> <td>Alville Transect</td> <td>2</td> <td>1498</td> <td>ý</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>932</td> <td>152</td> <td>25 2009/12/09/36 28.07 2</td> <td>046 40.60 5</td> <td>E 01.39</td> <td>Mehville Transect 2</td> <td>' s</td> <td>90</td> <td>y .</td> <td></td> <td></td> <td></td> <td></td> <td></td>	335 1515 2009/12/06 38	8 26.81 S	046 44.03 E	21:50 N	Alville Transect	2	1498	ý						932	152	25 2009/12/09/36 28.07 2	046 40.60 5	E 01.39	Mehville Transect 2	' s	90	y .					
	336 1515 2009/12/06 38	8 26.81 S	046 44.03 E	21:50 N	Aelville Transect	3	1249	У						934	152	25 2009/12/09 38 28 07 9	046 40.60 F	E 01:39	Melville Transect 2	9	48	y I	у				
	337 1515 2009/12/06 38	8 26.81 S	046 44.03 E	21:50 N	Aelville Transect	4	998	У						935	152	25 2009/12/09 38 28.07 5	046 40.60 E	E 01:39	Melville Transect 2	10	17	ý	y				
Dist Dis Dist Dist <thd< td=""><td>538 1515 2009/12/06 38</td><td>8 26.81 S</td><td>046 44.03 E</td><td>21:50 N</td><td>Aelville Transect</td><td>5</td><td>747</td><td>У</td><td></td><td></td><td></td><td></td><td></td><td>936</td><td>152</td><td>25 2009/12/09 38 28.07 5</td><td>046 40.60 E</td><td>E 01:39</td><td>Melville Transect 2</td><td>11</td><td>1</td><td>y.</td><td>y</td><td>2 x 1 L</td><td>2 x 5 L</td><td>100 m</td><td>DNC used Surface Bucket, Isotopes 2 x 5 L Surface</td></thd<>	538 1515 2009/12/06 38	8 26.81 S	046 44.03 E	21:50 N	Aelville Transect	5	747	У						936	152	25 2009/12/09 38 28.07 5	046 40.60 E	E 01:39	Melville Transect 2	11	1	y.	y	2 x 1 L	2 x 5 L	100 m	DNC used Surface Bucket, Isotopes 2 x 5 L Surface
mm	539 1515 2009/12/06 38	8 26.81 S	046 44.03 E	21:50 N	nerville I ransect	6	497	У	1					937	152	26 2009/12/09 38 28.26 5	046 43.92 E	E 09:54	Melville Yo-Yo	1	505	у					
Dist Dis Dist Dist	540 1515 2009/12/06 38	8 26.81 S	046 44.03 E	21:50 N	nerville Transect	7	252	У						938	152	26 2009/12/09 38 28.26 9	046 43.92 E	E 09:54	Melville Yo-Yo	2	399	У					
	1515 2009/12/06 38	o 26.81 S	046 44.03 E	21:50 N	Antiville Transect	8	101	У						939	152	26 2009/12/09 38 28.26 5	046 43.92	E 09:54	Melville Yo-Yo	3	300	у					1
	042 1515 2009/12/06 38 843 1515 2000/12/06 38	0 20.81 S	046 44.03 E	21:50 N	Aehille Transect	9	20	У	У		51			940	152	26 2009/12/09 38 28.26 5	046 43.92 E	E 09:54	Merville Yo-Yo Mohillo Xo Xo	4	249	у					1
eit 0 000 000 000 000 000 000 000 000 000	R44 1515 2009/12/06/38	8 26 81 9	046 44.03 E	21-50 N	Aehville Transect	10	29	У	v .	v	5 L			941	152	20 2009/12/09 38 28.26 5	046 43.92 5	E 09:54	Welville Yo-Yo	6	1/3	У					
466 467	845 1515 2009/12/06 38	8 26.81 S	046 44.03 F	21:50 M	Aelville Transect	12	0.9	y V	y V	y V	5 L	100 m	Isotopes 1 x 5 L Surface Bucket.	943	152	26 2009/12/09 38 28 26 9	046 43.92 F	E 09:54	Melville Yo-Yo	7	60	y v	у				
Alf Set 0 S	846 1516 2009/12/08 38	8 28.38 S	046 48.45 E	18:52 N	Alleville Transect 2	1	1258	ý		,				944	152	26 2009/12/09 38 28.26 5	046 43.92 E	E 09:54	Melville Yo-Yo	8	40	ý	y	y			
Add Add Statu Stat	847 1516 2009/12/08 38	8 28.38 S	046 48.45 E	18:52 N	Aelville Transect 2	2	1258	ý	1					945	152	26 2009/12/09 38 28.26 9	046 43.92 E	E 09:54	Melville Yo-Yo	9	40	1	1	1	ъL		Duplicate
eff eff< eff	348 1516 2009/12/08 38	8 28.38 S	046 48.45 E	18:52 N	Aelville Transect 2	3	1000	ý						946	152	26 2009/12/09 38 28.26 5	046 43.92 E	E 09:54	Melville Yo-Yo	10	18	у	у				
65 15 2001000 38.38 0.964.46 15.2 0.964.46 15.2 0.97	1516 2009/12/08 38	8 28.38 S	046 48.45 E	18:52 N	Melville Transect 2	4	747	ý						947	152	26 2009/12/09 38 28.26 5	046 43.92 E	E 09:54	Melville Yo-Yo	11	1.6	у	у	у	5 L	100 m	Isotopes 1x 5 L Surface Bucket
Bit Bit State Control State S	1516 2009/12/08 38	8 28.38 S	046 48.45 E	18:52 N	Melville Transect 2	5	499	ý	1					948	154	45 2009/12/09 38 28.26 5	046 43.93 E	E 15:54	Melville Yo-Yo	1	507	у	Г	Т	1	_	
Bit Control Desc Set Se	351 1516 2009/12/08 38	8 28.38 S	046 48.45 E	18:52 N	Aelville Transect 2	6	249	У						949	154	45 2009/12/09 38 28.26 5	046 43.93 E	E 15:54	Metville Yo-Yo	2	400	У					
Dist Dis Dist Dist	352 1516 2009/12/08 38	8 28.38 S	046 48.45 E	18:52 N	Aelville Transect 2	7	197	У	1					950	154	45 2009/12/09 38 28.26 5	046 43.93 8	E 15:54	Welville Yo-Yo	3	300	y .					1
Bit Description Descripion Description De	353 1516 2009/12/08 38	8 28.38 S	046 48.45 E	18:52 N	Aelville Transect 2	8	125						DNG	052	154	45 2009/12/00 38 28 26 0	046 43 92 5	E 15-54	Melville Yo-Yo	5	240	7					
mont mont mont	1516 2009/12/08 38	8 28.38 S	046 48.45 E	18:52 N	Aelville Transect 2	9	98	У	У					953	154	45 2009/12/09 38 28 26 5	046 43.93 F	E 15:54	Melville Yo-Yo	6	104	v l	v				
monipsie monipsie monipsie monipsie monipsie monipsie minipsie monipsie minipsie monipsie minipsie monipsie monipsie monipsie monipsie monipsie monipsie monipsie monipsie minipsie monipsie minipsie monipsie minipsie monipsie monipsie minipsie monipsie monipsie minipsie monipsie minipsie monipsie minipsie monipsie minipsie minipsie minipsie minipsie minipsie monipsie mini	1516 2009/12/08 38	8 28.38 S	046 48.45 E	18:52 N	nerville Transect 2	10	59	У	1.1		5 L			954	154	45 2009/12/09 38 28.26 5	046 43.93 F	E 15:54	Melville Yo-Yo	7	40	· /	'				Duplicate
0000 00000 00000 00000 00000 000000 000000 000000 000000 000000 000000 000000 000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 00000000 00000000 0000000 00000000 00000000 00000000 00000000 000000000	1516 2009/12/08 38	o 28.38 S	046 48.45 E	18:52 N	Antille Transect 2	11	30	У	У	У			PNC	955	154	45 2009/12/09 38 28.26 5	046 43.93 E	E 15:54	Melville Yo-Yo	8	40	y I	у	у	ъL		
Norm Control C	1516 2009/12/08 38	0 28.38 5	040 48.45 E	10:52 N	Achillo Transect 2	12	30			.,	61	100 m	Instance 1 x E L Surface Bucket	956	154	45 2009/12/09 38 28.26 5	046 43.93 E	E 15:54	Melville Yo-Yo	9	20	ý	y				
process procesproces procesproces process process process process	359 1517 2009/12/08 38	8 28 51 9	046 47 57 F	19:57 M	Alville Transport ?	3un 1	751	y	У	ý	JL	100 111	Solopos I X 3 E Sunace Bucket,	957	154	45 2009/12/09 38 28.26 S	046 43.93 E	E 15:54	Melville Yo-Yo	10	2.2	у	у	у	5 L	100 m	Isotopes 1x 5 L Surface Bucket
Bit Bit <td>360 1517 2009/12/08 38</td> <td>8 28 51 5</td> <td>046 47 57 E</td> <td>19:57 M</td> <td>Aelville Transect 2</td> <td>2</td> <td>500</td> <td>y V</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>958</td> <td>156</td> <td>53 2009/12/09 38 28.28 5</td> <td>046 43.91 E</td> <td>E 21:38</td> <td>Melville Yo-Yo</td> <td>1</td> <td>510</td> <td>У</td> <td></td> <td></td> <td></td> <td></td> <td></td>	360 1517 2009/12/08 38	8 28 51 5	046 47 57 E	19:57 M	Aelville Transect 2	2	500	y V						958	156	53 2009/12/09 38 28.28 5	046 43.91 E	E 21:38	Melville Yo-Yo	1	510	У					
Bell 1 start Control Bell Bell Bell Control Bell	1517 2009/12/08 38	8 28.51 S	046 47.57 E	19:57 N	Aelville Transect 2	3	259	ý	1					959	156	53 2009/12/09 38 28.28 S	046 43.91 5	L ∠1:38 E 24-20	Melville Yo Yo	4	400	y					1
Bell 157 2001/100/8 2001/2 </td <td>62 1517 2009/12/08 38</td> <td>8 28.51 S</td> <td>046 47.57 E</td> <td>19:57 N</td> <td>Aelville Transect 2</td> <td>4</td> <td>140</td> <td>ý</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>960</td> <td>156</td> <td>53 2009/12/09 38 28 28 5</td> <td>046 43 91 6</td> <td>E 21:38</td> <td>Melville Yo-Yo</td> <td>4</td> <td>259</td> <td>7</td> <td></td> <td></td> <td></td> <td></td> <td></td>	62 1517 2009/12/08 38	8 28.51 S	046 47.57 E	19:57 N	Aelville Transect 2	4	140	ý						960	156	53 2009/12/09 38 28 28 5	046 43 91 6	E 21:38	Melville Yo-Yo	4	259	7					
etc 1/1 2001/2008 28 58 16 46.775 € 1/5 Making Transect 2 6 6 1/1 2001/2008 28 28 1 46.775 € 1/5 Making Transect 4 6 3 3 7 7	363 1517 2009/12/08 38	8 28.51 S	046 47.57 E	19:57 N	Aelville Transect 2	5	109	У	У					962	156	63 2009/12/09 38 28.28 S	046 43.91 E	E 21:38	Melville Yo-Yo	5	150	ý					
e85 f17 207 f17 207 f17 c17 c17 <th< td=""><td>364 1517 2009/12/08 38</td><td>8 28.51 S</td><td>046 47.57 E</td><td>19:57 N</td><td>Aelville Transect 2</td><td>6</td><td>81</td><td>У</td><td>У</td><td>у</td><td></td><td></td><td></td><td>963</td><td>156</td><td>63 2009/12/09 38 28.28 S</td><td>046 43.91 E</td><td>E 21:38</td><td>Melville Yo-Yo</td><td>6</td><td>80</td><td>ý</td><td>у</td><td></td><td></td><td></td><td></td></th<>	364 1517 2009/12/08 38	8 28.51 S	046 47.57 E	19:57 N	Aelville Transect 2	6	81	У	У	у				963	156	63 2009/12/09 38 28.28 S	046 43.91 E	E 21:38	Melville Yo-Yo	6	80	ý	у				
eta: 0.66 1.517 20091200 200 200	365 1517 2009/12/08 38	8 28.51 S	046 47.57 E	19:57 N	Aelville Transect 2	7	49	У			51			964	156	53 2009/12/09 38 28.28 S	046 43.91 E	E 21:38	Melville Yo-Yo	7	30	ý	y	У	51		Duplicate
BBT BIT 2001 2008 32 36 35 4 4.4 x F 1937 Monite Image: Note of the sector 1937 Monite Image: Note of the sector 1937 Monite 1937 Monit	366 1517 2009/12/08 38	8 28.51 S	046 47.57 E	19:57 N	Aelville Transect 2	8	31	У	У					965	156	53 2009/12/09 38 28.28 S	046 43.91 E	E 21:38	Melville Yo-Yo	8	30				2		
Bits Control C	367 1517 2009/12/08 38	8 28.51 S	046 47.57 E	19:57 N	Aelville Transect 2	9	0	у	У	у	5 L	100 m	Isotopes 1 x 5 L Surface Bucket, Surface bucket	966	156	53 2009/12/09 38 28.28 5	046 43.91 E	E 21:38	Melville Yo-Yo	9	14	У	У			400 -	hadroom to E.L. Confere Durbed
Control Control <t< td=""><td>300 1316 2009/12/08 38</td><td>0 20.30 S</td><td>046 46 96 F</td><td>20.42 0</td><td>Aller Transect 2</td><td>1</td><td>300</td><td>У</td><td>1</td><td></td><td></td><td></td><td></td><td>967</td><td>156</td><td>2003/12/09/38 28.28 5</td><td>046 43.91 6</td><td>L ∠1:38</td><td>Melville Yo Yo</td><td>10</td><td>1.9</td><td>y</td><td>у</td><td>у</td><td>эL</td><td>100 M</td><td>isoropes is 5 L ourrace Bucket</td></t<>	300 1316 2009/12/08 38	0 20.30 S	046 46 96 F	20.42 0	Aller Transect 2	1	300	У	1					967	156	2003/12/09/38 28.28 5	046 43.91 6	L ∠1:38	Melville Yo Yo	10	1.9	y	у	у	эL	100 M	isoropes is 5 L ourrace Bucket
1011 1011 1011 1011 1011 2001 1012 2000 1012	370 1518 2009/12/08 38	8 28 36 5	046 46 85 F	20.42 N	Aelville Transect 2	3	250	y V						969	158	82 2009/12/10 38 28 28 5	046 43.96 F	E 03:39	Melville Yo-Yo	2	401	v l					
arg bit a	1518 2009/12/08 38	8 28,36 5	046 46 85 F	20:42	Aelville Transect ?	4	140	7 V	1					970	158	82 2009/12/10 38 28.28 5	046 43.96 E	E 03:39	Melville Yo-Yo	3	299	ý					1
173 174 174 0	372 1518 2009/12/08 38	8 28.36 S	046 46.85 E	20:42 N	All	5	99	ý	v					971	158	82 2009/12/10 38 28.28 5	046 43.96 E	E 03:39	Melville Yo-Yo	4	249	y					
1612 10001/2008 322.83 E 1046 428.62 20.44 Methile Transent 2 7 50 y y y 2.5.L 100 m 1802 20001/2108 322.83 E 064.43.85 E 02.33 Methile Transent 2 8 2.6.L y	373 1518 2009/12/08 38	8 28.36 S	046 46.85 E	20:42 N	Aelville Transect 2	6	69	ý	$ $		2.5 L			972	158	82 2009/12/10 38 28.28 5	046 43.96 E	E 03:39	Melville Yo-Yo	5	150	у					1
973 1512 20001/2008 328 28.5 B 0464 45.5 E 20.4 Melvile Transect 2 6 24 y y 5.1 Duplicate 071 1512 20001/2008 328 28.5 B 064 46.85 E 20.4 Melvile Transect 2 9 2.6 Duplicate 071 1512 0001/2008 328 28.5 B 064 46.85 E 02.4 Melvile Transect 2 0 100 m Hotopes 1 x 5 L Surface Bucket 071 1512 0001/2008 328 28.5 B 064 46.35 E 02.3 Melvile VorVo 8 4.36 y <	374 1518 2009/12/08 38	8 28.36 S	046 46.85 E	20:42 N	Aelville Transect 2	7	50	ý	у	у				973	158	82 2009/12/10 38 28.28 9	046 43.96 E	E 03:39	Melville Yo-Yo	6	89	У	У				L
978 1512 20001/2018 328.28 S 046 46.85 E 20.42 Machine Transent 2 9 2.6 y	875 1518 2009/12/08 38	8 28.36 S	046 46.85 E	20:42 N	Alleville Transect 2	8	24	y			2.5 L			974	158	82 2009/12/10 38 28.28 5	046 43.96 E	E 03:39	Metville Yo-Yo	7	39				5 L		Duplicate
977 1919 200912/018 382.82.8 S 0.964 4.57 E 123.4 Machine Transect.2 1 106 y	876 1518 2009/12/08 38	8 28.36 S	046 46.85 E	20:42 N	Allelville Transect 2	9	2.6	у	У	у	5 L	100 m	Isotopes 1 x 5 L Surface Bucket	9/5	158	62 2009/12/10 38 28.28 S	046 43.96 8	E 03:39	werville Yo-Yo Mohillo Yo Yo	ŏ	40	У	У	У			
9787 1919 200091/2016 328.22 k3 (bel 40.47 k) [27.34] 3 50 y	877 1519 2009/12/08 38	8 28.24 S	046 45.47 E	21:34 N	Alleville Transect 2	1	106	У						976	158	82 2009/12/10 38 28.28 5	046 43.96 5	E 03:39	Melville Yo-Yo	9 10	19	у	y v	v	51	100 m	Isotopes 1x 5 L Surface Bucket
9779 1919 2019112/0158 32242 5 90 y y 2,5 0,0 y y 2,5 0,0 y y 2,5 0,0 y	878 1519 2009/12/08 38	8 28.24 S	046 45.47 E	21:34 N	Aelville Transect 2	2	68	У	У					978	160	2009/12/10 36 20.28 5	046 43.96 E	E 09:34	Melville Yo-Yo	10	507	y V	у	у	JL	100 111	Solopes IX 0 E Sunace BUCKet
Bell 1011 200011/2016 322.82.75 0404.30/E 200012/01 322.82.82 044.30/E C32.00 y y y y y y y 7.5 0.0 totopes 1 x 5 L Surface Bucket 882 1512 200011/2016 322.82.75 0464.40/E 21.20/E 0.0 Mehnile Yo-Yo 5 1.00 0.0 Mehnile Yo-Yo 6 9 y <td< td=""><td>579 1519 2009/12/08 38</td><td>8 28.24 S</td><td>046 45.47 E</td><td>21:34 N</td><td>Aelville Transect 2</td><td>3</td><td>50</td><td>У</td><td>1</td><td></td><td></td><td></td><td></td><td>979</td><td>160</td><td>00 2009/12/10 38 28.26 5</td><td>046 43.94 F</td><td>E 09:34</td><td>Melville Yo-Yo</td><td>2</td><td>399</td><td>ý</td><td></td><td> </td><td></td><td></td><td>1</td></td<>	579 1519 2009/12/08 38	8 28.24 S	046 45.47 E	21:34 N	Aelville Transect 2	3	50	У	1					979	160	00 2009/12/10 38 28.26 5	046 43.94 F	E 09:34	Melville Yo-Yo	2	399	ý					1
Bit 1000 20001/2016 38 22.7 S 0464 32.0 E 2.2.0 U/2 S 0.0 V/2 S V/2 S 0.0 V/2 S V/2 S 0.0 V/2 S 0.0 V/2 S 0.0 V/2 S V/2 S 0.0 V/2 S 0.	1519 2009/12/08 38	8 28.24 S	046 45.47 E	21:34 N	nerville Transect 2	4	24	У	У	У	2.5 L	00 	leatenes & v E I. Surface Duelet	980	160	00 2009/12/10 38 28.26 5	046 43.94 E	E 09:34	Melville Yo-Yo	3	301	ý					
Bit 20 20001/210 38 22.07 S 0 464 305 E 12:23 Methylin Transect 2 1 tory y y	1519 2009/12/08 38	8 28.24 S	U46 45.47 E	21:34 N	neiville Transect 2	5	0.1	У	У	у	7.51	80 m	Isotopes 1 x 5 L Surface Bucket	981	160	00 2009/12/10 38 28.26 9	046 43.94 E	E 09:34	Melville Yo-Yo	4	250	ý					
construction 12000 1200 1200 1200 1200 1200 1200 120	1520 2009/12/08 38	0 28.27 5	040 44.00 E	22:02 N	Adville Transect 2	1	109	У	У					982	160	00 2009/12/10 38 28.26 9	046 43.94 E	E 09:34	Melville Yo-Yo	5	150	У	У				
assistion construction size y y y size construction size size construction size construction size siz	384 1520 2009/12/08 38	0 20.27 S 8 28 27 S	046 44 60 F	22-02 N	Alleville Transect 2	2	69 51	У	1		51			983	160	00 2009/12/10 38 28.26 5	046 43.94 E	E 09:34	Melville Yo-Yo	6	99	У					1
Base Log Duplicate Duplicate 888 1202 20001/2018 328.27.5 Joke 4.30.F 220.27.6 Joke 4.30.F Joke 4.30.F 220.27.6 Joke 4.30.F 220.27.6 Joke 4.30.F Joke 4.30	1520 2009/12/08 38	8 28.27 5	046 44 60 F	22:02 M	Aelville Transect ?	4	25	y v	v	v	0.2			984	160	00 2009/12/10 38 28.26 9	U46 43.94 E	E 09:34	Merville Yo-Yo Molville Yo Yo	7	50	У	У	ļ	£ .		Duplicato
887 1521 20001/2008 328.33 b/44.378 E 22.33 b/44.378 E 22.34 b/44.378 E E 2.44.478 </td <td>1520 2009/12/08 38</td> <td>8 28.27 5</td> <td>046 44.60 F</td> <td>22:02 N</td> <td>Aelville Transect 2</td> <td>5</td> <td>1.6</td> <td>y V</td> <td>y y</td> <td>, v</td> <td>5 L</td> <td>80 m</td> <td>Isotopes 1 x 5 L Surface Bucket</td> <td>985</td> <td>160</td> <td>00 2009/12/10 38 28.26 5</td> <td>046 43 94 5</td> <td>E 09:34</td> <td>Melville Yo-Yo</td> <td>ă</td> <td>10</td> <td></td> <td></td> <td></td> <td>5 L</td> <td></td> <td>Duplicate</td>	1520 2009/12/08 38	8 28.27 5	046 44.60 F	22:02 N	Aelville Transect 2	5	1.6	y V	y y	, v	5 L	80 m	Isotopes 1 x 5 L Surface Bucket	985	160	00 2009/12/10 38 28.26 5	046 43 94 5	E 09:34	Melville Yo-Yo	ă	10				5 L		Duplicate
888 1521/20001/2018 28.33 B/46 43.78 12.23 Machine Transanct. 2 500 y	387 1521 2009/12/08 38	8 28.33 5	046 43.78 F	22:33 N	Alville Transect 2	1	550	v						087	160	00 2009/12/10 38 28 26 9	046 43 04 5	E 00-34	Melville Yo-Yo	10	1	7	y	7	51	100 m	Isotopes 1x 5 L Surface Bucket
8809 1521 20001*1202 328.33 Def4 378 E 22.30 Marking Transact.2 3 280 y	388 1521 2009/12/08 38	8 28.33 S	046 43.78 E	22:33 N	Alleville Transect 2	2	500	ý						988	160	01 2009/12/12 31 34 33 9	042 45.78 F	E 16:24	WS	1	301	v v	у	y	91	100 11	Isolopes in a E durace bucket
8001 1221 20001/2018 28.33 S Jobed 37.8 E 22.33 Me/ubilite Transent:2 4 201 y	889 1521 2009/12/08 38	8 28.33 S	046 43.78 E	22:33 N	Aelville Transect 2	3	250	ý						989	160	01 2009/12/12 31 34.33 5	042 45.78 E	E 16:24	ws	2	200	ý					
801 1521 20001/2018 328.335 1964.4376 12.333 1964.4376 12.343.35 1964.4376 12.34	390 1521 2009/12/08 38	8 28.33 S	046 43.78 E	22:33 N	Alville Transect 2	4	201	ý						990	160	01 2009/12/12 31 34.33 5	042 45.78 E	E 16:24	WS	3	139	ý					
882 1221 20001/20128 28.33 5/46 43.78 E 12.23 Mole Transect 2 6 100 y	391 1521 2009/12/08 38	8 28.33 S	046 43.78 E	22:33 N	Aelville Transect 2	5	124	У						991	160	01 2009/12/12 31 34.33 5	042 45.78 E	E 16:24	WS	4	119	У	У				
8831 3521 20001/2016 382 38.35 946 43.76 152.42 M/S 6 86 - Duplicate 9831 1521 20001/2016 382 38.35 946 43.76 152.42 M/S 6 86 - Duplicate 9841 1521 20001/2016 382 38.35 946 43.76 152.42 M/S 6 86 - Duplicate 9851 1521 20001/2016 382 38.35 946 43.76 152.43 M/S 942.47.86 152.42 M/S 6 86 - Duplicate 9861 1521 20001/2016 382 38.35 946 43.76 152.43 M/S 942.47.86 152.44 M/S 6 86 - Duplicate 9861 1521 20001/2012 31.43.35 942.47.86 152.44 M/S 6 3 9 y	392 1521 2009/12/08 38	8 28.33 S	046 43.78 E	22:33 N	Aelville Transect 2	6	100	У	У					992	160	01 2009/12/12 31 34.33 5	042 45.78 E	E 16:24	WS	5	86	У	У	У	51		L
8841 1321 20091/2008 J282 335 Jufe 43.75 E 152.4/WS 7 49 y y 8961 1521 20091/2008 J82 83.5 Jufe 43.76 E 152.4/WS 7 49 y y 896 1521 20091/2008 J82 83.5 Jufe 43.76 E 152.4/WS 8 49 y y 896 1521 20091/2008 J82 83.5 Jufe 43.76 E 152.4/WS 8 49.7 E 152.4/WS 8 49.7 Y y <td>393 1521 2009/12/08 38</td> <td>8 28.33 S</td> <td>046 43.78 E</td> <td>22:33 N</td> <td>Aelville Transect 2</td> <td>7</td> <td>68</td> <td>У</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>993</td> <td>160</td> <td>01 2009/12/12 31 34.33 5</td> <td>042 45.78</td> <td>E 16:24</td> <td>WS</td> <td>6</td> <td>86</td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td>Duplicate</td>	393 1521 2009/12/08 38	8 28.33 S	046 43.78 E	22:33 N	Aelville Transect 2	7	68	У	1					993	160	01 2009/12/12 31 34.33 5	042 45.78	E 16:24	WS	6	86						Duplicate
1521 20091/12083828335 Jule 43.78 E 1523 Jule 43.78 E 1521 20091/12083828335 Jule 43.78 E 1524 Jule 43.78 E	1521 2009/12/08 38	8 28.33 S	046 43.78 E	22:33 N	Aelville Transect 2	8	50	У			5 L			994	160	UT 2009/12/12 31 34.33 S	U42 45.78 E	E 16:24	WS	7	49	У	У				
886 1521 2UV91/USB/55 25.35 [VH6 45.75 [22:35] Werkine Iransect 2 10 2.59 9 9 9 5 1 100 m [Isotopes 1:x51.Surface Bucket	1521 2009/12/08 38	8 28.33 S	046 43.78 E	22:33 N	Aelville Transect 2	9	29	У	У	У		400		995	160	01 2009/12/12 31 34.33 5	042 45.78 5	E 16:24	WS	ö	34	y I	У		51	100 m	Isotopes 1x 5 L Surface Bucket
	1521 2009/12/08 38	8 28.33 S	U46 43.78 E	22:33 N	neiviile Transect 2	10	2.59	у	У	у	5 L	100 m	Isotopes 1 x 5 L Surface Bucket	000	100	- 12000/12/12/01 04:00 0	0.42 40.70 0	10.24		0	2.1	7	у	y	JL	100 11	assopus is a clouidue bucket

		1050				1 11910 140	Notes		on Date Latitude	Longitude Time Event	Bottle	Depths	Nuclients Chi-a	Fliyto II		T Hyto-Net	Notes
997 1602 2009/12/13 31 37.34 S 042 49.17 E 13:06 WS Yo-Yo	1	1252	У					1100 16	33 2009/12/14 31 35.90 S	042 47.53 E 21:53 WS Transect	1	1354	У				
999 1602 2009/12/13/31/37/34/S 042/49/17 E 13:06/WS 10-10	3	749	y V					1101 16	33 2009/12/14 31 35.90 S	042 47.53 E 21:53 WS Transect	2	1000	У				
1000 1602 2009/12/13 31 37.34 S 042 49.17 E 13:06 WS Yo-Yo	4	500	ý					1102 16	33 2009/12/14 31 35.90 S	042 47.53 E 21:53 WS Transect	3	749	У				
1001 1602 2009/12/13 31 37.34 S 042 49.17 E 13:06 WS Yo-Yo	5	249	У					1103 16	33 2009/12/14 31 35.90 5	042 47.53 E 21:53 WS Transect	4	500	У				
1002 1602 2009/12/13 31 37.34 S 042 49.17 E 13:06 WS Yo-Yo	6	120	У	У				1104 10	33 2009/12/14 31 35.90 3	042 47.53 E 21.53 W S Transect	5	299	У				
1003 1002 2009/12/13 31 37 34 S 042 49 17 E 13:06 WS 10-10 1004 1602 2009/12/13 31 37 34 S 042 49 17 E 13:06 WS Yo.Yo	8	77	У	У	y 5	L	Dunlicate	1106 16	33 2009/12/14 31 35 90 5	042 47 53 E 21:53 WS Transect	7	98	y v v				
1005 1602 2009/12/13 31 37.34 S 042 49.17 E 13:06 WS Yo-Yo	9	48	y	v			Suprous	1107 16	33 2009/12/14 31 35 90 S	042 47 53 E 21:53 WS Transect	8	79	, ,				Duplicate
1006 1602 2009/12/13 31 37.34 S 042 49.17 E 13:06 WS Yo-Yo	10	19	ý	ý				1108 16	33 2009/12/14 31 35 90 S	042 47 53 E 21:53 WS Transect	9	80	v v	v	5 L		Dupilouto
1007 1602 2009/12/13 31 37.34 S 042 49.17 E 13:06 WS Yo-Yo	11	1.7	у	у	y 5	L 100 m	Isotopes 1x 5 L Surface Bucket	1109 16	33 2009/12/14 31 35 90 S	042 47 53 E 21:53 WS Transect	10	48	v v	,			
1008 1611 2009/12/13 31 37.34 S 042 49.19 E 20:08 WS Yo-Yo	1	1249	У					1110 16	33 2009/12/14 31 35.90 S	042 47.53 E 21:53 WS Transect	11	18	ý ý				
1010 1611 2009/12/13 31 37 34 S 042 49 19 E 20:08 WS T0-T0	2	749	y v					1111 16	33 2009/12/14 31 35.90 S	042 47.53 E 21:53 WS Transect	12	2.6	y y	v	5 L	Broken	Isotopes 1x 5 L Surface Bucket
1011 1611 2009/12/13 31 37.34 S 042 49.19 E 20:08 WS Yo-Yo	4	500	v					1112 16	34 2009/12/14 31 34.53 S	042 45.96 E 21:53 WS Transect	1	1469	y				
1012 1611 2009/12/13 31 37.34 S 042 49.19 E 20:08 WS Yo-Yo	5	250	ý					1113 16	34 2009/12/14 31 34.53 S	042 45.96 E 21:53 WS Transect	2	997	У				
1013 1611 2009/12/13 31 37.34 S 042 49.19 E 20:08 WS Yo-Yo	6	119	У	У				1114 16	34 2009/12/14 31 34.53 S	042 45.96 E 21:53 WS Transect	3	750	У				
1014 1611 2009/12/13 31 37.34 S 042 49.19 E 20:08 WS Yo-Yo	7	69			5	L	Duplicate	1115 16	34 2009/12/14 31 34.53 S	042 45.96 E 21:53 WS Transect	4	499	У				
1015 1611 2009/12/13 31 37.34 S 042 49.19 E 20:08 WS Yo-Yo	8	69	У	У	у			1116 16	34 2009/12/14 31 34.53 S	042 45.96 E 21:53 WS Transect	5	300	У				
1010 1011 2009/12/13 31 37 34 S 042 49 19 E 20:08 WS T0-10 1017 1611 2009/12/13 31 37 34 S 042 49 19 E 20:08 WS Yo.Yo	10	49	y v	y				1117 16	34 2009/12/14 31 34.53 S	042 45.96 E 21:53 WS Transect	6	197	у у				
1018 1611 2009/12/13 31 37.34 S 042 49.19 E 20:08 WS Yo-Yo	11	1.5	v	ý l	v 5	L 100 m	Isotopes 1x 5 L Surface Bucket	1118 16	34 2009/12/14 31 34.53 S	042 45.96 E 21:53 WS Transect	7	101					DNC
1019 1618 2009/12/14 31 37.42 S 042 49.13 E 01:49 WS Yo-Yo	1	1256	ý					1119 16	34 2009/12/14 31 34.53 S	042 45.96 E 21:53 WS Transect	8	64	у у		51		
1020 1618 2009/12/14 31 37.42 S 042 49.13 E 01:49 WS Yo-Yo	2	998	У					1120 16	34 2009/12/14 31 34.53 S	042 45.96 E 21:53 WS Transect	9	64		У			Duplicate
1021 1618 2009/12/14 31 37.42 S 042 49.13 E 01:49 WS Yo-Yo	3	751	У					1121 16	34 2009/12/14 31 34.53 S	042 45.96 E 21:53 WS Transect	10	50	у у				
1022 1618 2009/12/14 31 37.42 S 042 49.13 E 01:49 WS T0-10 1023 1618 2009/12/14 31 37.42 S 042 49.13 E 01:49 WS Yo.Yo	4	2499	y v					1122 16	34 2009/12/14 31 34.53 5	042 45.96 E 21:53 WS Transect	11	20	у у		51	Broken	DNC used surface busicet isstence 1 v E1 from ou
1024 1618 2009/12/14 31 37.42 S 042 49.13 E 01:49 WS Yo-Yo	6	120	v	v				1123 10	34 2009/12/14 31 34.53 3	042 43.96 E 21.33 W3 Transect	12	1.1	y y	у	5 L	DIOKEII	Divo used surface bucket, isotopes 1 x 5 E from su
1025 1618 2009/12/14 31 37.42 S 042 49.13 E 01:49 WS Yo-Yo	7	69	y	ý	y 2.5	L		1125 16	35 2009/12/15 31 33.07 8	042 44 32 E 00:07 WS Transect	2	1499	y				
1026 1618 2009/12/14 31 37.42 S 042 49.13 E 01:49 WS Yo-Yo	8	70					DNC	1126 16	35 2009/12/15 31 33 07 \$	042 44 32 E 00:07 WS Transect	3	1000	y				
102/ 1618 2009/12/14 31 37.42 S 042 49.13 E 01:49 WS Yo-Yo	9	50	У	У	2.5	L .	1	1127 16	35 2009/12/15 31 33 07 S	042 44.32 E 00:07 WS Transect	4	747	y v	1		1	
1020 1010 2009/12/14 31 37.42 S 042 49.13 E 01:49 WS Y0-Y0 1029 1618 2009/12/14 31 37.42 S 042 49.13 E 01:49 WS Yo-Yo	11	1.5	y v	y I	v 5	100 m	Isotopes 1x 5 L Surface Bucket	1128 16	35 2009/12/15 31 33.07 S	042 44.32 E 00:07 WS Transect	5	499	ý	1		1	
1030 1624 2009/12/14 31 37.33 S 042 49.39 E 07:19 WS Yo-Yo	11	1251	ý	<u> </u>	<u> </u>			1129 16	35 2009/12/15 31 33.07 S	042 44.32 E 00:07 WS Transect	6	252	ý	1		1	
1031 1624 2009/12/14 31 37.33 S 042 49.39 E 07:19 WS Yo-Yo	2	1000	y				1	1130 16	35 2009/12/15 31 33.07 S	042 44.32 E 00:07 WS Transect	7	100	y v	1		1	
1032 1624 2009/12/14 31 37.33 S 042 49.39 E 07:19 WS Yo-Yo	3	751	У				1	1131 16	35 2009/12/15 31 33.07 S	042 44.32 E 00:07 WS Transect	8	76		1	51	1	Duplicate
1033 1624 2009/12/14 31 37.33 S 042 49.39 E 07:19 WS Yo-Yo 1034 1624 2009/12/14 31 37 33 S 042 40 30 E 07:40 WS Yo-Yo	4	501 252	У				1	1132 16	35 2009/12/15 31 33.07 S	042 44.32 E 00:07 WS Transect	9	76	у у	У	51	1	
1034 1024 2009/12/14/31 37 33 S 042 49 39 E 07:19 WS Y0-Y0 1035 1624 2009/12/14/31 37 33 S 042 49 39 E 07:19 WS Yo-Yo	6	130	y v	~			1	1133 16	35 2009/12/15 31 33.07 S	042 44.32 E 00:07 WS Transect	10	49	у у	1		1	
1036 1624 2009/12/14 31 37.33 S 042 49.39 E 07:19 WS Yo-Yo	7	81	,	,			Duplicate	1134 16	35 2009/12/15 31 33.07 S	042 44.32 E 00:07 WS Transect	11	18	у у				
1037 1624 2009/12/14 31 37.33 S 042 49.39 E 07:19 WS Yo-Yo	8	79	у	У	y 5	L		1135 16	35 2009/12/15 31 33.07 S	042 44.32 E 00:07 WS Transect	12	1.7	у у	у	5 L	Broken	Isotopes 1x 5 L Surface Bucket
1038 1624 2009/12/14 31 37.33 S 042 49.39 E 07:19 WS Yo-Yo	9	49	y	y .				1136 16	36 2009/12/15 31 59.36 S	041 01.75 E 10:04 Underway to PE	1	302	У				
1039 1624 2009/12/14 31 37.33 S 042 49.39 E 07:19 WS Yo-Yo	10	20	У	У				1137 16	36 2009/12/15 31 59.36 S	041 01.75 E 10:04 Underway to PE	2	302					
1040 1624 2009/12/14 31 37.33 S 042 49.39 E 07:19 WS Yo-Yo	11	2.8	у	У	y 5	L 100 m	Isotopes 1x 5 L Surface Bucket	1138 16	36 2009/12/15 31 59.36 S	041 01.75 E 10:04 Underway to PE	3	302					
1041 1628 2009/12/14 31 37.37 S 042 49.17 E 11:37 WS Y0-Y0 1042 1628 2009/12/14 21 27 27 S 042 40 17 E 11:37 WS Y0-Y0	1	1257	У					1139 16	36 2009/12/15 31 59.36 S	041 01.75 E 10:04 Underway to PE	4	302					
1042 1628 2009/12/14 31 37.37 S 042 49.17 E 11:37 WS Yo-Yo	3	751	y V					1140 16	36 2009/12/15 31 59.36 S	041 01.75 E 10:04 Underway to PE	5	302					
1044 1628 2009/12/14 31 37.37 S 042 49.17 E 11:37 WS Yo-Yo	4	499	ý					1141 16	36 2009/12/15 31 59.36 S	041 01.75 E 10:04 Underway to PE	6	302					
1045 1628 2009/12/14 31 37.37 S 042 49.17 E 11:37 WS Yo-Yo	5	299	У					1142 16	36 2009/12/15 31 59.36 S	041 01.75 E 10:04 Underway to PE		152	у у				
1046 1628 2009/12/14 31 37.37 S 042 49.17 E 11:37 WS Yo-Yo	6	149	У	У				1143 16	36 2009/12/15 31 59.36 S	041 01.75 E 10:04 Underway to PE	8	84	у у	У			
1047 1628 2009/12/14 31 37.37 S 042 49.17 E 11:37 WS Yo-Yo	7	70	У				Dustante	1144 16	36 2009/12/15 31 59.36 S	041 01.75 E 10:04 Underway to PE	9	83					
1040 1628 2009/12/14 31 37 37 S 042 49 17 E 11:37 WS T0-T0	å	50	v	v	v 5	L	Dupicate	1145 16	36 2009/12/15 31 59.36 5	041 01.75 E 10:04 Underway to PE	10	61	у у				
1050 1628 2009/12/14 31 37.37 S 042 49.17 E 11:37 WS Yo-Yo	10	21	v	ý.	,			1146 16	36 2009/12/15 31 59.36 5	041 01.75 E 10:04 Underway to PE	11	19	у у		Nene	100 m	
1051 1628 2009/12/14 31 37 37 S 042 49 17 E 11:37 WS Yo-Yo	11	2.3	ý	ý.	v 5	L 100 m	Isotopes 1x 5 L Surface Bucket	1147 16	36 2009/12/15 31 59.36 5	041 01.75 E 10:04 Underway to PE	12	2.2	у у	У	None	100 m	
1052 1629 2009/12/14 31 41.82 S 042 54.72 E 16:49 WS Transect	1	1702	У	<i>,</i>	,												
1052 1629 2009/12/14 31 41.82 S 042 54.72 E 16:49 WS Transect 1053 1629 2009/12/14 31 41.82 S 042 54.72 E 16:49 WS Transect	1 2	1702 1499	y y	í l													
1052 1629 2009/12/14 31 41.82 S 042 54.72 E 16:49 WS Transect 1053 1629 2009/12/14 31 41.82 S 042 54.72 E 16:49 WS Transect 1054 1629 2009/12/14 31 41.82 S 042 54.72 E 16:49 WS Transect 1054 1629 2009/12/14 31 41.82 S 042 54.72 E 16:49 WS Transect 1054 16:29 2009/12/14 31 41.82 S 042 54.72 E 16:49 WS Transect 1055 16:29 2009/12/14 31 41.82 S 042 54.72 E 16:49 WS Transect	1 2 3	1702 1499 999 750	y y y	,													
1052 1629 2009/12/14 31 41.82 S 042 54.72 E 16.49 WS Transect 1053 1629 2008/12/14 31 41.82 S 042 54.72 E 16.49 WS Transect 1054 1629 2008/12/14 31 41.82 S 042 54.72 E 16.49 WS Transect 1054 1629 2009/12/14 31 41.82 S 042 54.72 E 16.49 WS Transect 1055 1629 2009/12/14 31 41.82 S 042 54.72 E 16.49 WS Transect 1056 1629 2009/12/14 31 41.82 S 042 54.72 E 16.49 WS Transect 1056 1629 2009/12/14 31 41.82 S 042 54.72 E 16.49 WS Transect 1056 1629 2009/12/14 31 41.82 S 042 54.72 E 16.49 WS Transect	1 2 3 4 5	1702 1499 999 750 499	y y y y														
1052 1628 20091/214 31 41 82 5 Abz 54.72 E 16.44 WS Transect 1053 1628 20091/214 31 41 82 5 Abz 54.72 E 16.44 WS Transect 1054 1628 20091/214 31 41 82 5 Abz 54.72 E 16.44 WS Transect 1055 1628 20091/214 31 41 82 5 Abz 54.72 E 16.44 WS Transect 1056 1629 20091/214 31 41 82 5 Abz 54.72 E 16.44 WS Transect 1056 1629 20091/214 31 41.82 5 Abz 54.72 E 16.44 WS Transect 1057 1629 20091/214 31 41.82 5 Abz 54.72 E 16.44 WS Transect 1057 1629 20091/214 31 41.82 5 Abz 54.72 E 16.44 WS Transect	1 2 3 4 5 6	1702 1499 999 750 499 259	y y y y y														
1052 1623 200912/14 31 41 22 2012 54.72 1649 WS Transact 1053 1623 200912/14 31 422 1024 54.72 11649 WS Transact 1054 1623 200912/14 31 422 1042 45.72 11649 WS Transact 1054 1623 200912/14 31 41.82 1024 54.72 11649 WS Transact 1054 1623 200912/14 31 41.82 1024 54.72 11649 WS Transact 1057 1623 200912/14 31 41.82 1024 54.72 11649 WS Transact 1057 1623 200912/14 31 41.82 1024 54.72 11649 WS Transact 1057 1623 200912/14 31 42.82 1024 54.72 11649 WS Transact 1057 1623 200912/14 31 42.82 1024 54.72 11649 WS Transact	1 2 3 4 5 6 7	1702 1499 999 750 499 259 119	y y y y y y	y													
1022 1029 20091721 (3) 41.82 [102 + 40] W5 mmsed 1056 1029 20091721 (3) 41.82 [102 + 40] W5 mmsed 1056 1029 20091721 (3) 41.82 [102 + 40] W5 mmsed 1056 1029 20091721 (3) 41.82 [102 + 40] W5 mmsed 1056 1029 20091721 (3) 41.82 [102 + 40] W5 mmsed 1056 1029 20091721 (3) 41.82 [102 + 40] W5 mmsed 1056 1029 20091721 (3) 41.82 [102 + 40] W5 mmsed 1057 1029 20091721 (3) 41.82 [102 + 40] W5 mmsed 1058 1029 2009172 (3) 41.82 [102 + 40] W5 mmsed 1058 1029 2009172 (3) 41.82 [102 + 40] W5 mmsed 1058 1029 2009172 (3) 41.82 [102 + 40] W5 mmsed 1058 1029 2009172 (3) 41.82 [102 + 40] W5 mmsed	1 2 3 4 5 6 7 8	1702 1499 999 750 499 259 119 77	y y y y y y	у	5		Duplicate										
1002 1609 2009172143 142.25 102.4722 16.491WS Transect 1056 1629 2009172143 142.25 102.4722 16.491WS Transect 1056 1629 2009172143 14.25 102.4722 16.491WS Transect 1057 1629 2009172143 14.25 102.4722 16.491WS Transect 1056 1629 2009172143 14.25 1	1 2 3 4 5 6 7 8 9	1702 1499 999 750 499 259 119 77 75 40	y y y y y y	y y	y 5	L	Duplicate										
1022 1029 2009171/13 14.82 1025 4272 16.48/195 Transact 1056 1029 0009171/13 14.82 1025 4272 16.48/195 Transact 1066 1029 0009171/13 14.82 1025 4727 16.48/195 Transact 1066 1029 0009171/13 14.82 1025 4727 16.48/195 Transact 1056 1029 0009171/13 14.82 1025 4727 16.48/195 Transact 1056 1029 0009171/13 14.82 1025 4727 16.48/195 Transact 1056 1029 0009171/13 14.82 1025 1272 16.48/195 Transact 1056 1029 0009171/13 14.82 1025 1272 16.48/195 Transact 1066 1029 0009171/13 14.82 1025 1272 16.48/195 Transact 1067 1029 0009171/13 14.82 1026 1272 <td>1 2 3 4 5 6 7 8 9 10 11</td> <td>1702 1499 999 750 499 259 119 77 75 49 19</td> <td>y y y y y y y y</td> <td>y y y</td> <td>y 5</td> <td>L</td> <td>Duplicate</td> <td></td>	1 2 3 4 5 6 7 8 9 10 11	1702 1499 999 750 499 259 119 77 75 49 19	y y y y y y y y	y y y	y 5	L	Duplicate										
1002 1609 2009172143 142.25 102.4722 16.491WS Transect 1056 1629 2009172143 142.25 102.4722 16.491WS Transect 1056 1629 2009172143 142.85 102.4722 16.491WS Transect 1056 1629 2009172143 14.25 102.4722 16.491WS Transect 1056 1629 2009172143 14.25 102.4722 16.491WS Transect 1057 1629 2009172143 14.25 102.4722 16.491WS Transect 1057 1629 2009172143 14.25 102.4722 16.491WS Transect 1056 1629 2009172143 14.25 102.4722 16.491WS Transect 1056 1629 2009172143 14.25 102.4722 16.491WS Transect 1056 1629 2009172143 14.25 102.4722 16.491WS Transect 1066 1629 2009172143 14.25 102.4722 16.491WS Transect 1067 1629 200917143 14.25 1	1 2 3 4 5 6 7 8 9 10 11 12	1702 1499 999 750 499 259 119 77 75 49 19 2.2	y y y y y y y y y	y y y y	y 5	L 100 m	Duplicate Isotopes 1x 5 L Surface Bucket										
1022 1029 2009171/13 14.82 1025	1 2 3 4 5 6 7 8 9 10 11 12 1	1702 1499 999 750 499 259 119 77 75 49 19 2.2 1444	y y y y y y y y y y y	y y y y y	y 5	L 100 m	Duplicate Isotopes 1x 5 L Sufface Bucket										
1002 1609 2009172143 142.25 102.4722 16.491WS Transect 1056 1629 2009172143 142.85 102.4722 16.491WS Transect 1056 1629 2009172143 142.85 102.4722 16.491WS Transect 1056 1629 2009172143 14.25 102.4722 16.491WS Transect 1056 1629 2009172143 14.25 102.4722 16.491WS Transect 1057 1629 2009172143 14.25 102.4722 16.491WS Transect 1057 1629 2009172143 14.25 102.4722 16.491WS Transect 1056 1629 2009172143 14.25 102.4722 16.491WS Transect 1056 1629 2009172143 14.25 102.4722 16.491WS Transect 1066 1629 2009172143 14.25 102.4722 16.491WS Transect 1067 1629 2009172143 14.25 102.4722 16.491WS Transect 1068 1629 2009172143 14.25	1 2 3 4 5 6 7 8 9 10 11 12 1 2	1702 1499 999 750 499 259 119 77 75 49 19 2.2 1444 998	y y y y y y y y y y y y	у у у у у	y 5 y 5	L 100 m	Duplicate Isotopes 1x 5 L Surface Bucket										
1022 1629 2009171413 14.22 102.472 116.491 WS Transact 1056 1629 2009172143 14.22 102.472 116.491 WS Transact 1057 1629 2009172143 14.22 102.472 116.491 WS Transact 1057 1629 2009172143 14.22 102.472 116.491 WS Transact 1058 1629 2009172143 14.22 102.472 116.491 WS Transact 1059 1629 2009172143 14.22 102.472 116.491 WS Transact 1059 1629 2009172143 14.22 102.472 116.491 WS Transact 1050 1629 2009172143 14.22 102.472 116.491 WS Transact 1051 1629 2009172143 14.28	1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4	1702 1499 999 750 499 259 119 77 75 49 19 2.2 1444 998 748 749	y y y y y y y y y y y y	у у у у у	y 5 y 5	L 100 m	Duplicate Isotopes 1x 5 L Surface Bucket										
1002 1609 2009172143 142.25 102.4722 16.491WS Transact 1056 1622 2009172143 142.25 102.4722 16.491WS Transact 1056 1622 2009172143 142.85 102.4722 16.491WS Transact 1056 1622 2009172143 14.25 102.4722 16.491WS Transact 1056 1622 2009172143 14.25 102.4722 16.491WS Transact 1057 1622 2009172143 14.25 102.4722 16.491WS Transact 1057 1622 2009172143 14.25 102.4722 16.491WS Transact 1056 1622 2009172143 14.25 102.4727 16.491WS Transact 1056 1622 0009172143 14.25	1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5	1702 1499 999 750 499 259 119 77 75 49 19 2.2 1444 998 748 499 302	y y y y y y y y y y y y y y	у у у у у	y 5 y 5	L 100 m	Duplicate Isotopes 1x 5 L Surface Bucket										
1022 1629 2009172143 142.25 102.64722 1649/W5 Transact 1056 1629 2009172143 142.25 102.64722 1649/W5 Transact 1056 1629 2009172143 142.85 102.64722 164.99 W5 Transact 1056 1629 2009172143 142.85 102.64722 164.99 W5 Transact 1056 1629 2009172143 142.85 102.64722 164.99 W5 Transact 1056 1629 2009172143 142.85 102.64727 164.99 W5 Transact 1056 1629 2009172143 142.85 102.64727 164.99 W5 Transact 1056 1629 2009172143 142.85 102.64727 164.49 W5 Transact 1066 1629 2009172143 142.85 102.64727 164.49 W5 Transact 1066 1629 2009172143 142.85 102.64727 164.49 W5 Transact 1066 1629 2009172143 142.85 102.642725	1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6	1702 1499 999 750 499 259 119 77 75 49 19 2.2 1444 998 748 499 302 200	y y y y y y y y y y y y y y y y	у у у у у	y 5 y 5	L 100 m	Duplicate teologies 1x 5 L Surface Bucket										
1002 1609 2000171/21 (3) 142,5 102,4 17/22 1640 (WS Transect 1056 1629 2000172/14 (3) 142,5 102,4 7/22 1640 (WS Transect 1056 1629 2000172/14 (3) 142,8 102,4 7/22 1640 (WS Transect 1056 1629 2000172/14 (3) 142,8 102,4 7/22 1640 (WS Transect 1056 1629 2000172/14 (3) 142,8 102,4 7/22 1640 (WS Transect 1057 1629 2000172/14 (3) 142,8 102,4 7/22 1640 (WS Transect 1056 1629 2000172/14 (3) 142,8 102,4 7/22 1640 (WS Transect 1056 1629 2000172/14 (3) 142,8 102,4 7/22 1640 (WS Transect 1056 1629 2000172/14 (3) 142,8 102,4 7/22 1640 (WS Transect 1056 1629 2000172/14 (3) 142,8 102,4 7/22 1640 (WS Transect 1056 1629 2000172/14 (3) 142,8 102,4 2/24 1640 (WS Transect 1056 1629	1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7	1702 1499 999 750 499 259 119 77 75 49 19 2.2 1444 998 748 499 302 200 117	У У У У У У У У У У У У У У У У У У У	у у у у у у у	y 5 y 5	L 100 m	Duplicate Isotopes 1x 5 L Surface Bucket										
1022 1629 2009171/13 141.82 102.547/22 1649/W5 Transect 1056 1622 2009171/13 141.82 102.547/22 164.91/W5 Transect 1056 1622 2009171/13 141.82 102.547/22 164.91/W5 Transect 1056 1622 2009171/13 141.82 102.647/22 164.91/W5 Transect 1056 1622 2009171/13 141.82 102.647/22 164.91/W5 Transect 1066 1622 2009171/13 143.82 102.647/22 164.91/W5 Transect 1067 1620 2009171/14 144.82 102.647/22 164.91/W5 Transect 1068 1622 2009171/14 144.82 102.627/22 164.91/W5 Transect 1068 1622 2009171/14	1 2 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9	1702 1499 999 750 499 259 119 77 75 49 19 2.2 1444 998 748 499 302 200 117 78 79	y y y y y y y y y y y y y y y	у у у у у у	y 5 y 5	L 100 m	Duplicate Isotopes 1x 5 L Surface Bucket Duplicate										
1002 1609 200017121 (3) 142.25 102.4772 1640 (WS Transect 1056 1629 20001721 (3) 142.25 102.4772 1640 (WS Transect 1056 1629 20001721 (3) 142.85 102.4772 1640 (WS Transect 1056 1629 20001721 (3) 142.85 102.4772 1640 (WS Transect 1056 1629 20001721 (3) 142.85 102.4772 1640 (WS Transect 1057 1629 20001721 (3) 142.85 102.4772 1640 (WS Transect 1056 1629 20001721 (3) 142.85 102.4772 1640 (WS Transect 1056 1629 20001721 (3) 142.85 102.4772 1640 (WS Transect 1066 1629 20001721 (3) 142.85 102.4772 1640 (WS Transect 1066 1629 20001721 (3) 142.85 102.4772 1640 (WS Transect 1066 1639 20001721 (3) 142.85 102.4772 1640 (WS Transect 1066 1630 20001721 (3)	1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 9 10	1702 1499 999 750 499 259 119 77 75 49 19 2.2 1444 998 748 499 302 200 117 78 79 51	y y y y y y y y y y y y y y y y y y	у у у у у у у	y 5 y 5	L 100 m	Duplicate Isotopes 1x 5 L Surface Bucket Duplicate										
1022 1629 2009171/13 141.82 102.547/22 1649/W5 Transect 1056 1622 2009171/13 141.82 102.547/22 164.91/W5 Transect 1056 1622 2009171/13 141.82 102.547/22 164.91/W5 Transect 1056 1622 2009171/13 141.82 102.547/22 164.91/W5 Transect 1056 1622 2009171/13 142.82 102.547/22 164.91/W5 Transect 1066 1622 2009171/13 142.82 102.547/22 164.91/W5 Transect 1067 1620 2009171/14 144.82 102.547/22 164.91/W5 Transect 1068 1622 2009171/14 144.82 102.520/W5 Transect 103.91/W5 Transect 1068 1620 2009171/1	1 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11	1702 1499 999 750 499 259 119 2.2 1444 998 748 499 200 117 748 499 200 117 78 79 51 18	У У У У У У У У У У У У У У У У У У У	y y y y y y y y	y 5 y 5 y 5	L 100 m	Duplicate Isotopes 1x 5 L Surface Bucket Duplicate										
1002 1609 200017121 (3) 142.25 102.4772 1640 (WS Transect 1056 1622 20017121 (3) 142.25 102.4772 1640 (WS Transect 1056 1622 20017121 (3) 142.85 102.4772 1640 (WS Transect 1056 1622 20017121 (3) 142.85 102.4772 1640 (WS Transect 1056 1622 20017121 (3) 142.85 102.4772 1640 (WS Transect 1057 1622 20017121 (3) 142.85 102.4772 1640 (WS Transect 1056 1622 20017121 (3) 142.85 102.4772 1640 (WS Transect 1056 1622 20017121 (3) 142.85 102.4772 1640 (WS Transect 1066 1622 2001712 (3) 142.85 102.4772 1640 (WS Transect 1067 1622 2001712 (3) 142.85 102.4772 1640 (WS Transect 1068 1622 2001712 (3) 142.85 102.4772 1640 (WS Transect 1068 1620 2001712 (3)	1 2 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 2 2 3 4 5 6 7 8 9 10 11 2	1702 1499 999 750 499 259 119 77 75 49 19 2.2 1444 998 302 200 117 78 79 51 18 1.4	У У У У У У У У У У У У У У У У У У У	у у у у у у у у у у у	y 5 y 5 y 5	L 100 m	Duplicate Isotopes 1x 5 L Surface Bucket Duplicate Isotopes 1x 5 L Surface Bucket										
1022 1629 2009171/21 (3) 142,25 1024 124/22 16449 (WS Transect 1055 1622 2009171/21 (3) 142,25 1024 124/24 144,49 WS Transect 1056 1622 2009171/21 (3) 142,25 1024 124/24 144,49 WS Transect 1056 1622 2009171/21 (3) 142,25 1024 124/24 144,49 WS Transect 1056 1622 2009171/21 (3) 142,25 1024 124/24 144,49 144,44 144,49	1 2 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 9 10 11 12 1 2 1	1702 1499 999 750 499 259 119 77 75 49 19 2.2 1444 998 748 499 302 200 200 200 200 2117 78 79 51 118 18 1.4 1330	y y y y y y y y y y y y y y y y y y y	y y y y y y y y y y	y 5 y 5 y 5 y 5	L 100 m	Duplicate teotopes 1x 5 L Surface Bucket Duplicate footopes 1x 5 L Surface Bucket										
1002 1609 2000171/21 (3) 142,25 1024 5/172 11640 (WS Transect 1055 1622 200171/21 (3) 142,25 1024 5/172 16440 (WS Transect 1056 1622 200171/21 (3) 142,85 1024 5/172 16440 (WS Transect 1056 1622 200171/21 (3) 142,85 1024 5/172 16440 (WS Transect 1057 1622 200171/21 (3) 142,82 1024 5/172 16440 (WS Transect 1056 1622 200171/21 (3) 142,82 1024 5/172 16440 (WS Transect 1056 1622 200171/21 (3) 142,82 1024 5/172 16440 (WS Transect 1056 1622 200171/21 (3) 142,82 1024 5/172 1640 (WS Transect 1056 1622 200171/21 (3) 142,82 1024 5/172 1640 (WS Transect 1056 1622 200171/21 (3) 142,82 1024 5/172 1640 (WS Transect 1056 1622 200171/21 (3) 142,82 1024 5/172 1640 (WS Transect 1056 16	1 2 3 4 5 6 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 2 2 7 8 9 10 11 12 2 2 3 4 5 5 6 6 7 8 9 10 11 11 2 2 3 7 8 9 10 11 11 2 2 3 11 11 11 11 11 11 11 11 11 11 11 11 1	1702 1499 9999 750 499 259 119 77 75 49 19 2.2 1444 998 302 200 117 78 79 51 18 1.4 1330 1030 1070	y y y y y y y y y y y y y y y y y y y	y y y y y y y y y y y	y 5 y 5 y 5	L 100 m	Duplicate Isotopes 1x 5 L Surface Bucket Duplicate Isotopes 1x 5 L Surface Bucket										
1002 1609 2009172113 141.22 102.4772 1640/WS Transed 1055 1629 2009172113 141.25 102.4772 1640/WS Transed 1064 1629 2009172113 141.25 102.4772 1640/WS Transed 1064 1629 2009172113 141.25 102.4772 164.69 WS Transed 1065 1629 2009172113 141.25 102.4772 164.69 WS Transed 1056 1629 2009172113 141.25 102.4772 164.69 WS Transed 1056 1629 2009172143 142.25 102.4772 164.69 WS Transed 1056 1629 2009172143 142.25 102.4727 164.69 WS Transed 1066 1629 2009172143 142.25 102.4727 164.69 WS Transed 1067 1629 2009172143 140.25 102.472.27 164.69 WS Transed 1066 1629 2009172143 140.49 102.42.672.01 162.91 <	1 2 3 4 5 6 7 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 12 12 12 3 3 4	1702 1499 999 750 499 259 119 77 75 49 19 2.2 1444 998 748 499 302 200 117 78 79 51 18 1.4 130 709 51 18 1.4	y y y y y y y y y y y y y y y y y y y	y y y y y y y y y y	y 5 y 5 y 5 y 5	L 100 m	Duplicate Isotopes 1x 5 L Surface Bucket Duplicate Elotopes 1x 5 L Surface Bucket										
1022 1629 200917214 31 42.25 1024 54722 1640 (WS Transect 1055 1622 200917214 31 42.85 1024 54722 1640 (WS Transect 1056 1622 200917214 31 42.85 1024 54722 16400 (WS Transect 1056 1622 200917214 31 42.85 1024 54722 16400 (WS Transect 1056 1622 200917214 31 42.85 1024 54722 16400 (WS Transect 1057 1622 200917214 31 42.85 1024 54722 16400 (WS Transect 1056 1622 200917214 31 42.85 1024 54722 16400 (WS Transect 1056 1622 200917214 31 42.85 1024 54722 16400 (WS Transect 1056 1622 200917214 31 44.95 1024 52472 16400 (WS Transect 1056 1622 200917214 31 44.95 1024 52492 16300 (WS Transect 1056 1632 200917214 31 44.95 1024 52392 11230 (WS Transect 1056 1632 2	1 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 5	1702 1499 999 750 499 259 119 77 75 49 19 2.2 1444 998 499 2.2 1444 998 302 200 117 78 748 302 200 117 78 79 51 18 1 1330 1000 751 499 297	y y y y y y y y y y y y y y y y y y y	y y y y y y y y y	y 5 y 5 y 5 y 5	L 100 m	Duplicate Isotopes 1x 5 L Surface Bucket Duplicate Isotopes 1x 5 L Surface Bucket										
1002 1609 2009172113 141.22 102.4722 1640/WS Transect 1056 1629 2009172113 141.22 102.4722 1640/WS Transect 1064 1629 2009172113 141.28 102.472 164.60 WS Transect 1064 1629 2009172113 141.28 102.472 164.60 WS Transect 1065 1629 2009172113 141.28 102.472 164.60 WS Transect 1056 1629 2009172113 141.28 102.472 164.60 WS Transect 1056 1629 2009172143 141.28 102.472 164.60 WS Transect 1066 1629 2009172143 142.28 102.472 164.60 WS Transect 1066 1629 2009172143 142.28 102.472 164.60 WS Transect 1066 1629 2009172143 140.28 102.422.472 164.60 WS Transect 1066 1629 2009172143 140.28 102.422.620	1 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 7 8 9 10 11 2 3 4 5 5 6 6 6 6 6 7 7 8 9 10 11 2 5 6 6 6 7 7 8 9 9 10 11 2 5 6 6 7 7 8 9 9 10 11 12 2 5 6 6 7 7 8 9 9 10 11 12 2 5 6 6 7 7 8 9 10 11 12 2 5 6 6 7 7 8 9 10 11 12 2 5 6 6 7 7 8 9 10 11 12 2 5 6 6 7 7 8 9 9 10 11 12 2 7 7 8 9 9 10 10 11 12 10 10 11 12 10 10 10 10 10 10 10 10 10 10 10 10 10	1702 1499 999 750 499 259 259 119 77 49 2.2 1444 998 748 749 302 200 117 78 79 51 18 1.4 130 1000 751 18 1.4 999 299 2199	y y y y y y y y y y y y y y y y y y y	y y y y y y y y y y	y 5 y 5 y 5	L 100 m	Duplicate teolopes 1x 5 L Surface Bucket Duplicate Bolopes 1x 5 L Surface Bucket										
1020 1620 200017121 (3) 142.25 102.4772 1640 (WS Transect 1055 1622 20017121 (3) 142.55 102.4772 1640 (WS Transect 1056 1622 20017121 (3) 142.85 102.4772 1640 (WS Transect 1056 1622 20017121 (3) 142.85 102.4772 1640 (WS Transect 1057 1622 20017121 (3) 142.85 102.4772 1640 (WS Transect 1057 1622 20017121 (3) 142.85 102.4772 1640 (WS Transect 1056 1622 20017121 (3) 142.85 102.4772 164.00 (WS Transect 1056 1622 2001712 (3) 142.85 102.4772 164.00 (WS Transect 1066 1622 2001712 (3) 143.95 102.4772 164.00 (WS Transect 1051 1622 2001712 (3) 144.95 102.2302 163.00 (WS Transect 1056 1622 2001712 (3) 144.95 102.2302 163.20 (WS Transect 1056 1622 2001712 (3) <td>1 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 9 10 11 2 3 4 5 6 7 8 9 9 10 11 12 3 4 5 6 7 7 8 9 9 10 11 12 3 4 5 6 7 7 8 9 9 10 11 12 5 6 7 7 8 9 9 10 11 12 5 6 7 7 8 9 9 10 11 12 5 6 7 7 8 9 9 10 11 12 5 6 7 7 8 9 9 10 11 12 5 6 7 7 8 9 9 10 11 12 5 6 7 7 8 9 9 10 11 12 5 6 6 7 7 8 9 9 10 11 12 5 6 6 7 7 8 9 10 11 12 5 6 6 7 7 8 9 10 11 12 2 3 4 5 6 7 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 5 6 7 7 8 9 7 7 8 9 10 11 12 2 3 4 5 5 7 8 9 10 111 2 2 5 7 8 9 9 11 12 2 3 4 5 5 6 7 8 9 9 11 12 2 3 4 5 5 6 7 7 8 9 9 11 1 2 2 3 4 5 5 6 7 8 9 9 111 12 2 5 6 6 7 7 8 9 9 111 12 2 5 6 6 7 7 8 9 9 111 12 2 5 6 6 7 7 8 9 9 111 12 2 5 6 7 7 8 9 9 11 11 2 2 5 6 7 7 7 8 9 9 11 12 7 8 9 9 10 11 12 1 11 12 1 11 1 11 11 11 11 11 11</td> <td>1702 1499 999 750 499 259 259 119 77 75 49 19 2.2 2.2 200 200 200 200 200 200 2117 78 302 200 2117 78 302 200 2117 78 118 1.4 1330 751 499 299 998 998 998 998 998 998 998 998 9</td> <td>У У У У У У У У У У У У У У У У У У У</td> <td>y y y y y y y y y y y y y</td> <td>y 5 y 5 y 5</td> <td>L 100 m</td> <td>Duplicate Isotopes 1x 5 L Surface Bucket Duplicate Isotopes 1x 5 L Surface Bucket</td> <td></td>	1 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 9 10 11 2 3 4 5 6 7 8 9 9 10 11 12 3 4 5 6 7 7 8 9 9 10 11 12 3 4 5 6 7 7 8 9 9 10 11 12 5 6 7 7 8 9 9 10 11 12 5 6 7 7 8 9 9 10 11 12 5 6 7 7 8 9 9 10 11 12 5 6 7 7 8 9 9 10 11 12 5 6 7 7 8 9 9 10 11 12 5 6 7 7 8 9 9 10 11 12 5 6 6 7 7 8 9 9 10 11 12 5 6 6 7 7 8 9 10 11 12 5 6 6 7 7 8 9 10 11 12 2 3 4 5 6 7 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 5 6 7 7 8 9 7 7 8 9 10 11 12 2 3 4 5 5 7 8 9 10 111 2 2 5 7 8 9 9 11 12 2 3 4 5 5 6 7 8 9 9 11 12 2 3 4 5 5 6 7 7 8 9 9 11 1 2 2 3 4 5 5 6 7 8 9 9 111 12 2 5 6 6 7 7 8 9 9 111 12 2 5 6 6 7 7 8 9 9 111 12 2 5 6 6 7 7 8 9 9 111 12 2 5 6 7 7 8 9 9 11 11 2 2 5 6 7 7 7 8 9 9 11 12 7 8 9 9 10 11 12 1 11 12 1 11 1 11 11 11 11 11 11	1702 1499 999 750 499 259 259 119 77 75 49 19 2.2 2.2 200 200 200 200 200 200 2117 78 302 200 2117 78 302 200 2117 78 118 1.4 1330 751 499 299 998 998 998 998 998 998 998 998 9	У У У У У У У У У У У У У У У У У У У	y y y y y y y y y y y y y	y 5 y 5 y 5	L 100 m	Duplicate Isotopes 1x 5 L Surface Bucket Duplicate Isotopes 1x 5 L Surface Bucket										
1020 1620 2000171-10 31 42.2 102.4	1 2 3 4 5 6 7 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 7 8 9 10 11 12 2 3 4 5 6 7 7 8 9 9 10 11 12 2 8 9 7 8 9 9 10 11 12 2 8 8 9 9 10 11 12 2 8 8 9 9 10 11 12 11 2 8 8 9 9 10 11 12 11 2 8 8 9 9 10 11 12 11 2 8 8 9 9 10 11 12 11 2 8 8 9 9 10 11 12 11 11	1702 1499 999 750 499 259 119 77 75 49 19 22 1444 998 302 200 117 78 79 302 200 117 78 79 51 18 1.4 1330 1000 75	y y y y y y y y y y y y y y y y y y y	у у у у у у у у у у у у у у у у у у у	y 5 y 5 y 5	L 100 m	Duplicate Isotopes 1x 5 L Surface Bucket Duplicate Stotopes 1x 5 L Surface Bucket										
1020 1620 2000171/21 31 42.2 102.4 14.2 12.4 14.2 12.4 14.2 12.4 14.4 12.4 12.4 14.4 12.5 10.2 12.7 14.6 14.3 12.4 12.4 12.4 12.4 12.4 12.4 14.4 12.5 10.2 12.4 14.2 12.4 12.4 14.3 12.4 12.4 14.3 12.4 12.4 14.4 12.4 12.4 14.4 12.4 12.4 12.4	1 2 3 4 5 6 7 8 9 10 111 2 3 4 5 6 7 8 9 10 111 12 3 4 5 6 7 7 8 9 10 111 2 3 4 5 6 7 7 8 9 9 10 111 2 3 4 5 6 7 8 9 9 10 111 2 3 4 5 6 7 8 9 9 10 111 2 3 4 5 6 7 8 9 9 10 111 2 3 4 5 6 7 8 9 9 10 111 2 3 4 5 6 7 8 9 9 10 111 2 3 4 5 6 7 8 9 9 10 111 2 3 4 5 6 7 8 9 9 10 111 2 2 3 4 5 6 7 7 8 9 9 10 111 2 2 3 4 5 7 7 8 9 9 10 111 2 2 3 4 5 6 6 7 7 8 9 9 10 111 2 2 3 4 5 7 7 8 9 9 10 111 2 2 3 4 5 7 7 8 9 9 10 111 2 2 3 4 5 7 7 8 9 9 10 111 2 2 3 4 5 7 7 8 9 9 10 111 2 2 3 4 5 5 6 6 7 7 8 9 9 10 111 2 2 5 7 8 9 9 10 111 2 2 3 4 5 6 6 7 7 8 9 9 10 111 2 2 3 4 5 7 8 9 9 10 111 2 2 3 4 5 8 9 9 111 2 2 3 4 5 7 8 9 9 9 111 2 2 3 4 5 8 8 9 9 9 111 2 2 3 4 5 8 8 9 9 9 10 111 2 2 3 4 5 8 8 9 9 9 10 111 2 2 8 9 9 7 7 8 9 9 111 2 2 8 9 8 8 7 8 9 9 11 2 2 8 8 8 8 7 8 8 9 9 10 1 1 2 8 8 8 8 8 8 8 9 10 1 1 2 8 8 8 8 8 8 8 9 10 1 1 2 8 8 8 8 8 8 8 9 8 8 8 8 8 8 8 8 8 8 8	1702 1709 999 750 499 259 119 77 75 49 12,2 1444 998 302 200 117 78 79 51 18 1,4 1330 751 18 1,4 1330 751 199 199 199 199 199 1000 751 75 75 75 75 75 75 75 75 75 75	y y y y y y y y y y y y y y y y y y y	у у у у у у у у у у у у у у у у у	y 5 y 5 y 5 y 5 y 5	L 100 m	Duplicate Isotopes 1x 5 L Surface Bucket Duplicate Isotopes 1x 5 L Surface Bucket										
1020 1020 2000171-10 31 42.2 102-40/22 104-60/22	1 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 12 2 3 4 5 6 7 8 9 10 112 112 112 112 112 112 112 112 112	1702 1499 999 750 499 2259 777 75 49 77 19 22 1444 998 748 998 302 200 1117 78 79 302 200 1177 78 18 302 200 1177 75 1 18 302 200 1177 75 10 19 20 99 99 99 90 90 90 90 90 90 90 90 90 90	y y y y y y y y y y y y y y y y y y y	у у у у у у у у у у у у у у у у у у у	у 5 у 5 у 5 у 5	L 100 m	Duplicate Isotopes 1x 5 L Surface Bucket Duplicate Stotopes 1x 5 L Surface Bucket										
1020 1620 200017121 141.82 1024 1272 1640 (WS Transed) 1055 1622 20017121 131.42 128.25 1024.572 1640 (WS Transed) 1056 1622 20017121 131.42 102.50 102.20 102.12 114.33 142.25 102.44 143.25 102.472 164.60 WS Transed 1056 1622 20017121 131.42 102.45 124.14 142.25 102.472 164.60 WS Transed 1057 1620 20017121 141.42 102.52 102.472 164.60 WS Transed 1066 1620 20017121 141.42 102.472 164.60 WS Transed 1061 1620 20017121 141.42 102.472 164.60 WS Transed 1061 1620 20017121 143.42 102.472 164.60 WS Transed 1064 1620 20017121 144.49 142.230.20 118.20 WS Transed 1064 1620	1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 7 8 9 10 11 12 12 3 4 5 6 7 8 9 10 11 12 12 3 4 5 6 7 8 9 10 11 12 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 7 8 9 10 11 12 2 3 4 5 6 7 7 8 9 10 11 12 2 3 4 5 7 7 8 9 10 11 12 2 3 4 5 7 7 8 9 10 11 12 2 3 4 5 6 7 7 8 9 10 11 12 2 3 7 7 8 9 10 11 12 2 3 4 5 6 6 7 7 8 9 10 11 12 2 3 7 7 8 9 9 10 11 12 2 3 8 9 9 10 11 12 2 3 4 5 6 6 7 7 8 9 9 10 11 12 2 3 7 8 9 9 10 11 12 2 3 4 5 6 6 7 7 8 9 11 12 2 3 4 5 6 6 7 7 8 9 11 12 2 3 4 5 6 6 7 7 8 9 11 12 2 3 8 9 9 10 11 12 2 3 8 9 9 10 11 12 2 3 8 9 9 11 12 2 3 8 9 10 11 12 2 3 8 9 9 10 11 12 2 3 11 12 2 3 12 11 12 12 11 12 12 12 12 12 11 12 12	1702 1499 999 750 499 2259 119 77 75 49 22 20 177 78 49 22 20 20 20 20 20 21 21 444 998 499 22 20 117 78 51 18 1444 998 51 117 778 51 1444 998 99 99 99 99 90 90 90 90 90 90 90 90 90	У У У У У У У У У У У У У У У У У У У	у у у у у у у у у у у у у у у у у у у	y 5 y 5 y 5	L 100 m	Duplicate Isotopes 1x 5 L Surface Bucket Duplicate Isotopes 1x 5 L Surface Bucket Duplicate										
1020 1020 2000171-10 31 42.2 102.4 102.2 102.4	1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 12 12 12 12 12 12 12 12 12 12 12	1702 1499 999 750 499 2259 119 77 75 49 19 22 200 11444 998 302 200 11444 998 302 200 1144 499 51 1.4 1330 1000 75 11330 1000 75 49 99 99 90 90 90 90 90 90 90 90 90 90 90	У У У У У У У У У У У У У У У У У У У	y y y y y y y y y y y y y y y y	y 5 y 5 y 5 y 5	L 100 m	Duplicate Isotopes 1x 5 L Surface Bucket Duplicate Suotopes 1x 5 L Surface Bucket Duplicate Buotopes 1x 5 L Surface Bucket										
1020 1620 200017121 141.82 1024 1272 1640 [WS Transect 1055 1622 20017121 131.42 128.25 1024.5172 164.60 [WS Transect 1056 1622 20017121 131.42 128.25 1024.5172 164.60 [WS Transect 1056 1622 20017121 131.42 128.25 1024.572 164.60 [WS Transect 1057 1622 20017121 131.42 120.25 122.472 164.60 [WS Transect 1057 1620 20017121 141.42 120.24.722 164.60 [WS Transect 1066 1620 20017121 141.42 120.24.722 164.60 [WS Transect 1066 1620 20017121 141.42 120.24.722 164.60 [WS Transect 1066 1620 20017121 141.40 120.24.272 164.60 [WS Transect 1066 1620 20017121 140.40 120.24.272 162.80 [WS Transect 1066 1620 20017121 140.40 120.24.29.20 162.20 [WS Tran	1 2 3 4 5 6 7 7 8 9 100 111 12 2 3 4 5 6 7 7 8 9 100 111 12 1 2 3 4 5 6 7 7 8 9 100 111 12 1 2 3 4 5 6 7 7 8 9 100 111 12 1 1 2 2 3 4 5 6 7 7 8 9 100 111 12 1 1 2 2 3 4 5 6 7 7 8 9 100 111 12 1 1 2 2 3 4 5 6 7 7 8 9 100 111 12 1 1 2 2 3 4 5 6 7 8 9 9 100 111 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1702 999 750 499 2559 1119 77 75 49 19 2.2 2.2 998 748 499 302 200 1117 78 79 93 302 200 1117 18 499 51 18 1.4 499 207 71 1000 751 499 199 910 100 75 1199 1199 100 75 1199 100 75 100 75 100 77 100 78 100 70 100 70 100 77 100 70 77 100 70 77 100 70 70 70 70 70 70 70 70 70 70 70 70 7	У У У У У У У У У У У У У У У У У У У	у у у у у у у у у у у у у у у у у у у	y 5 y 5 y 5 y 5 y 5	L 100 m	Duplicate Isotopes 1x 5 L Surface Bucket Duplicate Isotopes 1x 5 L Surface Bucket Duplicate										
1020 1620 2000171-10 31 42.2 102.4	1 2 3 3 4 5 6 6 7 7 8 9 100 111 12 2 3 3 4 5 6 6 7 7 8 9 9 101 112 1 2 3 3 4 5 6 6 7 7 8 9 9 100 111 12 1 2 3 3 4 5 6 7 7 8 9 100 111 12 1 2 3 3 4 5 6 7 7 8 9 100 111 12 1 2 3 3 1 1 12 1 1 2 3 3 1 1 1 1	1702 1499 999 750 499 259 119 77 75 49 19 22 22 1444 499 302 200 117 18 998 748 499 302 200 117 18 75 51 18 14 499 302 200 119 19 51 19 919 90 90 90 90 90 90 90 90 90 90 90 90 90	У У У У У У У У У У У У У У У У У У У	у у у у у у у у у у у у у у у у у у у	y 5 y 5 y 5 y 5	L 100 m	Duplicate Isotopes 1x 5 L Surface Bucket Duplicate Isotopes 1x 5 L Surface Bucket										
1020 1620 200017121 (3) 142.5 1024 54722 1640 (WS Transed) 1055 1622 20017121 (3) 142.5 1024 54722 1640 (WS Transed) 1056 1622 20017121 (3) 142.5 1024 54722 1640 (WS Transed) 1056 1622 20017121 (3) 142.5 1024 5472 1640 (WS Transed) 1056 1622 20017121 (3) 142.8 1024 5472 1640 (WS Transed) 1057 1622 2001712 (3) 14.28 1024 54722 1640 (WS Transed) 1056 1622 2001712 (3) 14.28 1024 54722 1640 (WS Transed) 1066 1622 2001712 (3) 14.28 1024 54722 1640 (WS Transed) 1066 1622 2001712 (3) 14.42 1024 54721 1640 (WS Transed) 1066 1622 2001712 (3) 14.40 (S) 1024 5202 (1622) (WS Transed) 1066 1632 2001712 (3) 14.40 (S) 1022 200 (WS Transed) 1066 1632 2001712 (3) 14.40 (S)	$\begin{array}{c} 1\\ 2\\ 3\\ 4\\ 6\\ 6\\ 7\\ 8\\ 9\\ 9\\ 10\\ 11\\ 12\\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 9\\ 10\\ 11\\ 12\\ 1\\ 2\\ 3\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 9\\ 10\\ 11\\ 12\\ 1\\ 2\\ 3\\ 3\\ 4\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 9\\ 10\\ 11\\ 12\\ 1\\ 2\\ 3\\ 3\\ 4\\ 4\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 9\\ 10\\ 11\\ 12\\ 1\\ 2\\ 3\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 9\\ 10\\ 11\\ 12\\ 1\\ 2\\ 3\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 9\\ 10\\ 11\\ 12\\ 1\\ 2\\ 3\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 9\\ 10\\ 11\\ 12\\ 1\\ 12\\ 1\\ 2\\ 3\\ 1\\ 12\\ 1\\ 12\\ 1\\ 12\\ 1\\ 12\\ 1\\ 12\\ 1\\ 12\\ 1\\ 12\\ 1\\ 12\\ 1\\ 12\\ 1\\ 1\\ 12\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	1702 999 750 499 119 77 75 49 19 2.2 2.2 998 748 998 748 998 748 998 748 998 748 998 51 1444 9302 200 1177 75 51 18 1.4 499 100 751 100 77 78 78 100 77 75 119 998 77 77 78 499 119 998 77 78 119 998 77 77 78 119 998 77 78 119 998 77 78 119 119 119 119 119 119 119 119 119 11	У У У У У У У У У У У У У У У У У У У	у у у у у у у у у у у у у у у у у у у	y 5 y 5 y 5 y 5 y 5 y 5	L 100 m	Duplicate leotopes 1x 5 L Surface Bucket Duplicate footopes 1x 5 L Surface Bucket Duplicate										
1002 1609 2000171-10 31 42.2 102.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1702 999 9750 4899 119 775 77 77 77 77 77 75 149 12 200 77 77 78 19 12 200 77 78 1444 499 302 200 77 117 78 18 1.44 1330 1000 75 119 95 119 95 100 75 119 119 119 129 119 129 129 119 129 129	х х х х х х х х х х х х х х х х х х х	y y y y y y y y y y y y y y y y y	у 5 <u>у</u> 5 <u>у</u> 5 <u>у</u> 5 <u>у</u> 5	L 100 m L Cod-end I L Broken	Duplicate Isotopes 1x 5 L Surface Bucket Duplicate Isotopes 1x 5 L Surface Bucket										
1002 1603 2009171-01 31 42.2 102.4 102.2 102.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1702 999 750 499 119 77 75 49 19 22 2 1444 49 19 22 2 1444 49 302 200 71 117 78 302 200 111 13 302 200 71 118 302 200 71 119 119 122 119 119 119 119 119 119 11	х х х х х х х х х х х х х х х х х х х	у у у у у у у у у у у у у у у у у у у	y 5 y 5 y 5 y 5	L 100 m L Cod-end I L Broken	Duplicate teotopes 1x 5 L Surface Bucket Duplicate Elotopes 1x 5 L Surface Bucket Duplicate teotopes 1x 5 L Surface Bucket										
1002 1609 2000171-10 31 42.2 102.4 102.2 102.4	1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 7 8 9 10 11 12 1 2 3 4 5 6 7 7 8 9 10 11 12 1 2 3 4 5 6 7 7 8 9 10 11 11 12 1 2 3 4 5 7 8 9 10 10 11 11 12 1 2 1 10 10 10 10 10 10 10 10 10 10 10 10 1	1702 1489 999 119 1750 489 119 177 75 18 19 19 19 19 19 19 10 10 78 13 302 200 117 78 302 200 117 78 18 1.4 489 90 15 15 113 30 100 75 113 100 75 113 113 100 115 115 115 115 115 115 115 115 115	х х х х х х х х х х х х х х х х х х х	у у у у у у у у у у у у у у у у у у у	y 5 y 5 y 5 y 5 y 5 y 5	L 100 m	Duplicate Isotopes 1x 5 L Surface Bucket Duplicate Isotopes 1x 5 L Surface Bucket Duplicaté										
1002 1603 2009171-113 141.22 1024 A172 16440 WS Transed 1055 1623 2009171-113 141.22 1024 A172 16440 WS Transed 1064 1623 2009171-113 141.22 1024 A172 16440 WS Transed 1064 1623 2009171-113 141.22 8124 5472 16440 WS Transed 1056 1623 2009171-113 141.22 1024 5472 16440 WS Transed 1057 1623 2009171-13 141.22 1024 5472 16440 WS Transed 1056 1623 2009171-13 141.22 1024 5472 16440 WS Transed 1066 1623 2009171-13 141.22 1024 5472 16440 WS Transed 1066 1623 2009171-13 141.22 1024 2472 16440 WS Transed 1066 1623 2009171-13 141.22 1024 2472 16440 WS Transed 1066 1623 2009171-13 144.24 1042 6422 16240 WS Transed 1067 1623 2009171-13 144.04 <td>$\begin{matrix} 1\\ 2\\ 3\\ 4\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 9\\ 10\\ 11\\ 12\\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 6\\ 7\\ 8\\ 9\\ 9\\ 10\\ 11\\ 12\\ 2\\ 3\\ 4\\ 5\\ 6\\ 6\\ 7\\ 8\\ 9\\ 9\\ 10\\ 11\\ 12\\ 2\\ 3\\ 4\\ 5\\ 6\\ 6\\ 7\\ 8\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\$</td> <td>1702 1489 9899 4899 4899 4899 4899 119 175 49 19 22 19 22 19 22 10 19 22 20 10 22 20 10 119 119 12 20 20 119 12 20 20 119 119 119 119 119 22 75 119 119 119 119 119 119 119 119 119 11</td> <td>, , , , , , , , , , , , , , , , , , ,</td> <td>у у у у у у у у у у у у у у у у у у у</td> <td>y 5 y 5 y 5 y 5 y 5</td> <td>L 100 m</td> <td>Duplicate Isotopes 1x 5 L Surface Bucket Duplicate Isotopes 1x 5 L Surface Bucket Duplicate Duplicate</td> <td></td>	$\begin{matrix} 1\\ 2\\ 3\\ 4\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 9\\ 10\\ 11\\ 12\\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 6\\ 7\\ 8\\ 9\\ 9\\ 10\\ 11\\ 12\\ 2\\ 3\\ 4\\ 5\\ 6\\ 6\\ 7\\ 8\\ 9\\ 9\\ 10\\ 11\\ 12\\ 2\\ 3\\ 4\\ 5\\ 6\\ 6\\ 7\\ 8\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\$	1702 1489 9899 4899 4899 4899 4899 119 175 49 19 22 19 22 19 22 10 19 22 20 10 22 20 10 119 119 12 20 20 119 12 20 20 119 119 119 119 119 22 75 119 119 119 119 119 119 119 119 119 11	, , , , , , , , , , , , , , , , , , ,	у у у у у у у у у у у у у у у у у у у	y 5 y 5 y 5 y 5 y 5	L 100 m	Duplicate Isotopes 1x 5 L Surface Bucket Duplicate Isotopes 1x 5 L Surface Bucket Duplicate Duplicate										
1002 1609 2000171-10 31 42.5 1024 A172 11-640 WS Transedt 1056 1629 2000171-10 31 42.5 1024 A172 11-640 WS Transedt 1056 1629 2000171-10 31 42.8 1024 A172 11-640 WS Transedt 1056 1629 2000171-10 31 42.8 1024 A172 11-640 WS Transedt 1057 1629 2000171-10 31 42.8 1024 A172 11-640 WS Transedt 1056 1629 2000171-10 31 42.8 1024 A722 16-640 WS Transedt 1066 1629 2000171-10 31 42.8 1024 A722 16-640 WS Transedt 1066 1629 2000171-10 31 42.8 1024 A722 16-640 WS Transedt 1067 1629 2000171-10 31 42.8 1024 A722 16-640 WS Transedt 1068 1620 2000171-10 31 40.405 1042 2200 12-21 WS Transedt 1066 1620 2000171-10	1 2 3 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 11 2 2 3 4 5 6 7 8 9 10 11 11 12 2 3 4 5 7 8 9 10 11 11 12 1 2 1 1 11 12 1 1 11 12 1 1 11 1	1702 14499 4999 4499 4499 4499 4499 4499 44	х. х. х. х. х. х. х. х. х. х. х. х. х. х	у у у у у у у у у у у у у у у у у у у	y 5 y 5 y 5 y 5 y 5	L 100 m	Duplicate Isotopes 1x 5 L Surface Bucket Duplicate Suotopes 1x 5 L Surface Bucket Duplicate Duplicate Duplicate										
1020 1020 2000171-01 31 42.2 102.4 102.2 102.4	1 2 3 3 4 5 6 7 8 9 9 10 11 12 1 2 3 4 4 5 6 7 8 9 9 10 11 12 1 2 3 4 4 5 6 7 8 9 9 10 11 12 1 2 3 4 4 5 6 7 8 9 10 11 12 1 2 3 4 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 11 12 1 2 3 4 5 6 7 8 9 10 11 11 12 1 2 3 4 5 6 7 8 9 10 11 11 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1702 1489 999 469 4759 4759 4759 499 119 175 49 19 22 200 75 19 22 200 200 75 19 22 200 200 75 117 75 51 18 499 227 75 1000 751 199 1000 751 199 1000 751 199 1000 751 199 1000 751 1000 750 750 750 750 750 750 750 750 750	ххххххх хххххх ххххх хххх ххх ххх ххх	у у у у у у у у у у у у у у у у у у у	y 5 y 5 y 5 y 5 y 5 y 5 y 5	L 100 m 100 m L Col-end 1 L Broken L	Duplicate teotopes 1x 5 L Surface Bucket Duplicate teotopes 1x 5 L Surface Bucket Duplicate Duplicate Duplicate Duplicate Duplicate Duplicate										
1020 1620 2000171-10 31 42.5 1024 1722 1640 WS Transect 1055 1622 200171-10 31 42.5 1024 1722 1640 WS Transect 1056 1622 200171-10 31 42.8 1024 172 1640 WS Transect 1056 1622 200171-10 31 42.8 1024 172 1640 WS Transect 1057 1622 200171-10 31 42.8 1024 172 1640 WS Transect 1056 1622 200171-10 31 42.8 1024 172 1640 WS Transect 1056 1622 200171-10 31 42.8 1024 172 1640 WS Transect 1056 1622 200171-10 31 42.5 1024 172 1640 WS Transect 1056 1622 200171-10 31 40.40 81/2 22014 12.82 WS Transect	$\begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 0\\ 0\\ 11\\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 1\\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	1702 14499 4999 4499 4499 4499 4499 4499 44	х х х х х х х х х х х х х х х х х х х	у у у у у у у у у у у у у у у у у у у	y 5 y 5 y 5 y 5 y 5 y 5 y 5 y 5 y 5 y 5	L 100 m	Duplicate Isotopes 1x 5 L Surface Bucket Duplicate Isotopes 1x 5 L Surface Bucket Duplicate Isotopes 1x 5 L Surface Bucket										
1002 1603 2009171-11 31 42.5 1024 17.2 16.40 WS Transact 1054 1623 2009171-11 31 42.5 1024 17.2 16.40 WS Transact 1064 1623 2009171-11 31 42.8 1024 17.2 16.40 WS Transact 1064 1623 2009171-11 31 42.8 1024 17.2 16.40 WS Transact 1057 1623 2009171-11 31 42.8 1024 17.2 16.40 WS Transact 1056 1623 2009171-11 31 42.8 1024 12.7 16.40 WS Transact 1066 1623 2009171-11 31 42.8 1024 12.4 10.40 WS Transact 1066 1623 2009171-11 31 42.8 12.4 12.4 10.40 WS Transact 1066 1623 2009171-11 31 42.8 12.4 14.4 12.4 12.4	1 2 3 3 4 5 6 7 8 9 9 0 11 12 1 2 3 4 4 5 6 7 8 9 9 10 11 12 1 2 3 4 4 5 6 7 8 9 9 10 11 12 1 2 3 4 4 5 6 7 8 9 10 11 12 1 2 3 4 4 5 6 7 8 9 10 11 12 1 2 3 4 4 5 6 7 8 9 10 11 12 1 2 3 4 4 5 6 7 8 9 10 11 12 12 1 2 3 4 5 6 7 8 9 10 11 12 12 1 2 3 1 4 5 6 7 8 9 10 11 12 12 12 12 12 12 12 12 12 12 12 12	1702 1489 999 900 1489 999 900 900 900 900 900 900 900 900 9	, , , , , , , , , , , , , , , , , , ,	у у ууууу у ууууу у ууууу у ууууу	y 5 y 5 y 5 y 5 y 5 y 5 y 5 y 5 y 5	L 100 m	Duplicate teotopes 1x 5 L Surface Bucket Duplicate Exotopes 1x 5 L Surface Bucket Duplicate Duplicate Exotopes 1x 5 L Surface Bucket Exotopes 1x 5 L Surface Bucket										

Appendix B Multinet and bongo net metadata

B1 Multinet metrics

Date	station	Position	Time [hh:mm:ss]	Net []	Pressure [dbar]	Volume [m³]	Flow in [m/s]	Flow out [m/s]	Flow ratio [%]	Comments [Index]
11:06:26 11:14:2009	PL3	S 26 56 20 E 56 18 84 S 26 56 20 E 56 18	11:27:50	1	250.1	0	0.3	0.3	100	
11-14-2009 11:06:26 11-14-2009	PL3	S 26 56 20 E 56 18 S 26 56 20 E 56 18	11:30:20	1	202.9	8	0.2	0.2	100	
11:06:26 11-14-2009	PL3	84 S 26 56 20 E 56 18	11:30:21	2	202.6	0	0.1	0.3	33.33	
11:06:26 11-14-2009	PL3	84 S 26 56 20 E 56 18	11:34:47	2	151.8	54	0.7	0.3	233.33	
11:06:26 11-14-2009	PL3	84 84 826 56 20 E 56 18	11:34:48	3	151.6	0	0.8	0.2	400	
11:06:26 11-14-2009	PL3	84 S 26 56 20 E 56 18	11:42:51	3	101.6	224	2.1	1.8	116.67	
11:06:26 11-14-2009	PL3	84 S 26 56 20 E 56 18	11:42:52	4	101.3	0	2.1	1.9	110.53	
11:06:26 11-14-2009	PL3	84 S 26 56 20 E 56 18	11:46:26	4	50.6	101	1.8	1.7	105.88	
11:06:26 11-14-2009	PL3	84 S 26 56 20 E 56 18	11:46:27	5	50.3	0	2	1.8	111.11	
11:06:26	PL3	84	11:49:23	5	1.5	69	1.6	0.9	177.78	
11-14-2009 12:03:31 11-14-2009	PL4	S 26 56 47 E 56 14 56 S 26 56 47 E 56 14	12:18:58	1	199.3	0	0.2	0.2	100	
12:03:31 11-14-2009	PL4	56 S 26 56 47 E 56 14	12:21:49	1	151.3	15	0.1	0.3	33.33	
12:03:31 11-14-2009	PL4	56 S 26 56 47 E 56 14	12:21:50	2	151.3	0	0.1	0.1	100	
12:03:31 11-14-2009	PL4	56 S 26 56 47 E 56 14	12:27:55	2	101.8	123	1	1.1	90.91	
12:03:31 11-14-2009	PL4	56 S 26 56 47 E 56 14	12:27:56	3	101.9	0	1.1	0.8	137.5	
12:03:31 11-14-2009	PL4	56 S 26 56 47 E 56 14	12:33:30	3	50.7	151	1.5	1.7	88.24	
12:03:31 11-14-2009	PL4	56 S 26 56 47 E 56 14	12:33:31	4	51	0	1.2	1.4	85.71	
12:03:31 11-14-2009	PL4 PL4	56 S 26 56 47 E 56 14	12:35:24 12:35:25	4 5	25.6 25.6	50 0	1.7 1.5	1.6 1.5	106.25 100	

12:03:31		56							
12:03:31	PL4	5 26 56 47 E 56 14 56	12:37:03	5	0.6	42	1.4	0.8	175
11-14-2009		S 26 56 66 E 56 17							
19:22:14	PL7	78	19:39:13	1	252	0	0.2	0.3	66.67
11-14-2009	DI 7	S 26 56 66 E 56 17	40.40.04		000.0	04	0.0	0.4	000
19:22:14	PL7		19:48:31	1	202.8	61	0.8	0.1	800
11-14-2009	ד ום	5 20 50 00 E 50 17	10,40,22	2	202.4	0	0.7	0.2	222.22
19:22:14	PL/		19:48:32	Z	202.1	0	0.7	0.3	233.33
11-14-2009		5 20 50 00 E 50 17	10.52.20	2	117 0	00	1 1	1 0	9462
19.22.14	FL/	70 S 26 56 66 E 56 17	19.55.20	Z	147.0	90	1.1	1.5	04.02
11-14-2009		3 20 30 00 E 30 17	10.52.21	2	117 1	0	1 1	1 2	94 62
19.22.14	FL/	70 S 26 56 66 E 56 17	19.55.21	3	147.1	0	1.1	1.5	04.02
10.22.11	PI 7	78	10.26.03	З	100.2	65	16	16	0
11-14-2009	1 67	S 26 56 66 E 56 17	19.50.05	5	100.2	00	1.0	1.0	0
19.22.14	PI 7	78	19.26.04	4	100.2	0	14	14	100
11-14-2009	1 27	S 26 56 66 E 56 17	10.00.04	т	100.2	Ū	1.4	1.4	100
19.22.14	PI 7	78	19:59:55	4	50.6	98	18	17	105 88
11-14-2009	/	S 26 56 66 E 56 17	10.00.00	•	00.0	00	1.0		100.00
19:22:14	PL7	78	19:59:56	5	50.6	0	1.6	1.6	100
11-14-2009		S 26 56 66 E 56 17		Ū	0010	C C			
19:22:14	PL7	78	20:03:14	5	1.9	75	1	0.7	142.86
11-14-2009		S 26 56 00 E 56 16							
20:13:48	PL8	29	20:26:11	1	201.2	0	0.2	0.3	66.67
11-14-2009		S 26 56 00 E 56 16							
20:13:48	PL8	29	20:29:04	1	151.9	10	0.8	0.1	800
11-14-2009		S 26 56 00 E 56 16							
20:13:48	PL8	29	20:29:05	2	151.9	0	0.8	0.2	400
11-14-2009		S 26 56 00 E 56 16							
20:13:48	PL8	29	20:34:14	2	101.4	66	1.2	0.1	1200
11-14-2009		S 26 56 00 E 56 16							
20:13:48	PL8	29	20:34:15	3	101.4	0	1.3	0.2	650
11-14-2009		S 26 56 00 E 56 16							
20:13:48	PL8	29	20:40:30	3	51.4	155	1.2	1.3	92.31
11-14-2009		S 26 56 00 E 56 16							
20:13:48	PL8	29	20:40:31	4	51.3	0	1.2	1.2	100

Final cruise report: Southern Indian Ocean Seamounts 2009

	Final cruise report: Southern Indian Ocean Seamounts 2009										
44.44.0000											
11-14-2009		S 26 56 00 E 56 16	00.40.40	4	25.0	4.4	1.0	1.0	440 5		
20:13:48	PL8	29 8 36 56 00 5 56 16	20:42:18	4	25.2	41	1.8	1.0	112.5		
11-14-2009 20:13:48		S 20 30 00 E 30 10 20	20.42.10	5	24.6	0	1.8	16	112.5		
20.13.40	FLO	29 S 26 56 00 E 56 16	20.42.19	5	24.0	0	1.0	1.0	112.5		
20:13:48	PL8	29	20:43:37	5	0.6	27	1.2	1.3	92.31		
_00	0			Ū.	010				0_101		
11-17-2009		S 32 43 00 E 57 17									
08:21:45	PL18	49	08:30:15	1	199.9	0	0.5	0.2	250		
11-17-2009		S 32 43 00 E 57 17									
08:21:45	PL18	49	08:33:07	1	151.9	33	1.1	0.3	366.67		
11-17-2009		S 32 43 00 E 57 17		_		_					
08:21:45	PL18	49	08:33:08	2	151.2	0	1	0.2	500		
11-17-2009		S 32 43 00 E 57 17	~~~~~~	0	101.1	404	4.0		05 74		
08:21:45	PL18	49 8 33 43 00 E 57 47	08:38:32	2	101.1	121	1.2	1.4	85.71		
11-17-2009	DI 19	5 32 43 00 E 57 17 40	00.20.22	2	101.2	0	1	1 2	02.22		
11-17-2000	FLIO	49 S 32 /3 00 E 57 17	00.30.33	3	101.5	0	I	1.2	03.33		
08.21.45	PI 18	2 3 2 4 3 00 L 37 17	08.43.46	З	51 9	121	12	13	92 31		
11-17-2009	I EIO	S 32 43 00 F 57 17	00.40.40	U	01.0	121	1.2	1.0	52.01		
08:21:45	PL18	49	08:43:47	4	52.2	0	1	1.1	90.91		
11-17-2009		S 32 43 00 E 57 17		-	• =	-	-				
08:21:45	PL18	49	08:45:55	4	25.8	44	1.2	1.3	92.31		
11-17-2009		S 32 43 00 E 57 17									
08:21:45	PL18	49	08:45:56	5	26.1	0	0.8	1	80		
11-17-2009		S 32 43 00 E 57 17									
08:21:45	PL18	49	08:47:49	5	1.3	50	1.4	1.4	100		
44 40 0000											
11-18-2009		5 32 44.87 E 57	47.47.54	4	201.2	0	0 5	0.7	74 40		
17.10.04	PL20	10.29 9 22 11 97 E 57	17.17.51	I	201.2	0	0.5	0.7	71.43		
17-10-2009	PI 26	3 32 44.07 E 37 16 20	17.22.08	1	151 1	78	12	1 1	100.00		
11-18-2009	1 220	S 32 44 87 E 57	17.22.00	1	101.1	70	1.2	1.1	103.03		
17.10.04	PI 26	16 29	17.22.09	2	151 1	0	14	1 1	127 27		
11-18-2009	1 220	S 32 44.87 E 57	11.22.00	-	10111	Ū			121.21		
17:10:04	PL26	16.29	17:27:35	2	100.3	112	1.2	1	120		
11-18-2009	-	S 32 44.87 E 57							-		
17:10:04	PL26	16.29	17:27:36	3	100.2	0	1.4	0.9	155.56		
11-18-2009		S 32 44.87 E 57									
17:10:04	PL26	16.29	17:33:04	3	51.2	108	0.2	0.5	40		
					139						

		1 IIIdi	cruise repor	. 50uu			13 200 7			
11-18-2009		S 32 44 87 F 57								
17:10:04	PL26	16.29	17:33:05	4	51.3	0	0.7	0.7	100	
11-18-2009		S 32 44.87 E 57								
17:10:04	PL26	16.29	17:35:21	4	24.9	32	0.8	0.8	100	
11-18-2009		S 32 44.87 E 57		_						
17:10:04	PL26	16.29	17:35:22	5	24.6	0	1.2	0.9	133.33	
11-18-2009		S 32 44.87 E 57		_						
17:10:04	PL26	16.29	17:37:56	5	1	45	0.5	0.8	62.5	
11-18-2009		S 32 43 86 E 57 19								
21:28:08	PL27	78	21:40:16	1	250.6	0	0.3	0.1	300	
11-18-2009		S 32 43 86 E 57 19								
21:28:08	PL27	78	21:44:34	1	200.7	72	1.5	1.3	115.38	
11-18-2009		S 32 43 86 E 57 19								
21:28:08	PL27	78	21:44:35	2	200.5	0	1.3	1.1	118.18	
11-18-2009		S 32 43 86 E 57 19								
21:28:08	PL27	78	21:48:54	2	150.1	86	1.4	1.3	107.69	
11-18-2009		S 32 43 86 E 57 19								
21:28:08	PL27	78	21:48:55	3	150.4	0	0.8	1	80	
11-18-2009		S 32 43 86 E 57 19								
21:28:08	PL27	78	21:56:18	3	100.1	150	1.7	1.6	106.25	
11-18-2009	_	S 32 43 86 E 57 19								
21:28:08	PL27	78	21:56:19	4	99.8	0	1.8	1.6	112.5	
11-18-2009		S 32 43 86 E 57 19					_			
21:28:08	PL27	78	22:01:49	4	50	151	2	1.7	117.65	
11-18-2009	51.0-	S 32 43 86 E 57 19		_	10 -			. –		
21:28:08	PL27	/8	22:01:50	5	49.7	0	1.8	1.7	105.88	
11-18-2009		S 32 43 86 E 57 19	00 00 07	-	0.4	405	4	4.0	00.00	
21:28:08	PL27	78	22:06:27	5	2.1	125	1	1.2	83.33	
11-18-2009		S 32 44 68 E 57 17								
22:25:01	PL28	29	22:35:48	1	199.4	0	1.4	0.8	175	
11-18-2009		S 32 44 68 E 57 17		•		Ū.		0.0		
22:25:01	PL28	29	22:38:27	1	150.4	53	1.2	1.1	109.09	
11-18-2009		S 32 44 68 E 57 17								
22:25:01	PL28	29	22:38:28	2	150.1	0	1.4	1	140	
11-18-2009	-	S 32 44 68 E 57 17				-			-	
22:25:01	PL28	29	22:43:05	2	100	90	0.3	0.2	150	
11-18-2009	-	S 32 44 68 E 57 17					-	-		
22:25:01	PL28	29	22:43:06	3	100.3	0	0.8	0.5	160	
					140					

	Final cruise report: Southern Indian Ocean Seamounts 2009											
11-18-2009		S 32 44 68 E 57 17										
22:25:01	PL28	29 S 32 44 68 E 57 17	22:50:33	3	50.8	187	1.2	1.4	85.71			
22:25:01	PL28	29	22:50:34	4	50.9	0	1.2	1.2	100			
11-18-2009 22:25:01	PL28	S 32 44 68 E 57 17 29	22:52:52	4	24.8	51	1.4	1.5	93.33			
11-18-2009 22:25:01	PI 28	S 32 44 68 E 57 17 29	22.52.53	5	24 9	0	1 1	12	91.67			
11-18-2009	T L20	S 32 44 68 E 57 17	22.02.00	-	24.5	0		1.2	01.07			
22:25:01	PL28	29	22:54:52	5	0.4	44	1	1	100			
11-19-2009		S 32 45 38 E 57 16	08.36.30	1	251.2	0	0.8	0.1	800			
11-19-2009	FL29	S 32 45 38 E 57 16	00.20.30	I	201.5	0	0.8	0.1	800			
08:06:30 11-19-2009	PL29	38 S 32 45 38 E 57 16	08:30:06	1	200.6	56	0.9	0.2	450			
08:06:30	PL29	38 0 00 15 00 E 57 10	08:30:07	2	200.7	0	1	0.2	500			
08:06:30	PL29	S 32 45 38 E 57 16 38	08:36:39	2	149.2	142	1.5	1.4	107.14			
11-19-2009 08:06:30	PI 29	S 32 45 38 E 57 16 38	08:36:40	3	148 5	0	18	17	105 88			
11-19-2009		S 32 45 38 E 57 16	00.44.50	0	400.4	400	1.0		05.74			
08:06:30 11-19-2009	PL29	38 S 32 45 38 E 57 16	08:41:53	3	100.1	122	1.2	1.4	85.71			
08:06:30	PL29	38 S 32 45 38 E 57 16	08:41:54	4	100.3	0	1	1.1	90.91			
08:06:30	PL29	38	08:45:30	4	50.7	87	1.6	1.6	100			
11-19-2009 08:06:30	PL29	S 32 45 38 E 57 16 38	08:45:31	5	50.8	0	1.3	1.4	92.86			
11-19-2009 08:06:30	PI 29	S 32 45 38 E 57 16 38	08.48.23	5	0	60	16	0.9	177 78			
00.00.00	1 220		00.40.20	U	0	00	1.0	0.0	111.10			
11-19-2009 09:08:11	PL30	S 32 45 23 E 57 18 09	09:17:13	1	201.3	0	0.5	0.1	500			
11-19-2009	DI 30	S 32 45 23 E 57 18	00.21.56	1	150.8	86	0.0	1	00			
11-19-2009	FL30	S 32 45 23 E 57 18	09.21.50	I	150.0	00	0.9	I	90			
09:08:11 11-19-2009	PL30	09 S 32 45 23 E 57 18	09:21:57	2	151.1	0	0.8	0.8	100			
09:08:11	PL30	09	09:27:09	2	100.5	94	0.5	0.9	55.56			
					141							

	Final cruise report: Southern Indian Ocean Seamounts 2009											
44.40.0000												
11-19-2009		S 32 45 23 E 57 18	00.07.40	0	404	0	0.0	0.5	<u> </u>			
09:08:11	PL30		09:27:10	3	101	0	0.3	0.5	60			
11-19-2009		S 32 45 23 E 57 18	00.21.25	2	E0 0	02	1.0	1 1	02.96			
11 10 2000	FL30		09.51.55	3	50.6	93	1.5	1.4	92.00			
11-19-2009		3 32 43 23 E 57 10	00.21.26	1	50.2	0	1 0	15	120			
11-19-2009	FL30	S 32 45 23 E 57 18	09.51.50	4	50.2	0	1.0	1.5	120			
09·08·11	PI 30	0 02 40 20 L 07 10	00.33.30	Δ	25.1	51	16	16	100			
11-19-2009	1 200	S 32 45 23 E 57 18	09.00.09	-	23.1	51	1.0	1.0	100			
09.08.11	PI 30	09240202010	09.33.40	5	25	0	14	14	100			
11-19-2009	1 200	S 32 45 23 E 57 18	00.00.10	Ũ	20	Ũ			100			
09:08:11	PL30	09	09:35:20	5	0.1	40	1.6	1.4	114.29			
				-								
11-21-2009		S 36 48 42 E 52 07										
22:07:19	PL44	79	22:16:10	1	200	0	0.7	0.1	700			
11-21-2009		S 36 48 42 E 52 07										
22:07:19	PL44	79	22:19:47	1	150.2	71	1	1	100			
11-21-2009		S 36 48 42 E 52 07										
22:07:19	PL44	79	22:19:48	2	149.8	0	1	1	100			
11-21-2009		S 36 48 42 E 52 07										
22:07:19	PL44	79	22:27:07	2	101.9	155	1	1.1	90.91			
11-21-2009		S 36 48 42 E 52 07										
22:07:19	PL44	79	22:27:08	3	101.4	0	1.5	1.2	125			
11-21-2009		S 36 48 42 E 52 07										
22:07:19	PL44	79	22:32:26	3	50.5	112	1	1	100			
11-21-2009		S 36 48 42 E 52 07				_						
22:07:19	PL44	79	22:32:27	4	50.5	0	1.2	1	120			
11-21-2009		S 36 48 42 E 52 07			05.4			4.0	00 0 7			
22:07:19	PL44	79	22:34:32	4	25.1	39	0.8	1.2	66.67			
11-21-2009		S 36 48 42 E 52 07	00-04-00	_	05.4	0	0.5	0.0				
22:07:19	PL44	/9 0.00.40.40 E 50.07	22:34:33	5	25.4	0	0.5	0.9	55.56			
11-21-2009		5 36 48 42 E 52 07	00.00.04	~	4.4	20	1.0	4.4	444.00			
22:07:19	PL44	79	22:30:21	5	1.1	39	1.0	1.4	114.29			
11 21 2000												
11-21-2009 22:15:11		3 30 49 39 E 32 00 80	22.22.12	1	2/18 /	0	05	0.4	105			
22.4J.41 11-21-2000	FL40	5 36 10 50 E 52 08	22.31.13	I	240.4	U	0.0	0.4	120			
22.42.41		0 00 49 09 E 02 00 80	23.00.43	1	200 1	71	1.8	16	112 5			
11-21-2000	F L40	5 36 49 50 E 52 08	23.00.43	I	200.1	11	1.0	1.0	112.0			
22.42.41	PI 45	80	23.00.44	2	199.6	Ο	1.8	16	112 5			
	1 240	00	20.00.77	~	140	0	1.0	1.0	112.0			
					142							

	Final cruise report: Southern Indian Ocean Seamounts 2009											
11-21-2009		S 36 49 59 E 52 08										
22:45:41	PI 45	80	23.05.36	2	151 1	104	0.6	1 1	54 55			
11-21-2009		S 36 49 59 E 52 08	20.00.00	2	101.1	104	0.0		04.00			
22:45:41	PL45	80	23:05:37	3	150.7	0	1.2	1.3	92.31			
11-21-2009		S 36 49 59 E 52 08										
22:45:41	PL45	80	23:09:05	3	100.2	79	2.1	1.4	150			
11-21-2009		S 36 49 59 E 52 08										
22:45:41	PL45	80	23:09:06	4	99.5	0	2.2	1.7	129.41			
11-21-2009		S 36 49 59 E 52 08										
22:45:41	PL45	80	23:12:31	4	50.5	83	1.6	1.4	114.29			
11-21-2009	51.45	S 36 49 59 E 52 08	~ ~ ~ ~ ~ ~	_					100			
22:45:41	PL45	80	23:12:32	5	50.1	0	1.8	1.5	120			
11-21-2009		S 36 49 59 E 52 08	22.15.10	F	0.0	60	1.0	2	00			
22:45:41	PL45	80	23:15:19	5	0.2	62	1.8	2	90			
11 22 2000		S 26 52 28 E 5202										
11-22-2009	PI 46	27	11.27.08	1	100 6	0	1 9	15	126 67			
11-22-2009	1 240	S 36 52 38 E 5203	11.27.00		155.0	0	1.5	1.0	120.07			
11:19:19	PL46	27	11:29:42	1	149.8	38	1.4	0.3	466.67			
11-22-2009	. 2.10	S 36 52 38 E 5203	11.201.12	•	11010	00		0.0	100101			
11:19:19	PL46	27	11:29:43	2	149.6	0	1	0.3	333.33			
11-22-2009		S 36 52 38 E 5203										
11:19:19	PL46	27	11:34:58	2	100.3	108	1.7	1.4	121.43			
11-22-2009		S 36 52 38 E 5203										
11:19:19	PL46	27	11:34:59	3	100.1	0	1.5	1.5	100			
11-22-2009	_	S 36 52 38 E 5203										
11:19:19	PL46	27	11:40:20	3	50.3	107	0.8	1.5	53.33			
11-22-2009		S 36 52 38 E 5203				<u> </u>		4.0	00 F			
11:19:19	PL46	27	11:40:21	4	50	0	1	1.6	62.5			
11-22-2009		5 36 52 38 E 5203	11.10.10	4	25.0	20	4	1	100			
11.19.19	PL40	21 S 36 52 38 E 5203	11.42.19	4	20.0	39	I	I	100			
11-22-2009	PI 46	0 00 02 00 L 0200 97	11.42.20	5	25.6	0	1 1	1	110			
11-22-2009	1 240	S 36 52 38 E 5203	11.42.20	5	25.0	0	1.1		110			
11:19:19	PL46	27	11:44:07	5	1.2	39	1.3	1.2	108.33			
				-		~~						
11-22-2009		S 36 51.13 E 52										
11:54:53	PL47	03.39	12:05:50	1	250.9	0	0.9	0.8	112.5			
11-22-2009		S 36 51.13 E 52										
11:54:53	PL47	03.39	12:08:34	1	200.2	49	0.2	0.3	66.67			
					143							

			1							
11-22-2009		S 36 51.13 E 52								
11:54:53	PL47	03.39	12:08:35	2	199.7	0	0.4	0.5	80	
11-22-2009		S 36 51.13 E 52								
11:54:53	PL47	03.39	12:14:33	2	150.1	122	1.6	1.5	106.67	
11-22-2009		S 36 51.13 E 52								
11:54:53	PL47	03.39	12:14:34	3	150.2	0	1.2	1.3	92.31	
11-22-2009		S 36 51.13 E 52		-						
11:54:53	PL47	03.39	12:21:14	3	100.8	140	1.4	1.2	116.67	
11-22-2009	-	S 36 51.13 E 52				•				
11:54:53	PL47	03.39	12:21:15	4	100.5	0	1.6	1.3	123.08	
11-22-2009		S 36 51.13 E 52	10.00.11		50.4	404	4.0	4.0	400.00	
11:54:53	PL47		12:26:11	4	50.4	101	1.3	1.2	108.33	
11-22-2009		S 36 51.13 E 52	40.00.40	-	50 5	0	4.0	4	400	
11:54:53	PL47	03.39	12:26:12	5	50.5	0	1.2	1	120	
11-22-2009		S 36 51.13 E 52	10.00.50	F	0.0	70	4	1.0	76.00	
11:54:53	PL47	03.39	12:29:58	Э	0.9	78	1	1.3	76.92	
11-22-2009		S 36 49.09 E 52								
12:43:40	PL48	03.74	12:55:23	1	251.7	0	1	1.1	90.91	
11-22-2009		S 36 49.09 E 52								
12:43:40	PL48	03.74	12:58:47	1	199.8	53	0.5	0.8	62.5	
11-22-2009		S 36 49.09 E 52								
12:43:40	PL48	03.74	12:58:48	2	199.7	0	0.3	0.6	50	
11-22-2009		S 36 49.09 E 52								
12:43:40	PL48	03.74	13:03:05	2	159.7	88	1.7	1.4	121.43	
11-22-2009		S 36 49.09 E 52								
12:43:40	PL48	03.74	13:03:06	3	159.5	0	1.6	1.4	114.29	
11-22-2009		S 36 49.09 E 52								
12:43:40	PL48	03.74	13:05:06	3	140	47	1.4	1.3	107.69	
11-22-2009		S 36 49.09 E 52								
12:43:40	PL48	03.74	13:05:07	4	140	0	1.5	1.4	107.14	
11-22-2009		S 36 49.09 E 52								
12:43:40	PL48	03.74	13:13:40	4	49.9	209	1.7	1.5	113.33	
11-22-2009		S 36 49.09 E 52		_						
12:43:40	PL48	03.74	13:13:41	5	49.4	0	1.9	1.6	118.75	
11-22-2009	51.44	S 36 49.09 E 52		_						
12:43:40	PL48	03.74	13:17:54	5	0	86	1	1.3	76.92	
11-24-2009		S 36 52 03 F 52 13								
08:39:12	PL54	91	08:52:28	1	201	0	1.2	0.3	400	
0000012	. 201	. .	00.02.20	•		ũ		0.0		
			1							
------------	-------	--------------------------	----------	---	-------	-----	-----	-----	--------	--
11-24-2009		S 36 52 03 E 52 13	08.20.30	1	150.2	147	1	1 /	71 / 2	
11-24-2009	FL34	91 S 36 52 03 E 52 13	06.59.20	I	150.2	147	I	1.4	71.43	
08:39:12	PL54	91	08:59:21	2	150.5	0	1.2	1.3	92.31	
11-24-2009		S 36 52 03 E 52 13		_		-				
08:39:12	PL54	91	09:06:49	2	101.4	222	1.3	1.6	81.25	
11-24-2009		S 36 52 03 E 52 13								
08:39:12	PL54	91	09:06:50	3	101.6	0	1.2	1.5	80	
11-24-2009		S 36 52 03 E 52 13	00.40.05	2	40.7	204	1.0	0.0	00.00	
08:39:12	PL54	91 S 26 52 02 E 52 12	09:13:35	3	49.7	221	1.9	2.2	86.36	
08.30.12	PI 54	3 30 52 03 E 52 13 91	09.13.36	4	49 5	0	21	1 9	110 53	
11-24-2009	1 204	S 36 52 03 E 52 13	05.10.00	-	40.0	0	2.1	1.5	110.00	
08:39:12	PL54	91	09:15:53	4	25.4	75	2.1	2.3	91.3	
11-24-2009		S 36 52 03 E 52 13								
08:39:12	PL54	91	09:15:54	5	25.2	0	2	1.9	105.26	
11-24-2009		S 36 52 03 E 52 13								
08:39:12	PL54	91	09:17:36	5	0.5	58	2.1	2.3	91.3	
11 24 2000		S 36 19 63 E 53								
17:00:29	PI 61	05 16	17.06.28	1	200.1	0	1 4	1 1	127 27	
11-24-2009	1 201	S 36 48.62 E 52	17.00.20	•	200.1	0	1.4		121.21	
17:00:29	PL61	05.16	17:09:46	1	149.1	53	1	1.2	83.33	
11-24-2009		S 36 48.62 E 52								
17:00:29	PL61	05.16	17:09:47	2	149	0	1.2	1.1	109.09	
11-24-2009		S 36 48.62 E 52								
17:00:29	PL61	05.16	17:14:00	2	100.3	83	1.4	1.2	116.67	
11-24-2009		S 36 48.62 E 52	17.14.01	2	100.2	0	1.2	1.0	100 22	
11.00.29	FLOI	00.10 S 36 /8 62 E 52	17.14.01	3	100.5	0	1.5	1.2	100.33	
17:00:29	PI 61	05 16	17.18.08	3	50.3	85	0.8	1	80	
11-24-2009	1 201	S 36 48.62 E 52	11.10.00	0	00.0	00	0.0		00	
17:00:29	PL61	05.16	17:18:09	4	50.5	0	1	0.9	111.11	
11-24-2009		S 36 48.62 E 52								
17:00:29	PL61	05.16	17:19:51	4	24	35	1.2	1.6	75	
11-24-2009		S 36 48.62 E 52		_						
17:00:29	PL61		17:19:52	5	24	0	1	1.2	83.33	
17-24-2009	DI 61	3 30 40.02 E 52 05 16	17.22.50	F	0.2	60	16	1 /	11/ 20	
17.00.29	FLUI	05.10	17.22.09	5	0.2	02	1.0	1.4	114.29	

			<u> </u>							_
		• · · · · · ·								
11-25-2009 13:08:51	DI 66	S 37 57 52 E 50 24	13.18.01	1	200.0	0	0.8	0	0	
11-25-2009	FLOO	S 37 57 52 E 50 24	13.10.01	1	200.9	0	0.8	0	0	
13:08:51	PL66	85	13:25:16	2	99.8	100	1.4	1.6	87.5	
11-25-2009		S 37 57 52 E 50 24								
13:08:51	PL66	85	13:25:17	3	99.6	0	1.4	1.4	100	
11-25-2009		S 37 57 52 E 50 24	40.00.00	2		0.4		1.0	07 5	
13.06.51	PLOO	00 S 37 57 52 E 50 24	13.29.23	3	50.5	94	1.4	1.0	C.10	
13:08:51	PL66	85	13:29:24	4	50.8	0	1	1.2	83.33	
11-25-2009		S 37 57 52 E 50 24								
13:08:51	PL66	85	13:31:10	4	25.8	43	1.4	1.2	116.67	
11-25-2009		S 37 57 52 E 50 24	10.01.11	-	05.0	0	4.0	4 5	100	
13:08:51	PL66	85 8 37 57 52 E 50 24	13:31:11	5	25.3	0	1.8	1.5	120	
13:08:51	PL66	85	13:32:35	5	0.1	33	1.8	1.2	150	
				-						
11-25-2009		S 37 56 74 E 50 23								
13:41:02	PL67	36	13:53:35	1	249.3	0	0.3	0	0	
11-25-2009		S 37 56 74 E 50 23	12.56.12	1	200 6	47	0.9	1	90	
11-25-2009	PL07	S 37 56 74 F 50 23	13.30.13	I	200.0	47	0.8	I	80	
13:41:02	PL67	36	13:56:14	2	200.7	0	0.8	0.7	114.29	
11-25-2009		S 37 56 74 E 50 23								
13:41:02	PL67	36	14:01:37	2	149.7	141	1.8	1.6	112.5	
11-25-2009		S 37 56 74 E 50 23	14.01.20	2	140 5	0	2	4 7	117.65	
13:41:02	PL67	30 S 37 56 71 E 50 23	14:01:38	3	149.5	0	2	1.7	60.711	
13:41:02	PL67	36	14:05:26	3	99.9	109	2.3	2.1	109.52	
11-25-2009		S 37 56 74 E 50 23								
13:41:02	PL67	36	14:05:27	4	99.9	0	1.7	1.8	94.44	
11-25-2009		S 37 56 74 E 50 23	44.00.00	4	40 5	00	0.4	0.4	100	
13:41:02	PL67	30 S 37 56 74 E 50 23	14:08:38	4	49.5	89	2.1	2.1	100	
13:41:02	PL67	36	14:08:39	5	49.5	0	1.6	1.7	94.12	
11-25-2009	0.	S 37 56 74 E 50 23		C C		Ū.			0	
13:41:02	PL67	36	14:12:33	5	0.7	93	1.8	1.6	112.5	
11-25-2009		S 37 56.33 E 50	14.22.20	1	201.2	0	0.2	0.2	100	
14.21.40	PLOO	22.39	14.32.29	I	201.3	U	0.3	0.3	100	

			F							
11-25-2009		S 37 56.33 E 50								
14:21:48	PL68	22.39	14:36:06	1	151.5	64	0.6	0.5	120	
11-25-2009		S 37 56.33 E 50		-						
14:21:48	PL68	22.39	14:36:07	2	151.3	0	0.8	0.7	114.29	
11-25-2009	DI 00	S 37 56.33 E 50		0	00.4	400	0.4	4.0	404.05	
14:21:48	PL68	22.39 8 97 50 99 5 50	14:41:44	2	99.4	128	2.1	1.6	131.25	
11-25-2009		S 37 50.33 E 50	11.11.15	2	00.1	0	1.0	1 7	105.00	
14.21.40	FLOO	22.39 S 27 56 22 E 50	14.41.43	3	99.1	0	1.0	1.7	105.00	
11-20-2009	DI 68	3 37 30.33 E 30 22 30	11.16.15	3	50.2	102	16	1 /	11/ 20	
14.21.40	F LOO	22.33 S 37 56 33 E 50	14.40.15	5	50.2	102	1.0	1.4	114.23	
14.21.48	PI 68	22 39	14.46.16	4	49.8	0	17	14	121 43	
11-25-2009	1 200	S 37 56 33 E 50	14.40.10	т	40.0	Ū	1.7	1.4	121.40	
14:21:48	PL68	22.39	14:48:19	4	24.6	44	1.2	1.4	85.71	
11-25-2009	00	S 37 56.33 E 50		•						
14:21:48	PL68	22.39	14:48:20	5	24.8	0	1	1.2	83.33	
11-25-2009		S 37 56.33 E 50								
14:21:48	PL68	22.39	14:51:14	5	2	64	1	1.2	83.33	
11-25-2009		S 37 58.23 E 50								
15:17:43	PL69	24.60	15:25:03	1	201.2	0	0.8	0.6	133.33	
11-25-2009		S 37 58.23 E 50								
15:17:43	PL69	24.60	15:28:14	1	148.7	58	1.4	0.9	155.56	
11-25-2009		S 37 58.23 E 50								
15:17:43	PL69	24.60	15:28:15	2	148.4	0	1	0.8	125	
11-25-2009		S 37 58.23 E 50		-						
15:17:43	PL69	24.60	15:33:11	2	99.6	106	1.6	1.4	114.29	
11-25-2009	DI AA	S 37 58.23 E 50	45 00 40	•		•	4.0		400.07	
15:17:43	PL69	24.60	15:33:12	3	99.2	0	1.6	1.5	106.67	
11-25-2009		S 37 58.23 E 50	45.07.00	2	40.0	07	4 7	4 7	100	
15:17:43	PL09	24.00 S 27 59 22 E 50	15:37:00	3	48.8	87	1.7	1.7	100	
11-20-2009	DI 60	3 37 30.23 E 30 24 60	15.27.01	4	10 0	0	1 2	15	96 67	
11 25 2000	FL09	24.00 S 27 58 22 E 50	15.57.01	4	40.0	0	1.5	1.5	00.07	
15·17·43	PI 69	24 60	15:40:07	Δ	25.2	60	1 1	1	110	
11-25-2009	1 203	S 37 58 23 E 50	13.40.07	-	20.2	00	1.1	1	110	
15.17.43	PI 69	24 60	15.40.08	5	25.4	0	1	0.8	125	
11-25-2009	1 200	S 37 58.23 E 50	10.40.00	5	20.7	U U	I	0.0	120	
15:17:43	PL69	24.60	15:43:36	5	0.1	71	1.6	1.4	114.29	
-				-	-		-		-	

	Final cruise report: Southern Indian Ocean Seamounts 2009													
11-25-2009		S 37 57 04 E 50												
15:51:35	PI 70	24 42	16.03.10	1	250.3	0	1 1	1	110					
11-25-2009	1 270	S 37 57 04 E 50	10.00.10	•	200.0	Ū			110					
15:51:35	PL70	24.42	16:07:45	1	200.7	75	0.9	1	90					
11-25-2009	-	S 37 57.04 E 50				-								
15:51:35	PL70	24.42	16:07:46	2	200.9	0	1.1	1	110					
11-25-2009		S 37 57.04 E 50												
15:51:35	PL70	24.42	16:13:19	2	150.7	132	1.4	1.4	100					
11-25-2009		S 37 57.04 E 50												
15:51:35	PL70	24.42	16:13:20	3	150.4	0	1.8	1.4	128.57					
11-25-2009		S 37 57.04 E 50												
15:51:35	PL70	24.42	16:17:03	3	99.8	91	1.4	1.3	107.69					
11-25-2009		S 37 57.04 E 50												
15:51:35	PL70	24.42	16:17:04	4	100.1	0	0.9	1	90					
11-25-2009		S 37 57.04 E 50												
15:51:35	PL70	24.42	16:21:33	4	49.7	102	1.6	1.6	100					
11-25-2009		S 37 57.04 E 50		_		_								
15:51:35	PL70	24.42	16:21:34	5	49.6	0	1.4	1.4	100					
11-25-2009	DI T 0	S 37 57.04 E 50	40.04.50	_	0 4		4.0	4.0	100					
15:51:35	PL70	24.42	16:24:59	5	0.4	82	1.8	1.8	100					
11 25 2000		S 27 55 97 E 50												
16-33-2009	PI 71	33733.07 ± 30 23 17	16.40.38	1	100 5	0	0.8	03	266 67					
11-25-2000		23.47 S 37 55 87 E 50	10.40.30	1	199.5	0	0.0	0.5	200.07					
16.33.20	PI 71	23 47	16.44.38	1	150.2	60	0.5	07	71 43					
11-25-2009	1 27 1	S 37 55 87 E 50	10.44.00	1	100.2	00	0.0	0.7	71.40					
16:33:20	PI 71	23 47	16.44.39	2	150	0	12	1	120					
11-25-2009		S 37 55.87 E 50	10.11.00	-	100	Ũ			.20					
16:33:20	PL71	23.47	16:49:14	2	99.9	95	1.6	1.4	114.29					
11-25-2009		S 37 55.87 E 50												
16:33:20	PL71	23.47	16:49:15	3	99.5	0	1.6	1.4	114.29					
11-25-2009		S 37 55.87 E 50												
16:33:20	PL71	23.47	16:52:42	3	49.4	75	1.5	1.4	107.14					
11-25-2009		S 37 55.87 E 50												
16:33:20	PL71	23.47	16:52:43	4	48.8	0	1.9	1.6	118.75					
11-25-2009		S 37 55.87 E 50												
16:33:20	PL71	23.47	16:55:04	4	25.3	48	0.8	1	80					
11-25-2009		S 37 55.87 E 50												
16:33:20	PL71	23.47	16:55:05	5	25.2	0	1	1	100					
11-25-2009	PL71	S 37 55.87 E 50	16:56:51	5	0.7	38	0.7	1	70					

16:33:20		23.47							
11-27-2009 11:05:54	PL82	S 37 57 97 E 50 23 99	11:13:51	1	200	0	1	0.8	125
11-27-2009 11:05:54	PL82	S 37 57 97 E 50 23 99 S 37 57 07 E 50 23	11:17:46	1	150.2	62	1	0.8	125
11:05:54 11:27-2009	PL82	S 37 57 97 E 50 23 99 S 37 57 97 E 50 23	11:17:47	2	150.2	0	1	0.8	125
11:05:54 11-27-2009	PL82	99 S 37 57 97 E 50 23	11:23:51	2	100.6	109	1.2	1.1	109.09
11:05:54 11-27-2009	PL82	99 S 37 57 97 E 50 23	11:23:52	3	100.4	0	1.3	1.2	108.33
11:05:54 11-27-2009	PL82	99 S 37 57 97 E 50 23	11:28:14	3	51	90	1.2	1.4	85.71
11:05:54 11-27-2009	PL82	99 S 37 57 97 E 50 23	11:28:15	4	51.1	0	1	1.2	83.33
11:05:54 11-27-2009	PL82	99 S 37 57 97 E 50 23	11:30:33	4	25.9	55	1.3	1.3	100
11:05:54 11-27-2009	PL82	99 S 37 57 97 E 50 23	11:30:34	5	25.3	0	2.1	1.6	131.25
11:05:54	PL82	99	11:31:59	5	1.2	39	1.4	0.3	466.67
12:30:50 11-29-2009	PL95	S 41 29 65 E 49 30 46 S 41 29 65 E 49 30	12:40:08	1	199.4	0	0.6	0.3	200
12:30:50 11-29-2009	PL95	46 S 41 29 65 E 49 30	12:41:53	1	149.4	31	1.2	0.3	400
12:30:50 11-29-2009	PL95	46 S 41 29 65 E 49 30	12:41:54	2	149.2	0	1	0.2	500
12:30:50 11-29-2009	PL95	46 S 41 29 65 E 49 30	12:44:55	2	100.4	70	1.3	1.4	92.86
12:30:50 11-29-2009	PL95	46 S 41 29 65 E 49 30	12:44:56	3	100.6	0	1.1	1.2	91.67
12:30:50 11-29-2009	PL95	46 S 41 29 65 E 49 30	12:47:49	3	49.9	63	1.6	1.3	123.08
12:30:50 11-29-2009	PL95	46 S 41 29 65 E 49 30	12:47:50	4	49.4	0	1.6	1.4	114.29
12:30:50	PL95	46	12:48:53	4	25	21	1.5	1.4	107.14

		Final	cruise repor	t: Soutł	nern Indian Oce	ean Seamoun	ts 2009			
11-29-2009		S 41 29 65 E 49 30								
12:30:50	PL95	46	12:48:54	5	24	0	2.1	1.7	123.53	
11-29-2009		S 41 29 65 E 49 30								
12:30:50	PL95	46	12:49:54	5	0.4	24	1.4	1.4	100	
11-29-2009		S 41 29 36 E 49 31								
13:00:41 11-29-2009	PL96	66 S 41 29 36 F 49 31	13:11:49	1	250.7	0	0.2	0.1	200	
13:00:41	PL96	66	13:14:53	1	200.4	45	1.1	0.9	122.22	
11-29-2009		S 41 29 36 E 49 31	40.44.54	0	100.0	0	4.4	4	140	
13:00:41	PL96	00 S 41 20 26 E 40 21	13:14:54	Z	199.8	0	1.4	1	140	
13:00:41	PL96	66	13:18:27	2	150.3	56	1	1	100	
11-29-2009		S 41 29 36 E 49 31								
13:00:41	PL96	66	13:18:28	3	150.1	0	1.2	1	120	
11-29-2009		S 41 29 36 E 49 31	10.01.50	2	100 6	64	1 1	1.0	110.07	
13.00.41	PL90	00 S /1 20 36 E /0 31	13.21.52	3	100.6	04	1.4	1.2	110.07	
13.00.41	PI 96	66	13.21.53	4	100.3	0	15	13	115 38	
11-29-2009	. 200	S 41 29 36 E 49 31	10121100	•	10010	°,		110	110100	
13:00:41	PL96	66	13:25:33	4	49.6	72	1.8	1.5	120	
11-29-2009		S 41 29 36 E 49 31								
13:00:41	PL96	66	13:25:34	5	49	0	1.8	1.6	112.5	
11-29-2009		S 41 29 36 E 49 31	40.00.40	-	0.0	74	0.0	4.0	50	
13:00:41	PL96	66	13:29:16	5	0.9	71	0.6	1.2	50	
11-29-2009		S 41 28 96 E 49 33								
13:39:43	PL97	40	13:51:09	1	200.3	0	0.3	0.3	100	
11-29-2009		S 41 28 96 E 49 33	40.54.45	4	450.0	<u> </u>		4.0	440.07	
13:39:43	PL97	40 S 41 28 06 E 40 22	13:54:45	1	150.2	62	1.4	1.2	116.67	
13.30.43	PI 97	3 4 1 20 90 E 49 33 40	13.24.46	2	150 3	0	1	1	100	
11-29-2009	1 207	S 41 28 96 E 49 33	10.04.40	2	100.0	0	I		100	
13:39:43	PL97	40	13:58:30	2	100.2	80	1.4	1.8	77.78	
11-29-2009		S 41 28 96 E 49 33								
13:39:43	PL97	40	13:58:31	3	100.5	0	1	1.3	76.92	
11-29-2009		S 41 28 96 E 49 33		-						
13:39:43	PL97	40 6 44 00 00 F 40 00	14:02:33	3	49.9	95	0.9	1.1	81.82	
17-29-2009	PI 07	5 41 28 90 E 49 33 40	14.02.34	4	49.7	0	1 1	1 1	100	
10.00.70	1 637	U	17.02.04	7	150	U	1.1	1.1	100	
					120					

	Final cruise report: Southern Indian Ocean Seamounts 2009													
11-29-2009		S 41 28 96 E 49 33												
13:39:43	PL97	40	14:04:23	4	25	40	0.8	1	80					
11-29-2009 13:39:43	PL97	S 41 28 96 E 49 33 40	14:04:24	5	25	0	1	1	100					
11-29-2009 13:39:43	PI 97	S 41 28 96 E 49 33 40	14.06.32	5	0	44	1 4	1	140					
10.00.10	1 207		11.00.02	U	Ū			·	110					
11-29-2009 17:13:43	PL102	S 41 31.01 E49 27.19	17:20:31	1	200.5	0	0.5	0.3	166.67					
11-29-2009	-	S 41 31.01 E49				_								
17:13:43 11-29-2009	PL102	27.19 S 41 31.01 E49	17:27:09	1	120.3	109	1.2	1.2	100					
17:13:43	PL102	27.19 S 41 21 01 E40	17:27:10	2	120.3	0	1	1	100					
17:13:43	PL102	27.19	17:30:37	2	81.1	58	1.2	1	120					
11-29-2009 17:13:43	PL102	S 41 31.01 E49 27.19	17:30:38	3	80.4	0	1.6	1.3	123.08					
11-29-2009		S 41 31.01 E49												
17:13:43 11-29-2009	PL102	27.19 S 41 31.01 E49	17:34:14	3	51.4	65	0.9	0.9	100					
17:13:43	PL102	27.19	17:34:15	4	51.7	0	1	0.8	125					
11-29-2009 17:13:43	PL102	S 41 31.01 E49 27.19	17:38:44	4	25.9	82	0.5	0.9	55.56					
11-29-2009		S 41 31.01 E49												
17:13:43	PL102	27.19	17:38:45	5	25.8	0	1	0.9	111.11					
17:13:43	PL102	27.19	17:42:23	5	0	63	0.5	1.3	38.46					
11-29-2009		S 41 30.63 E 49												
17:52:10	PL103	28.57 2 44 20 C2 E 40	17:59:28	1	251.1	0	1.1	0.8	137.5					
17-29-2009	PI 103	5 41 30.63 E 49 28 57	18.03.52	1	200.3	67	1 1	1	110					
11-29-2009	TETUS	S 41 30.63 E 49	10.00.02		200.0	07	1.1		110					
17:52:10	PL103	28.57 S 41 20 62 E 40	18:03:53	2	200.1	0	1.1	1	110					
17:52:10	PL103	28.57	18:09:42	2	151.2	100	0.9	1	90					
11-29-2009 17:52:10	PL103	S 41 30.63 E 49 28.57	18:09:43	3	151.5	0	0.9	0.9	100					
11-29-2009		S 41 30.63 E 49	10.14.10	2	100.0	05	1 /	1 /	100					
17.52.10	r1103	20.07	10.14.13	3	100.2	00	1.4	1.4	100					
					121									

			<u> </u>							
11-29-2009		S 41 30 63 E 49								
17:52:10	PL103	28.57 \$ 41 20 62 E 40	18:14:14	4	100	0	1.4	1.4	100	
17:52:10	PL103	28.57	18:18:43	4	50	94	0.8	1.1	72.73	
17:52:10	PL103	S 41 30.63 E 49 28.57	18:18:44	5	50.2	0	0.8	1	80	
11-29-2009 17:52:10	PL103	S 41 30.63 E 49 28.57	18:22:02	5	0	63	1.5	1.4	107.14	
11-29-2009		S 41 30.00 E 49								
18:42:38 11-29-2009	PL104	30.85 S 41 30 00 F 49	18:44:46	1	202.5	0	1.4	1.2	116.67	
18:42:38	PL104	30.85 S 41 30 00 E 49	18:54:11	1	80.4	138	1	1.1	90.91	
18:42:38	PL104	30.85 0 41 20 00 E 49	18:54:12	2	80.3	0	1.1	1.1	100	
11-29-2009 18:42:38	PL104	S 41 30.00 E 49 30.85	18:56:24	2	50	45	1.3	1.2	108.33	
11-29-2009 18:42:38	PL104	S 41 30.00 E 49 30.85	18:56:25	3	49.8	0	1.4	1.2	116.67	
11-29-2009 18:42:38	PL104	S 41 30.00 E 49 30.85	18:59:50	3	25	65	1.2	1.2	100	
11-29-2009 18:42:38	PL104	S 41 30.00 E 49 30.85	18:59:51	4	25	0	1.2	1	120	
11-29-2009 18:42:38	PL104	S 41 30.00 E 49 30.85	19:02:48	4	0.8	46	0.9	0.8	112.5	
12-01-2009		S /1 26 98 E /2 51								
22:23:58	PL108	47 6 44 20 90 E 42 51	22:37:59	1	200.7	0	0.2	0.1	200	
22:23:58	PL108	3 41 20 98 E 42 51 47	22:41:44	1	150.6	75	1.6	1.5	106.67	
12-01-2009 22:23:58	PL108	S 41 26 98 E 42 51 47	22:41:45	2	150.7	0	1.3	1.4	92.86	
12-01-2009 22:23:58	PL108	S 41 26 98 E 42 51 47	22:46:08	2	100.9	97	1.2	1.2	100	
12-01-2009 22:23:58	PL108	S 41 26 98 E 42 51 47	22:46:09	3	100.5	0	1.4	1.2	116.67	
12-01-2009 22:23:58	PL108	S 41 26 98 E 42 51 47	22:49:25	3	50.7	66	0.8	1	80	
12-01-2009 22:23:58	PL108	S 41 26 98 E 42 51 47	22:49:26	4	50.6	0	0.8	1	80	
				-	450	-		-		

	Final cruise report: Southern Indian Ocean Seamounts 2009													
12 01 2000		S 41 26 08 E 42 E1												
22.23.58	DI 108	3 4 1 20 90 E 42 51 17	22.20.38	1	24.0	23	1 2	1 /	85 71					
12-01-2009	FLIUO	47 S /1 26 08 E /2 51	22.50.50	4	24.9	25	1.2	1.4	05.71					
22.23.58	PI 108	47	22.20.30	5	24.8	0	1 1	12	91 67					
12-01-2009	1 2100	S 41 26 98 E 42 51	22.00.00	Ũ	21.0	Ŭ		1.2	01.07					
22:23:58	PL108	47	22:51:37	5	0	24	1.6	1.6	100					
12-01-2009		S 41 25 27 E 42 54												
22:58:17	PL109	21	23:17:51	1	250.5	0	0.1	0.2	50					
12-01-2009		S 41 25 27 E 42 54												
22:58:17	PL109	21	23:24:46	1	200.3	129	0.3	0.5	60					
12-01-2009		S 41 25 27 E 42 54												
22:58:17	PL109	21	23:24:47	2	200.4	0	1	1	100					
12-01-2009		S 41 25 27 E 42 54		_										
22:58:17	PL109	21	23:31:06	2	149.5	169	2.1	2.3	91.3					
12-01-2009	51 (6 6	S 41 25 27 E 42 54	~ ~ ~ ~ ~						• •					
22:58:17	PL109	21	23:31:07	3	149.4	0	1.8	2	90					
12-01-2009	DI 400	S 41 25 27 E 42 54	00.05.40	0	400 5	440	4.0	4.0	00.00					
22:58:17	PL109	21	23:35:18	3	100.5	119	1.6	1.8	88.89					
12-01-2009		5 41 25 27 E 42 54	00.05.10	4	100.6	0	1 1	1 5	02.22					
22.30.17	PLIU9		23.35.19	4	100.6	0	1.4	C.1	93.33					
22.58.12	PI 100	0 4 20 27 ⊑ 42 04 01	23.30.07	1	50.2	00	1 2	1 /	85 71					
12-01-2009	FL109	21 S /1 25 27 E /2 5/	23.39.07	4	50.2	55	1.2	1.4	05.71					
22.28.17	PI 109	21	23.30.08	5	50 1	0	12	13	92 31					
12-01-2009	T LT05	S 41 25 27 E 42 54	20.00.00	0	50.1	0	1.2	1.0	52.51					
22:58:17	PI 109	21	23.42.18	5	19	78	14	0.5	280					
22.00.11	1 2100		20.12.10	Ũ		10		0.0	200					
12-01-2009		S 41 24 66 F 42 56												
23:52:55	PL110	10	00:04:10	1	200.4	0	1	0.7	142.86					
12-01-2009		S 41 24 66 E 42 56				-		••••						
23:52:55	PL110	10	00:06:42	1	149.8	56	1.2	1.2	100					
12-01-2009		S 41 24 66 E 42 56												
23:52:55	PL110	10	00:06:43	2	149.8	0	1.2	1.2	100					
12-01-2009		S 41 24 66 E 42 56												
23:52:55	PL110	10	00:11:21	2	100.8	111	1.5	1.7	88.24					
12-01-2009		S 41 24 66 E 42 56												
23:52:55	PL110	10	00:11:22	3	100.8	0	1.4	1.5	93.33					
12-01-2009		S 41 24 66 E 42 56												
23:52:55	PL110	10	00:16:19	3	50.2	129	1.2	1.4	85.71					
					153									

	Final cruise report: Southern Indian Ocean Seamounts 2009													
40.04.0000														
12-01-2009	DI 110	5 41 24 00 E 42 50	00.16.20	4	E0 4	0	4	1.0	00.00					
23:52:55	PLITU		00:16:20	4	50.4	0	1	1.2	83.33					
12-01-2009	DI 110	5 4 1 24 00 E 42 00 10	00.19.02	4	24.5	12	17	1 0	04.44					
12-01-2000	FLIIU	S 11 21 66 E 12 56	00.10.02	4	24.5	42	1.7	1.0	94.44					
23.52.55	PI 110	10	00.18.03	5	24.4	0	16	16	100					
12-01-2009	I LIIO	S 41 24 66 F 42 56	00.10.05	5	24.4	0	1.0	1.0	100					
23:52:55	PI 110	10	00.10.18	5	07	31	13	0.4	325					
20102100	. 2		00110110	Ũ	011	01	110	0.1	020					
12-07-2009		S 38 30 55 E 46 43												
21:39:41	PL146	48	21:54:41	1	200.7	0	0.5	0.3	166.67					
12-07-2009		S 38 30 55 E 46 43												
21:39:41	PL146	48	22:00:32	1	148.8	113	0.1	0.5	20					
12-07-2009		S 38 30 55 E 46 43												
21:39:41	PL146	48	22:00:33	2	148.7	0	0.1	0.3	33.33					
12-07-2009		S 38 30 55 E 46 43												
21:39:41	PL146	48	22:07:27	2	99.9	172	1	1.1	90.91					
12-07-2009		S 38 30 55 E 46 43												
21:39:41	PL146	48	22:07:28	3	99.6	0	1.4	1.2	116.67					
12-07-2009		S 38 30 55 E 46 43	00 44 55	•	50.0	405		4.0	407.00					
21:39:41	PL146		22:11:55	3	50.9	105	1.4	1.3	107.69					
12-07-2009		S 38 30 55 E 46 43	00.44.50	4	50.0	0		1.0	440.07					
21.39.41	PL140	40 S 20 20 55 E 46 42	22.11.30	4	0.00	0	1.4	1.2	110.07					
12-07-2009	DI 1/6	3 30 30 30 E 40 43	22.13.40	1	25.3	46	15	1 /	107 14					
12-07-2009	FL140	40 S 38 30 55 E 46 43	22.13.49	4	20.0	40	1.5	1.4	107.14					
21:39:41	PI 146	48	22.13.50	5	25.4	0	1 1	12	91 67					
12-07-2009	1 21 10	S 38 30 55 E 46 43	22.10.00	0	20.1	Ŭ		1.2	01.07					
21:39:41	PL146	48	22:15:18	5	0.7	37	1	1.4	71.43					
12-07-2009		S 38 29 01 E 46 45												
22:24:54	PL147	43	22:49:08	1	250.6	0	0.7	0.3	233.33					
12-07-2009		S 38 29 01 E 46 45												
22:24:54	PL147	43	22:55:34	1	200.7	126	0.5	0.5	100					
12-07-2009		S 38 29 01 E 46 45												
22:24:54	PL147	43	22:55:35	2	200.5	0	1.2	1	120					
12-07-2009		S 38 29 01 E 46 45												
22:24:54	PL147	43	23:03:12	2	150.4	198	1.8	1.8	100					
12-07-2009	_	S 38 29 01 E 46 45				-			o =					
22:24:54	PL147	43	23:03:13	3	150.8	0	1.2	1.4	85.71					
					154									

	Final cruise report: Southern Indian Ocean Seamounts 2009												
12-07-2009		S 38 29 01 E 46 45											
22.24.54	PI 147	43	23.08.32	3	99.3	125	22	23	95 65				
12-07-2009		S 38 29 01 E 46 45	20.00.02	Ũ	0010	120		2.0	00.00				
22:24:54	PL147	43	23:08:33	4	99	0	1.7	2	85				
12-07-2009		S 38 29 01 E 46 45											
22:24:54	PL147	43	23:12:09	4	50.7	86	1	1.1	90.91				
12-07-2009		S 38 29 01 E 46 45											
22:24:54	PL147	43	23:12:10	5	50	0	1.8	1.4	128.57				
12-07-2009		S 38 29 01 E 46 45	00 45 50	-	4 7	07		4.0	50				
22:24:54	PL147	43	23:15:50	5	1.7	87	0.6	1.2	50				
12-07-2009		S 21 29 39 E 46 48											
23:30:31	PI 148	05	23.44.11	1	200.4	0	0.3	0.4	75				
12-07-2009	. 21.10	S 21 29 39 E 46 48	20.1111	•	20011	Ũ	0.0	011	10				
23:30:31	PL148	05	23:48:29	1	150.1	65	0.2	0.6	33.33				
12-07-2009		S 21 29 39 E 46 48											
23:30:31	PL148	05	23:48:30	2	150.3	0	0.5	0.7	71.43				
12-07-2009		S 21 29 39 E 46 48											
23:30:31	PL148	05	23:53:22	2	101.5	82	0.5	0.8	62.5				
12-07-2009		S 21 29 39 E 46 48	00.50.00	0	404.0	0	0.0	07	05 74				
23:30:31	PL148		23:53:23	3	101.9	0	0.6	0.7	85.71				
12-07-2009	PI 1/18	5 2 1 29 39 E 40 40 05	23.28.03	З	50 1	84	0.8	1 2	66 67				
12-07-2009	1 2140	S 21 29 39 F 46 48	23.30.03	5	50.1	04	0.0	1.2	00.07				
23:30:31	PL148	05	23:58:04	4	51.3	0	1	1.2	83.33				
12-07-2009		S 21 29 39 E 46 48	_0.0010	·	0.10	C C			00.00				
23:30:31	PL148	05	00:00:17	4	25.4	47	1	1.1	90.91				
12-07-2009		S 21 29 39 E 46 48											
23:30:31	PL148	05	00:00:18	5	26.3	0	0.9	1	90				
12-07-2009		S 21 29 39 E 46 48		_									
23:30:31	PL148	05	00:02:05	5	0.2	38	1.8	1.8	100				
40.00.0000													
12-08-2009	DI 140	5 38 29.44 E 40	02.16.06	1	201.2	0	1 0	1 1	100.00				
12-08-2009	FL149	5 38 29 44 E 46	02.10.00	1	201.5	0	1.2	1.1	109.09				
02.07.04	PI 149	44 85	02.21.35	1	149 5	96	14	16	87.5				
12-08-2009	. 21.10	S 38 29.44 E 46	02.21100	•	11010				0110				
02:07:04	PL149	44.85	02:21:36	2	149.4	0	1.2	1.4	85.71				
12-08-2009		S 38 29.44 E 46											
02:07:04	PL149	44.85	02:26:36	2	100.1	128	2	2.1	95.24				
					155								

	Final cruise report: Southern Indian Ocean Seamounts 2009													
10.00.0000														
12-08-2009		S 38 29.44 E 46	00.00.07	2	00.0	0	2	0.4	05.04					
02:07:04	PL149		02:26:37	3	99.8	0	2	2.1	95.24					
12-06-2009	DI 1/0	5 50 29.44 E 40	02.20.55	2	51 /	111	1	1 /	71 /2					
12-08-2009	FL149	44.00 S 38 20 11 E 16	02.30.33	3	51.4	111	I	1.4	71.43					
02.02.04	PI 149	44 85	02:30:56	4	51.8	0	1	12	83 33					
12-08-2009	1 2140	S 38 29.44 E 46	02.00.00	-	01.0	Ū	,	1.2	00.00					
02:07:04	PL149	44.85	02:33:02	4	25.5	53	1.2	1.5	80					
12-08-2009	-	S 38 29.44 E 46						-						
02:07:04	PL149	44.85	02:33:03	5	25.9	0	0.8	1.1	72.73					
12-08-2009		S 38 29.44 E 46												
02:07:04	PL149	44.85	02:34:42	5	0.2	43	1.7	1.4	121.43					
12-08-2009		S 38 28.81 E 46												
02:51:40	PL150	46.18	02:55:05	1	251.6	0	1	0.9	111.11					
12-08-2009		S 38 28.81 E 46												
02:51:40	PL150	46.18	02:58:31	1	200.4	53	0.1	0.1	100					
12-08-2009		S 38 28.81 E 46					.	.	100					
02:51:40	PL150	46.18	02:58:32	2	200.8	0	0.1	0.1	100					
12-08-2009		5 38 28.81 E 46	02.02.22	2	140.2	116	1 0	2	00					
12.09.2000	PLIDU	40.10 S 20 20 01 E 16	03.03.33	2	149.2	110	1.0	Z	90					
12-00-2009	PI 150	3 30 20.01 E 40 16 18	03.03.34	З	1/0 5	0	12	16	75					
12-08-2009	1 2130	S 38 28 81 F 46	00.00.04	5	143.5	0	1.2	1.0	75					
02:51:40	PI 150	46 18	03.09.01	3	98.9	137	23	24	95 83					
12-08-2009	. 2100	S 38 28.81 E 46	00.00.01	Ũ	0010	101	2.0		00.00					
02:51:40	PL150	46.18	03:09:02	4	98.8	0	1.8	2.1	85.71					
12-08-2009		S 38 28.81 E 46												
02:51:40	PL150	46.18	03:12:50	4	50.8	100	1.3	1.4	92.86					
12-08-2009		S 38 28.81 E 46												
02:51:40	PL150	46.18	03:12:51	5	50.6	0	1.6	1.4	114.29					
12-08-2009		S 38 28.81 E 46												
02:51:40	PL150	46.18	03:15:45	5	1.3	78	1.8	1.9	94.74					
12-08-2009		S 38 29.62 E 46												
03:46:27	PL151	44.75	03:51:47	1	199.8	0	1.2	1.1	109.09					
12-08-2009		S 38 29.62 E 46				-								
03:46:27	PL151	44.75	03:54:51	1	149.5	53	0.3	0.8	37.5					
12-08-2009		S 38 29.62 E 46												
03:46:27	PL151	44.75	03:54:52	2	149.4	0	0.6	1	60					
					156									

	Final cruise report: Southern Indian Ocean Seamounts 2009												
40.00.0000													
12-08-2009		S 38 29.62 E 46	02,50,52	2	101 4	100	1.0	1.0	02.24				
12-08-2000	PLIDI	44.75 S 38 20 62 E 46	03.59.55	Z	101.4	125	1.2	1.5	92.51				
03:46:27	PI 151	44 75	03:59:54	3	101.5	0	13	13	100				
12-08-2009		S 38 29.62 E 46		Ū		C C							
03:46:27	PL151	44.75	04:04:03	3	50.3	116	1.4	1.4	100				
12-08-2009		S 38 29.62 E 46											
03:46:27	PL151	44.75	04:04:04	4	50	0	1.7	1.5	113.33				
12-08-2009		S 38 29.62 E 46	04-00-00	4	05.4	05		1.0	04.07				
	PL151	44.75 S 28 20 62 E 46	04:06:36	4	25.1	65	1.1	1.2	91.67				
12-06-2009 03:46:27	PI 151	3 30 29.02 E 40 44 75	04.06.37	5	25.7	0	0.8	1 1	72 73				
12-08-2009		S 38 29.62 E 46	04.00.07	U	20.1	Ū	0.0		12.10				
03:46:27	PL151	44.75	04:09:26	5	1.5	70	1.3	1.8	72.22				
		S 31 38.67 E 42											
12/12/2009 18:04	PL177	50.61	18:11:13	1	199.7	0	1.5	1.3	115.38				
		S 31 38.67 E 42	40.45.40						100				
12/12/2009 18:04	PL177	50.61 S 21 29 67 E 42	18:15:40	1	151	69	1	1	100				
12/12/2009 18.04	PI 177	5 5 1 50.07 E 42 50 61	18.12.41	2	151	0	12	1	120				
12/12/2003 10:04		S 31 38.67 E 42	10.10.41	2	101	Ū	1.2		120				
12/12/2009 18:04	PL177	50.61	18:21:36	2	100	128	1.3	1.2	108.33				
		S 31 38.67 E 42											
12/12/2009 18:04	PL177	50.61	18:21:37	3	99.9	0	1.4	1.2	116.67				
		S 31 38.67 E 42		-									
12/12/2009 18:04	PL1//	50.61 S 24 28 C7 E 42	18:26:04	3	49.2	99	1.4	1.6	87.5				
12/12/2000 18.04	DI 177	5 31 38.67 E 42 50 61	18.26.05	1	10.3	0	1	1 2	83 33				
12/12/2003 10.04		S 31 38.67 E 42	10.20.00	7	40.0	Ū	I	1.2	00.00				
12/12/2009 18:04	PL177	50.61	18:27:45	4	24.5	36	1.7	1.6	106.25				
		S 31 38.67 E 42											
12/12/2009 18:04	PL177	50.61	18:27:46	5	24.4	0	1.2	1.3	92.31				
	DI 477	S 31 38.67 E 42	40.00.07	_	4.0	45			100				
12/12/2009 18:04	PL1//	50.61	18:30:07	5	1.2	45	1	1	100				
		S 31 30 70 E 12											
12/12/2009 18:37	PI 178	51 76	18.47.06	1	250.8	0	11	1	110				
,, 2000 10.01		S 31 39.79 E 42	10.11.00	•	200.0	č		•					
12/12/2009 18:37	PL178	51.76	18:50:05	1	200.1	41	0.1	0.2	50				
					157								

Final cruise report: Southern Indian Ocean Seamounts 2009											
		S 31 39.79 E 42									
12/12/2009 18:37	PL178	51.76 S 21 20 70 E 42	18:50:06	2	199.6	0	0.1	0.5	20		
12/12/2009 18:37	PL178	5 31 39.79 E 42 51.76 S 31 30 70 E 42	18:55:29	2	150.3	120	1.4	1.5	93.33		
12/12/2009 18:37	PL178	51.76 51.39.79 E 42	18:55:30	3	150.3	0	1.3	1.4	92.86		
12/12/2009 18:37	PL178	51.76 51.30 70 E 42	19:00:20	3	99.5	106	1.6	1.6	100		
12/12/2009 18:37	PL178	5 31 39.79 E 42 51.76 S 31 30 70 E 42	19:00:21	4	99.6	0	1.1	1.3	84.62		
12/12/2009 18:37	PL178	51.76 51.30 79 E 42	19:04:13	4	49.7	82	1.2	1.2	100		
12/12/2009 18:37	PL178	51.76 51.39.79 E 42	19:04:14	5	49.5	0	1.4	1.1	127.27		
12/12/2009 18:37	PL178	51.76	19:07:06	5	0.5	60	1.2	1	120		
		S 31 40.82 E 42									
12/12/2009 19:14	PL179	52.88 S 31 40 82 F 42	19:21:14	1	199.9	0	0.2	0.1	200		
12/12/2009 19:14	PL179	52.88 S 31 40 82 E 42	19:24:40	1	149.1	53	1.1	1.2	91.67		
12/12/2009 19:14	PL179	52.88 531 40 82 E 42	19:24:41	2	148.8	0	1.2	1.2	100		
12/12/2009 19:14	PL179	52.88 531 40 82 E 42	19:28:26	2	100.5	72	0.9	1.1	81.82		
12/12/2009 19:14	PL179	52.88 531 40 82 E 42	19:28:27	3	100.3	0	1	1	100		
12/12/2009 19:14	PL179	52.88 531 40 82 E 42	19:32:44	3	51.2	85	1	0.9	111.11		
12/12/2009 19:14	PL179	52.88 531 40.82 E 42	19:32:45	4	50.9	0	1.3	1	130		
12/12/2009 19:14	PL179	52.88 52.1 40.82 E 42	19:34:47	4	24.7	45	1.6	1.6	100		
12/12/2009 19:14	PL179	53140.02 E 42 52.88 53140 83 E 43	19:34:48	5	24.5	0	1.4	1.4	100		
12/12/2009 19:14	PL179	52.88	19:36:24	5	0.1	40	0.8	0.3	266.67		
12-13-2009 07:26:03	PL180	S 31 36.25 E 42 43.47	07:32:40	1	200.3 158	0	1	0.4	250		

										_
12-13-2009		S 31 36.25 E 42								
07:26:03	PL180	43.47	07:35:27	1	150.2	48	0.8	1	80	
12-13-2009		S 31 36.25 E 42								
07:26:03	PL180	43.47	07:35:28	2	150.2	0	0.6	0.8	75	
12-13-2009		S 31 36.25 E 42								
07:26:03	PL180	43.47	07:40:01	2	100.2	94	1.5	1.2	125	
12-13-2009		S 31 36.25 E 42		_		_				
07:26:03	PL180	43.47	07:40:02	3	99.9	0	1.6	1.3	123.08	
12-13-2009	DI 400	S 31 36.25 E 42		•	10.0			4 -	444 70	
07:26:03	PL180	43.47	07:44:07	3	49.6	84	1.9	1.7	111.76	
12-13-2009	DI 400	S 31 36.25 E 42	07 44 00		10.4	0	4.0	4.0	400	
07:26:03	PL180		07:44:08	4	49.1	0	1.8	1.8	100	
12-13-2009		5 31 30.25 E 42	07.45.50	4	04.0	20	0.0	4.0	00.07	
07:26:03	PL180	43.47 S 24 26 25 E 42	07:45:59	4	24.9	38	0.8	1.2	66.67	
12-13-2009	DI 190	5 3 30.23 E 42	07:46:00	Б	25.1	0	07	0.0	77 79	
12-13-2000	FLIOU	43.47 S 31 36 25 E 12	07.40.00	5	25.1	0	0.7	0.9	11.10	
07.26.03	DI 180	3 31 30.23 E 42	07.47.28	5	0.2	31	15	15	100	
07.20.03	FLIOU	43.47	07.47.20	5	0.2	51	1.5	1.5	100	
12-13-2009		S 31 36 23 E 42 45								
07:54:01	PL181	30	08:10:29	1	250.2	0	0.3	5	6	
12-13-2009	-	S 31 36 23 E 42 45				-		_	_	
07:54:01	PL181	30	08:14:07	1	200.6	57	1.3	0.8	162.5	
12-13-2009		S 31 36 23 E 42 45								
07:54:01	PL181	30	08:14:08	2	200.3	0	1.4	0.9	155.56	
12-13-2009		S 31 36 23 E 42 45								
07:54:01	PL181	30	08:21:24	2	150.4	152	1.3	1.2	108.33	
12-13-2009		S 31 36 23 E 42 45								
07:54:01	PL181	30	08:21:25	3	150.3	0	1.4	1.2	116.67	
12-13-2009		S 31 36 23 E 42 45								
07:54:01	PL181	30	08:27:45	3	100.6	137	1.4	1.2	116.67	
12-13-2009	5. 464	S 31 36 23 E 42 45	~~~ ~~ ~~					4.0		
07:54:01	PL181	30	08:27:46	4	100.5	0	1.4	1.2	116.67	
12-13-2009		S 31 36 23 E 42 45	00.00.40		50 7	405			4.40	
07:54:01	PL181	3U 0.04.00.00 E 40.45	08:33:42	4	50.7	125	1.4	1	140	
12-13-2009		5 31 36 23 E 42 45	00.00.40	-	50 F	0		4.4	407.07	
	PLIST	3U S 21 26 22 E 42 4E	08:33:43	Э	50.5	U	1.4	1.1	121.21	
12-13-2009		3 3 1 30 Z3 E 4Z 43	00.20.10	F	0.0	00	4	1	100	
07.34.01	FLIOI	30	00.30.10	5	0.9	90	I	I	100	

B2 Multinet samples

PRESERVATION

			Sample				
Cruise	LOCATION	EVENT	Number	#	Trawl type	genetics	Note
2009410	ST2	3	PL3NET1	695	MULTINET	ETHANOL	TOO SMALL TO QUANTIFY
2009410	ST2	3	PL3NET1	681	MULTINET	FORMALDEHYDE	TOO SMALL TO QUANTIFY
2009410	ST2	3	PL3NET2	292	MULTINET	ETHANOL	TOO SMALL TO QUANTIFY
2009410	ST2	3	PL3NET2	278	MULTINET	FORMALDEHYDE	TOO SMALL TO QUANTIFY
2009410	ST2	3	PL3NET3	646	MULTINET	ETHANOL	TOO SMALL TO QUANTIFY
2009410	ST2	3	PL3NET3	644	MULTINET	FORMALDEHYDE	TOO SMALL TO QUANTIFY
2009410	ST2	3	PL3NET4	630	MULTINET	ETHANOL	TOO SMALL TO QUANTIFY
2009410	ST2	3	PL3NET4	643	MULTINET	FORMALDEHYDE	TOO SMALL TO QUANTIFY
2009410	ST2	3	PL3NET5	629	MULTINET	ETHANOL	TOO SMALL TO QUANTIFY
2009410	ST2	3	PL3NET5	682	MULTINET	FORMALDEHYDE	TOO SMALL TO QUANTIFY
2009410	ST2	8	PL7NET1	600	MULTINET	ETHANOL	TOO SMALL TO QUANTIFY
2009410	ST2	8	PL7NET1	014	MULTINET	FORMALDEHYDE	TOO SMALL TO QUANTIFY
2009410	ST2	8	PL7NET2	013	MULTINET	ETHANOL	TOO SMALL TO QUANTIFY
2009410	ST2	8	PL7NET2	590	MULTINET	FORMALDEHYDE	TOO SMALL TO QUANTIFY
2009410	ST2	8	PL7NET3	604	MULTINET	ETHANOL	TOO SMALL TO QUANTIFY
2009410	ST2	8	PL7NET3	622	MULTINET	FORMALDEHYDE	TOO SMALL TO QUANTIFY
2009410	ST2	8	PL7NET4	635	MULTINET	ETHANOL	TOO SMALL TO QUANTIFY
2009410	ST2	8	PL7NET4	640	MULTINET	FORMALDEHYDE	TOO SMALL TO QUANTIFY
2009410	ST2	8	PL7NET5	626	MULTINET	FORMALDEHYDE	TOO SMALL TO QUANTIFY
2009410	ST2	8	PL7NET5	639	MULTINET	ETHANOL	TOO SMALL TO QUANTIFY
2009410	ST2	9	PL8NET1	539	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410	ST2	9	PL8NET2	553	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410	ST2	9	PL8NET3	540	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410	ST2	9	PL8NET4	575	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410	ST2	9	PL8NET5	642	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410	ST2	4	PL4NET1	627	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410	ST2	4	PL4NET2	641	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410	ST2	4	PL4NET3	647	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410	ST2	4	PL4NET4	661	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410	ST2	4	PL4NET5	648	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410	ST4	20	PL27NET1	736	MULTINET	ETHANOL	
2009410	ST4	20	PL27NET1	175	MULTINET	FORMALDEHYDE	

2009410	ST4	20	PL27NET2	735	MULTINET	ETHANOL	
2009410	ST4	20	PL27NET2	161	MULTINET	FORMALDEHYDE	
2009410	ST4	20	PL27NET3	749	MULTINET	ETHANOL	
2009410	ST4	20	PL27NET3	166	MULTINET	FORMALDEHYDE	
2009410	ST4	20	PL27NET4	111	MULTINET	ETHANOL	
2009410	ST4	20	PL27NET4	121	MULTINET	FORMALDEHYDE	
2009410	ST4	20	PL27NET5	58	MULTINET	ETHANOL	
2009410	ST4	20	PL27NET5	750	MULTINET	FORMALDEHYDE	
2009410	ST4	21	PL28NET1	1429	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410	ST4	21	PL28NET2	1611	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410	ST4	21	PL28NET3	1485	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410	ST4	21	PL28NET4	1457	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410	ST4	21	PL28NET5	1414	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410	ST4		PL29NET1	1345	MULTINET	FORMALDEHYDE	
2009410	ST4		PL29NET1	1373	MULTINET	ETHANOL	
2009410	ST4		PL29NET2	1699	MULTINET	FORMALDEHYDE	
2009410	ST4		PL29NET3	1622	MULTINET	FORMALDEHYDE	
2009410	ST4		PL29NET4	1366	MULTINET	FORMALDEHYDE	
2009410	ST4		PL29NET5	1450	MULTINET	FORMALDEHYDE	
2009410	ST4		PL29NET2	1433	MULTINET	ETHANOL	
2009410	ST4		PL29NET3	1787	MULTINET	ETHANOL	
2009410	ST4		PL29NET4	1650	MULTINET	ETHANOL	
2009410	ST4		PL29NET5	1333	MULTINET	ETHANOL	
2009410	ST4		PL30NET1	1427	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410	ST4		PL30NET2	1729	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410	ST4		PL30NET3	1455	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410	ST4		PL30NET4	1789	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410	ST4		PL30NET5	1785	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410	ST5	6	PL45NET1	1813	MULTINET	FORMALDEHYDE	
2009410	ST5	6	PL45NET1	1847	MULTINET	ETHANOL	
2009410	ST5	6	PL45NET2	1831	MULTINET	FORMALDEHYDE	
2009410	ST5	6	PL45NET2	1871	MULTINET	ETHANOL	
2009410	ST5	6	PL45NET3	1899	MULTINET	FORMALDEHYDE	
2009410	ST5	6	PL45NET3	1811	MULTINET	ETHANOL	
2009410	ST5	6	PL45NET3	1843	MULTINET	FORMALDEHYDE	
2009410	ST5	6	PL45NET4	1841	MULTINET	ETHANOL	

2009410	ST5	6	PL45NET4	1843	MULTINET	FORMALDEHYDE
2009410	ST5	6	PL45NET5	1815	MULTINET	FORMALDEHYDE
2009410	ST5	6	PL45NET5	1869	MULTINET	ETHANOL
2009410	ST5	10	PL47NET1	1365	MULTINET	ETHANOL
2009410	ST5	10	PL47NET1	1337	MULTINET	FORMALDEHYDE
2009410	ST5	10	PL47NET2	1393	MULTINET	FORMALDEHYDE
2009410	ST5	10	PL47NET2	1421	MULTINET	ETHANOL
2009410	ST5	10	PL47NET3	1332	MULTINET	ETHANOL
2009410	ST5	10	PL47NET3	1449	MULTINET	FORMALDEHYDE
2009410	ST5	10	PL47NET4	1360	MULTINET	FORMALDEHYDE
2009410	ST5	10	PL47NET4	1388	MULTINET	ETHANOL
2009410	ST5	10	PL47NET5	1444	MULTINET	FORMALDEHYDE
2009410	ST5	10	PL47NET5	1416	MULTINET	ETHANOL
2009410	ST5	11	PL48NET1	1900	MULTINET	FORMALDEHYDE
2009410	ST5	11	PL48NET1	2079	MULTINET	ETHANOL
2009410	ST5	11	PL48NET2	1876	MULTINET	FORMALDEHYDE
2009410	ST5	11	PL48NET2	1870	MULTINET	ETHANOL
2009410	ST5	11	PL48NET3	1951	MULTINET	FORMALDEHYDE
2009410	ST5	11	PL48NET3	1814	MULTINET	ETHANOL
2009410	ST5	11	PL48NET4	1842	MULTINET	ETHANOL
2009410	ST5	11	PL48NET4	2094	MULTINET	FORMALDEHYDE
2009410	ST5	11	PL48NET5	2007	MULTINET	FORMALDEHYDE
2009410	ST5	11	PL48NET5	1923	MULTINET	ETHANOL
2009410	ST6	4	PL67NET1	2879	MULTINET	ETHANOL
2009410	ST6	4	PL67NET1	3053	MULTINET	FORMALDEHYDE
2009410	ST6	4	PL67NET2	2880	MULTINET	ETHANOL
2009410	ST6	4	PL67NET2	2912	MULTINET	FORMALDEHYDE
2009410	ST6	4	PL67NET3	2908	MULTINET	ETHANOL
2009410	ST6	4	PL67NET3	2884	MULTINET	FORMALDEHYDE
2009410	ST6	4	PL67NET4	2957	MULTINET	ETHANOL
2009410	ST6	4	PL67NET4	2934	MULTINET	FORMALDEHYDE
2009410	ST6	4	PL67NET5	2936	MULTINET	ETHANOL
2009410	ST6	4	PL67NET5	2940	MULTINET	FORMALDEHYDE
2009410	ST6	7	PL70NET1	2759	MULTINET	ETHANOL
2009410	ST6	7	PL70NET1	2830	MULTINET	FORMALDEHYDE
2009410	ST6	7	PL70NET2	2761	MULTINET	ETHANOL

2009410	ST6	7	PL70NET2	2787	MULTINET	FORMALDEHYDE
2009410	ST6	7	PL70NET3	2789	MULTINET	FORMALDEHYDE
2009410	ST6	7	PL70NET3	2817	MULTINET	ETHANOL
2009410	ST6	7	PL70NET4	2843	MULTINET	FORMALDEHYDE
2009410	ST6	7	PL70NET4	2815	MULTINET	ETHANOL
2009410	ST6	7	PL70NET5	2844	MULTINET	FORMALDEHYDE
2009410	ST6	7	PL70NET5	2831	MULTINET	ETHANOL
2009410	ST7	4	PL96NET1	2844	MULTINET	ETHANOL
2009410	ST7	4	PL96NET1	2865	MULTINET	FORMALDEHYDE
2009410	ST7	4	PL96NET2	2791	MULTINET	ETHANOL
2009410	ST7	4	PL96NET2	2893	MULTINET	FORMALDEHYDE
2009410	ST7	4	PL96NET3	3985	MULTINET	ETHANOL
2009410	ST7	4	PL96NET3	4069	MULTINET	FORMALDEHYDE
2009410	ST7	4	PL96NET4	4013	MULTINET	ETHANOL
2009410	ST7	4	PL96NET4	3929	MULTINET	FORMALDEHYDE
2009410	ST7	4	PL96NET5	2819	MULTINET	ETHANOL
2009410	ST7	4	PL96NET5	4041	MULTINET	FORMALDEHYDE
2009410	ST7	9	PL103NET1	2917	MULTINET	FORMALDEHYDE
2009410	ST7	9	PL103NET1	2916	MULTINET	ETHANOL
2009410	ST7	9	PL103NET2	2944	MULTINET	ETHANOL
2009410	ST7	9	PL103NET2	2861	MULTINET	FORMALDEHYDE
2009410	ST7	9	PL103NET3	2889	MULTINET	ETHANOL
2009410	ST7	9	PL103NET3	2121	MULTINET	FORMALDEHYDE
2009410	ST7	9	PL103NET4	2647	MULTINET	FORMALDEHYDE
2009410	ST7	9	PL103NET4	2675	MULTINET	ETHANOL
2009410	ST7	9	PL103NET5	3733	MULTINET	ETHANOL
2009410	ST7	9	PL103NET5	3054	MULTINET	FORMALDEHYDE
2009410	ST8	4	PL109NET1	4626	MULTINET	ETHANOL
2009410	ST8	4	PL109NET1	4471	MULTINET	FORMALDEHYDE
2009410	ST8	4	PL109NET2	4568	MULTINET	ETHANOL
2009410	ST8	4	PL109NET2	4199	MULTINET	FORMALDEHYDE
2009410	ST8	4	PL109NET3	4691	MULTINET	ETHANOL
2009410	ST8	4	PL109NET3	4653	MULTINET	FORMALDEHYDE
2009410	ST8	4	PL109NET4	4577	MULTINET	ETHANOL
2009410	ST8	4	PL109NET4	4703	MULTINET	FORMALDEHYDE
2009410	ST8	4	PL109NET5	4094	MULTINET	FORMALDEHYDE

2009410	ST8	4	PL109NET5	3721	MULTINET	ETHANOL	
2009410			PL44NET1	2001	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL44NET2	1931	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL44NET3	1089	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL44NET4	1959	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL44NET5	2082	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL46NET1	2029	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL46NET2	1917	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL46NET3	1973	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL46NET4	1945	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL46NET5	1895	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410	ST8	7	PL112NET1	4387	MULTINET	ETHANOL	
2009410	ST8	7	PL112NET1	4230	MULTINET	FORMALDEHYDE	
2009410	ST8	7	PL112NET2	4202	MULTINET	FORMALDEHYDE	
2009410	ST8	7	PL112NET2	4174	MULTINET	ETHANOL	
2009410	ST8	7	PL112NET3	4146	MULTINET	ETHANOL	
2009410	ST8	7	PL112NET3	4227	MULTINET	FORMALDEHYDE	
2009410	ST8	7	PL112NET4	4118	MULTINET	FORMALDEHYDE	
2009410	ST8	7	PL112NET4	4521	MULTINET	ETHANOL	
2009410	ST8	7	PL112NET5	4549	MULTINET	ETHANOL	
2009410	ST8	7	PL112NET5	4531	MULTINET	FORMALDEHYDE	
2009410			PL54NET1	2964	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL54NET2	2929	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL54NET3	2962	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL54NET4	2901	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL54NET5	2881	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL61NET1	2876	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL61NET2	2904	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL61NET3	2932	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL61NET4	2960	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL61NET5	2878	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL66NET1	2473	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL66NET2	2476	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL66NET3	2504	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL66NET4	2532	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL66NET5	2478	MULTINET	FORMALDEHYDE	FULL SAMPLE

2009410			PL68NET1	2501	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL68NET2	2537	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL68NET3	2502	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL68NET4	2509	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL68NET5	2530	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL69NET1	2518	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL69NET2	2534	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL69NET3	2506	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL69NET4	2841	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL69NET5	2490	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL71NET1	2748	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL71NET2	2760	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL71NET3	2749	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL71NET4	2474	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL71NET5	2546	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL82NET1	2883	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL82NET2	2911	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL82NET3	2811	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL82NET4	2784	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410			PL82NET5	2812	MULTINET	FORMALDEHYDE	FULL SAMPLE
2009410	ST9	18	PL147NET1	3056	MULTINET	ETHANOL	
2009410	ST9	18	PL147NET1	2973	MULTINET	FORMALDEHYDE	
2009410	ST9	18	PL147NET2	3001	MULTINET	FORMALDEHYDE	
2009410	ST9	18	PL147NET2	3029	MULTINET	ETHANOL	
2009410	ST9	18	PL147NET3	3057	MULTINET	ETHANOL	
2009410	ST9	18	PL147NET3	2974	MULTINET	FORMALDEHYDE	
2009410	ST9	18	PL147NET4	N/A	N/A	N/A	DUDD
2009410	ST9	18	PL147NET4	N/A	N/A	N/A	DUDD
2009410	ST9	18	PL147NET5	5952	MULTINET	ETHANOL	
2009410	ST9	18	PL147NET5	5924	MULTINET	FORMALDEHYDE	
2009410	ST9	22	PL150NET1	4857	MULTINET	ETHANOL	
2009410	ST9	22	PL150NET1	4711	MULTINET	FORMALDEHYDE	
2009410	ST9	22	PL150NET2	4217	MULTINET	FORMALDEHYDE	
2009410	ST9	22	PL150NET2	2859	MULTINET	ETHANOL	
2009410	ST9	22	PL150NET3	4620	MULTINET	ETHANOL	
2009410	ST9	22	PL150NET3	4418	MULTINET	FORMALDEHYDE	

2009410	ST9	22	PL150NET4	4180	MULTINET	ETHANOL
2009410	ST9	22	PL150NET4	4208	MULTINET	FORMALDEHYDE
2009410	ST9	22	PL150NET5	4965	MULTINET	ETHANOL
2009410	ST9	22	PL150NET5	4590	MULTINET	FORMALDEHYDE
2009410	ST10	7	PL178NET1	6081	MULTINET	FORMALDEHYDE
2009410	ST10	7	PL178NET1	4702	MULTINET	ETHANOL
2009410	ST10	7	PL178NET2	6317	MULTINET	FORMALDEHYDE
2009410	ST10	7	PL178NET2	6184	MULTINET	ETHANOL
2009410	ST10	7	PL178NET3	6092	MULTINET	FORMALDEHYDE
2009410	ST10	7	PL178NET3	6064	MULTINET	ETHANOL
2009410	ST10	7	PL178NET4	6036	MULTINET	FORMALDEHYDE
2009410	ST10	7	PL178NET4	6355	MULTINET	ETHANOL
2009410	ST10	7	PL178NET5	4336	MULTINET	FORMALDEHYDE
2009410	ST10	7	PL178NET5	4684	MULTINET	ETHANOL
2009410	ST10	12	PL181NET1	1806	MULTINET	ETHANOL
2009410	ST10	12	PL181NET1	1981	MULTINET	FORMALDEHYDE
2009410	ST10	12	PL181NET2	2009	MULTINET	ETHANOL
2009410	ST10	12	PL181NET2	2037	MULTINET	FORMALDEHYDE
2009410	ST10	12	PL181NET3	2041	MULTINET	ETHANOL
2009410	ST10	12	PL181NET3	2013	MULTINET	FORMALDEHYDE
2009410	ST10	12	PL181NET4	1985	MULTINET	ETHANOL
2009410	ST10	12	PL181NET4	1980	MULTINET	FORMALDEHYDE
2009410	ST10	12	PL181NET5	2008	MULTINET	ETHANOL
2009410	ST10	12	PL181NET5	2011	MULTINET	FORMALDEHYDE

B3 Bongo net samples

LOCATION	#	TAXA	DATE	STARTHAUL (LOCAL)	STOPHAUL	START FLOW METER		STOP FLOW METER	PRESERVATION	MESH (µ)	WEIGHT (kg)
ST2		BULK	2009.11.14	18:42			20632		ETHANOL	375	-
ST2	615	BULK	2009.11.14	18:42			94937		FORMALDEHYDE	500	-
ST2	660	BULK	2009.11.14	18:07	18:33	DUDD		20632	ETHANOL	375	
ST2	621	BULK	2009.11.14	18:07	18:33			94937	FORMALDEHYDE	500	0.0194
ST2	633	HETEROPOD	2009.11.14	18:07	18:33			94937	FORMALDEHYDE	500	
ST2	619	EUPHAUSID	2009.11.14	18:07	18:33			94938	FORMALDEHYDE	500	
ST2	203	BULK	2009.11.15	01:53	02:27		27173	31981	ETHANOL	375	
ST2	608	BULK	2009.11.15	01:53	02:27		4174	11066	FORMALDEHYDE	500	
ST2	666	BULK	2009.11.15	02:41	03:19		31981	39100	ETHANOL	375	
ST2	652	BULK	2009.11.15	02:41	03:19		11066	20426	FORMALDEHYDE	500	
ST2	651	BULK	2009.11.15	03:28	04:05		20426	28857	ETHANOL	375	
ST2	664	BULK	2009.11.15	03:28	04:05		39100	45318	FORMALDEHYDE	500	
ST2	663	BULK	2009.11.15	04:12	04:55		28857	38198	ETHANOL	375	
ST2	649	BULK	2009.11.15	04:12	04:55		45138	51886	FORMALDEHYDE	500	
ST2	655	BULK	2009.11.15	16:22	16:50		38198	44362	ETHANOL	375	
ST2	672	BULK	2009.11.15	16:22	16:50		51886	56512	FORMALDEHYDE	500	
ST2	688	BULK	2009.11.15	16:57	17:30		56512	60587	ETHANOL	375	
ST2	657	BULK	2009.11.15	16:57	17:30		44362	51595	FORMALDEHYDE	500	
ST4	689	BULK	2009.11.18	19:55	20:27		64534	68229	ETHANOL	375	
ST4	690	BULK	2009.11.18	19:55	20:27		58277	62663	FORMALDEHYDE	500	
ST4	676	BULK	2009.11.18	21:00	21:32		68229	72171	ETHANOL	375	
ST4	675	BULK	2009.11.18	21:00	21:32		62663	68013	FORMALDEHYDE	500	
ST4	691	BULK	2009.11.18	21:35	22:05		68013	74378	FORMALDEHYDE	500	tommy
ST4	1422	BULK	2009.11.19	14:40	15:10		76659	80193	ETHANOL	375	
ST4	1617	BULK	2009.11.19	14:40	15:10		74379	78863	FORMALDEHYDE	500	
ST4	1761	BULK	2009.11.19	15:15	15:50		80193	89507	ETHANOL	375	
ST4	1338	BULK	2009.11.19	15:15	15:50		78863	86932	FORMALDEHYDE	500	
ST4	1399	BULK	2009.11.19	16:00	16:32		86932	92643	FORMALDEHYDE	500	tommy
ST5	1867	BULK	2009.11.22	01:16	01:51		93085	4181	FORMALDEHYDE	500	tommy
ST5	None	BULK	2009.11.22	01:16	01:51		89756	94331	dried	375	tommy
ST5	1817	BULK	2009.11.22	01:55	02:32		4181	15624	FORMALDEHYDE	500	
ST5	1873	BULK	2009.11.22	01:55	02:32		94331	97123	ETHANOL	375	
ST5	1901	BULK	2009.11.22	02:35	03:05		15624	21624	FORMALDEHYDE	500	

1845	BULK	2009.11.22	02:35	03:05	97123	99376	ETHANOL	375	
2785	BULK	2009.11.24	21:30	22:10	21631	30210	FORMALDEHYDE	500	tommy
None	BULK	2009.11.24	21:30	22:10	99376	2332	dried	375	tommy
2902	BULK	2009.11.24	22:10	2240	2332	4676	ETHANOL	375	
2933	BULK	2009.11.24	22:10	2240	30210	36789	FORMALDEHYDE	500	
2906	BULK	2009.11.24	22:40	2315	4676	6605	ETHANOL	375	
2961	BULK	2009.11.24	22:40	2315	36789	43943	FORMALDEHYDE	500	
2815	BULK	2009.11.25	21:05	21:35	43943	51325	FORMALDEHYDE	500	tommy
None	BULK	2009.11.25	21:05	21:35	6605	8602	dried	375	tommy
2840	BULK	2009.11.25	21:35	22:02	8602	10812	ETHANOL	375	
2832	BULK	2009.11.25	21:35	22:02	51325	56864	FORMALDEHYDE	500	
2776	BULK	2009.11.25	22:02	22:32	10812	12980	ETHANOL	375	
2788	BULK	2009.11.25	22:02	22:32	56864	76619	FORMALDEHYDE	500	
2499	BULK	2009.11.27	13:51	14:23	61994	70072	FORMALDEHYDE	500	
2527	BULK	2009.11.27	13:51	14:23	12980	15968	ETHANOL	375	
2528	BULK	2009.11.27	14:23	14:58	70072	79781	FORMALDEHYDE	500	tommy
None	BULK	2009.11.27	14:23	14:58	15968	19170	dried	375	tommy
2867	BULK	2009.11.27	18:10	18:45	79781	85554	FORMALDEHYDE	500	
2895	BULK	2009.11.27	18:10	18:45	19170	21681	ETHANOL	375	
3899	BULK	2009.11.29	18:10	18:47	21681	24603	ETHANOL	375	
3313	BULK	2009.11.29	18:10	18:47	85554	94101	FORMALDEHYDE	500	
3975	BULK	2009.11.29	19:55	20:25	28559	32205	ETHANOL	375	
3947	BULK	2009.11.29	19:55	20:25	3533	11434	FORMALDEHYDE	500	
4059	BULK	2009.11.29	20:30	21:02	32205	36270	ETHANOL	375	
4003	BULK	2009.11.29	20:30	21:02	11434	20321	FORMALDEHYDE	500	
2918	BULK	2009.11.30	17:55	18:25	38289	41038	ETHANOL	375	
2690	BULK	2009.11.30	17:55	18:25	26670	32467	FORMALDEHYDE	500	
4657	BULK	2009.12.02	13:25	13:55	41030	44887	ETHANOL	375	
4713	BULK	2009.12.02	13:25	13:55	32480	39906	FORMALDEHYDE	500	
4901	BULK	2009.12.02	13:59	14:22	39906	45372	FORMALDEHYDE	500	
4629	BULK	2009.12.02	13:59	14:22	44887	47272	ETHANOL	375	
4077	BULK	2009.12.02	14:23	14:58	45372	51749	FORMALDEHYDE	500	tommy
None	BULK	2009.12.02	14:23	14:58	47272	50845	dried	375	tommy
6005	BULK	2009.12.02	19:50	20:21	51749	59814	FORMALDEHYDE	500	
5979	BULK	2009.12.02	19:50	20:21	50845	54545	ETHANOL	375	
5923	BULK	2009.12.02	20:30	20:55	59814	68056	FORMALDEHYDE	500	

ST5

5951	BULK	2009.12.02	20:30	20:55	54545	58277	ETHANOL	375	
5977	BULK	2009.12.02	21:03	21:40	68057	77744	FORMALDEHYDE	500	tommy
None	BULK	2009.12.02	21:03	21:40	58277	62808	dried	375	tommy
5801	BULK	2009.12.08	08:15	08:45	62589	67488	ETHANOL	375	
5824	BULK	2009.12.08	08:15	08:45	77815	86942	FORMALDEHYDE	500	
5745	BULK	2009.12.08	08:50	09:36	67488	71620	ETHANOL	375	
5773	BULK	2009.12.08	08:50	09:36	86942	97309	FORMALDEHYDE	500	
5972	BULK	2009.12.08	19:50	20:25	75355	79195	ETHANOL	375	
5832	BULK	2009.12.08	19:50	20:25	5050	15138	FORMALDEHYDE	500	
6000	BULK	2009.12.08	20:30	21:05	79195	82645	ETHANOL	375	
5916	BULK	2009.12.08	20:30	21:05	15138	2573	FORMALDEHYDE	500	
4683	BULK	2009.12.12	20:42	21:25	44838	55394	FORMALDEHYDE	500	
6205	BULK	2009.12.12	20:42	21:25	90844	95956	ETHANOL	375	
5864	BULK	2009.12.12	21:27	21:56	55394	63385	FORMALDEHYDE	500	
6183	BULK	2009.12.12	21:27	21:56	95956	99326	ETHANOL	375	
4847	BULK	2009.12.13	13:20	14:10	99326	3968	ETHANOL	375	
4765	BULK	2009.12.13	13:20	14:10	63385	74341	FORMALDEHYDE	500	
4277	BULK	2009.12.13	14:12	14:57	3968	8254	ETHANOL	375	
4875	BULK	2009.12.13	14:12	14:57	74341	84309	FORMALDEHYDE	500	

ST10

ST10

Appendix C Zoological Society of London Genetics Samples by Sample box (numbers indicate sample number)

1	2	3	4	5	6	7	8	9
5618	6250	6276	5188	5132	5074	5046	6043	5590
10	11	12	13	14	15	16	17	18
6375	5216	5417	6332	5160	5480	5166	5018	6304
19	20	21	22	23	24	25	26	27
5487	4359	4417	4912	4081	5722	5668	5263	4775
28	29	30	31	32	33	34	35	36
4791	5620	6082	5543	5123	5151	5207	5233	5749
37	38	39	40	41	42	43	44	45
4249	5259	5156	5699	5162	5095	5340	5179	4552
46	47	48	49	50	51	52	53	54
4288	4400	4184	4263	4553	4267	4494	4173	4472
55	56	57	58	59	60	61	62	63
4100	4187	4895	4911	4524				
64	65	66	67	68	69	70	71	72
73	74	75	76	77	78	79	80	81

А

1	2	3	4	5	6	7	8	9
5719	6295	6314	5793	5775	5741	5716	6208	5016
10	11	12	13	14	15	16	17	18
5796	5196	5824	5770	5737	5683	5714	4623	5102
19	20	21	22	23	24	25	26	27
5315	5686	5657	6342	6272	5685	5787	5765	5826
28	29	30	31	32	33	34	35	36
5492	5742	5821	5744	6258	5713	5655	6129	6112
37	38	39	40	41	42	43	44	45
5128	5044	4805	4293	5269	5408	5676	6298	4838
46	47	48	49	50	51	52	53	54
5404	5473	5803	4321	5241	5772	5646	4435	5415
55	56	57	58	59	60	61	62	63
5783	6322	6145	5348	5325	5379	5376	5297	6268
64	65	66	67	68	69	70	71	72
5482	5454	5738	5008	5789	5758	5817	6107	5374
73	74	75	76	77	78	79	80	81
5451	6398	5510	6059	6160	4403	5334	6188	4851

1	2	3	4	5	6	7	8	9
1479	1507	1533	1571	1459	1503	1324	1589	1475
10	11	12	13	14	15	16	17	18
1435	1463	1491	1431	1591	1358	1543	1477	1561
19	20	21	22	23	24	25 Sta 4 Ev 22	26	27
1330	1487	1471	1505	1668	236	Isididae	5830	
28	29	30	31	32	33	34	35	36
37	38	39	40	41	42	43	44	45
46	47	48	49	50	51	52	53	54
55	56	57	58	59	60	61	62	63
64	65	66	67	68	69	70	71	72
73	74	75	76	77	78	79	80	81

Station 4 Event 22

1	2	3	4	5	6	7	8	9
5679	4398	1969	4780	6357	6396	5651	5120	5798
10	11	12	13	14	15	16	17	18
5183	6159	1911	4725	6372	6008	6040	6265	5345
19	20	21	22	23	24	25	26	27
5280	5240	4831	4337	6053	5866	6266	6237	5242
28	29	30	31	32	33	34	35	36
5363	6132	4866	2146	6101	5980	6294	6293	5413
37	38	39	40	41	42	43	44	45
4752	5280	4309	6369	4307	6233	6240	5270	5894
46	47	48	49	50	51	52	53	54
4103	5223	5521	6290	5755	6358	5391	5950	5295
55	56	57	58	59	60	61	62	63
4447	5308	3002	6318	4821	6015	6386	5922	5819
64	65	66	67	68	69	70	71	72
4478	5319	4123	4872	6344	6125	6320	6006	6173
73	74	75	76	77	78	79	80	81
4370	5002	5056	5844	5839	6108	6201	5946	5350

1	2	3	4	5	6	7	8	9
4283	4998	4869	4195	4742	5462	5700	4405	4712
10	11	12	13	14	15	16	17 Sta8 Ev17	18
4884	5000	4770	4792	4301	4139	2115	Mesobius	5953
19	20	21	22	23	24	25	26	27
5639	5640	5464	5612	5472	5500	5528	4974	4424
28	29	30	31	32	33	34	35	36
5585	5557	5672	5728	5735	5763	5756	5784	5812
37	38	39	40	41	42	43	44	45
4933	4905	4082	5800	5641	5529	5613	5475	5307
46	47	48	49	50	51	52	53	54
5996	5448	5925	4994					
55	56	57	58	59	60	61	62	63
64	65	66	67	68	69	70	71	72
73	74	75	76	77	78	79	80	81

1	2	3	4	5	6	7	8	9
3769	3903	3744	3858	3855	3832	3066	3907	3730
10	11	12	13	14	15	16	17	18
3770	3906	3016	3010	3877	3745	3061	3782	3720
19	20	21	22	23	24	25	26	27
3913	3431	3794	3875	3766	3883	3950	3401	3266
28	29	30	31	32	33	34	35	36
3473	3434	3375	3250	3247	3281	3325	3262	3998
37	38	39	40	41	42	43	44	45
3199	3227	3398	4045	3686	3305	3478	3333	3120
46	47	48	49	50	51	52	53	54
3087	3345	3261	3084	3499	3527	2119	2065	2093
55	56	57	58	59	60	61	62	63
3209	2872	3533	3488	3168	2143	2978	3193	3312
64	65Unlabelled	66	67	68	69	70	71	72
3828	St6 Ev13	2012	3520					
73	74	75	76	77	78	79	80	81

Station 6

Events 11,12,13

1	2	3	4	5	6	7	8	9
232	232	232	232	232	232	232	232	232
10	11	12	13	14	15	16	17	18
232	232	232	232	232	232	232	232	232
19	20	21	22	23	24	25	26	27
232	232	232	232	232	232	232	232	232
28	29	30	31	32	33	34	35	36
232	232	232	232	232	232	232	232	232
37	38	39	40	41	42	43	44	45
232	232	232	232	232	232	232	232	232
46	47	48	49	50	51	52	53	54
232	232	232	232	232	232	232	232	232
55	56	57	58	59	60	61	62	63
232	232	232	232	232	232	232	232	232
64	65	66	67	68	69	70	71	72
232	232	232	232	232	232	232	232	232
73	74	75	76	77	78	79	80	81
232	232	232	232	232	232	232	232	232

Box Letter

G

Samples

Cyclothone

1	2	3	4	5	6	7	8	9
3267	3615	2736	3136	3160	3612	3556	3147	3180
10	11	12	13	14	15	16	17	18
3192	3528	4072	2909	3235	3113	3059	2869	3122
19	20	21	22	23	24	25	26	27
3150	4067	3311	3347	3628	3182	3207	4024	3121
28	29	30	31	32	33	34	35	36
3245	3255	3129	3099	3127	3142	4063	2903	2668
37	38	39	40	41	42	43	44	45
3497	4057	3512	3761	3901	3708	3540	3568	2661
46	47	48	49	50	51	52	53	54
3566	3253	3710	3654	3601	3669	2640	2696	4001
55	56	57	58	59	60	61	62	63
3667	2663	2635	4488	3620	4023	3841	3871	3819
64	65	66	67	68	69	70	71	72
3680	3835	3188	3204					
73	74	75	76	77	78	79	80	81

1	2	3	4	5	6	7	8 Sta 5 Ev 8	9 Sta 5 Ev 8
1990	1678	1420	2126	2066	1336	1509	Egg	Zoea
10	11	12	13	14	15	16	17	18 Sta 5 Ev9
2275	2172	2200	2226	2202	2230	2224	2311	Polychaete
19	20	21	22	23	24	25	26	27
2207	2221	2161	2088	1909	2311	2198	2304	2205
28	29	30	31	32	33	34	35	36
2339	2235	2258	2165	2144	2278	2283	1670	2197
37	38	39	40	41	42	43	44	45
2294	2024	1961	1976	1989	2186	2351	2255	2342
46	47	48	49	50	51	52	53	54
2448	1920	2407	2424	1446	2000	1950	2023	3391
55	56	57	58	59	60	61	62	63
3447	2016	1997	2150	1967	2101	2153	2154	2059
64	65	66	67	68	69	70	71	72
3363	1790	1352						
73	74	75	76	77	78	79	80	81

T

1	2	3	4	5	6	7	8	9
329	1234	306	398	222	694	679	677	92
10	11	12	13	14	15	16	17	18
943	56	463	407	1256	1254	208	90	86
19	20	21	22	23	24	25	26	27
388	48	1248	411	249	941	1303	75	277
28	29	30	31	32	33	34	35	36
901	899	211	89	62	54	1238	1266	291
37	38	39	40	41	42	43	44	45
258	244	1002	91	1226	494	267	235	343
46	47 Sta 7 Ev14	48	49	50	51	52	53	54
2643	Periphyllia	2698	2726	609	226	1276	1221	1272
55	56	57	58	59	60	61	62	63
1304	1259	1319	971	742	281	751	446	1294
64	65	66	67	68	69	70	71	72
212	1249	599	756					
73	74	75	76	77	78	79	80	81

J
1	2	3	4	5	6	7	8	9
2090	2095	1965	2089	2117	2149	2129	2027	5998
10	11	12	13	14	15	16	17	18
2118	2122	2061	2091	1971	1993	1937	2064	2120
19	20	21	22	23	24	25	26	27
5878	5990	5934	1958	2147	2092	2025	1984	4419
28	29	30	31	32	33	34	35	36
4278	5849	5961	4841	2042	2087	4413	5855	4953
37	38	39	40	41	42	43	44	45
5893	5887	5929	4167	5850	4786	4223	4652	4680
46	47	48	49	50	51	52	53	54
5865	4111	4736	4385	4981	1995	1928	2014	1986
55	56	57	58	59	60	61	62	63
1956	5909	5993	5937	4255	4110	4368	1941	2125
64	65	66	67	68	69	70	71	72
5994	5965	5881	2044	2151	2123	2021	1999	2145
73	74	75	76	77	78	79	80	81
2062	2148	2040	1913	1930				

1	2	3	4	5	6	7	8	9
10	1311	1311	1311	1311	1311	1311	1311	1311
10	11	12	13	14	15	16	17	18
1311	1311	1311	1311	1311	1311	1311	1311	1311
19	20	21	22	23	24	25	26	27
1311	650	650	650	650	650	650	650	650
28	29	30	31	32	33	34	35	36
650	650	650	650	792	650	650	650	833
37	38	39	40	41	42	43	44	45
474	435	473	419	484	376	440	460	378
46	47	48	49	50	51	52	53	54
475	365	420	462	429	373	910	371	433
55	56	57	58	59	60	61	62	63
443	36	421	366	370	459	444	532	461
64	65	66	67	68	69	70	71	72
447	426	372	472	20				
73	74	75	76	77	78	79	80	81