
0	
  
	
  

 
 
 
 

Assembling data for coastal and marine spatial planning 
in the Western Indian Ocean 

 
Section I: Pelagic bioregionalisation 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Author: Dr Erwann Lagabrielle1 
1 University of La Réunion/IRD 

UMR ESPACE-DEV, BP 50172, 97492 Sainte-Clotilde Cedex, France 
 

 
Prepared for: 

A.S.C.L.M.E./Agulhas Somali Current Large Marine Ecosystem 
GEF/UNDP/UNOPS Project 00047255 

ICA 2011/LICA-SP/25683 



1	
  
	
  

SUMMARY 
 
 
 
LIST OF FIGURES………………………………………………………………………………. 

 
2 

 
LIST OF TABLES………………………………………………………………………………... 

 
2 

 
1. INTRODUCTION……………………………………………………………………………… 

 
3 

 
2. A BRIEF OVERVIEW OF THE AGULHAS-SOMALI CURRENT………………………... 

 
3 

 
3. REVIEW OF EXISTING BIOREGIONALISATION METHODS AND APPROACHES.. 

 
4 

 
4. METHODS AND DATA………………………………………………………………………. 

 
7 

4.1. Overview of the method……………………………………………………………………. 7 
4.2. Step I and II: Identification of the key ecological patterns and processes, and 
relevant variables and parameters…………………………………………………………….. 

 
8 

4.3. Step III: Collection of relevant data sets and pre-processing……………………….... 10 
4.4. Step IV: Clustering …………………..………………………….…………………………. 11 
4.5. Step V: Post-analysis of clusters………………………….……………………………… 11 
 
5. RESULTS……………………….………………………….………………………….……… 

 
11 

 
6. DISCUSSION AND CONCLUSIONS………………………….…………………………... 

 
18 

6.1. Overview of results………………………….………………………….………………….. 18 
6.2. Limitations and improvements………………………….………………………….……… 18 
 
7. REFERENCES………………………….………………………….…………………………. 

 
19 

  
 



2	
  
	
  

LIST OF FIGURES 
 
 
Figure 1. Some of the major currents in the western Indian Ocean indicated 
schematically (adapted from Lutjeharms and Bornman, 2010)………………………..…… 

 
 

4 
 
Figure 2. Extract from the map of the marine ecoregions of the world (Spalding et al., 
2007) in the Western Indian Ocean……………………………………………………………. 

 
 

5 
 
Figure 3. Overview of the bioregionalisation process……………………………………….. 

 
7 

 
Figure 4. Overview of variables and parameters: sea surface temperature (SST), 
chlorophyll-a (CHLO), net primary productivity (NPP), turbidity (K490) and MSLA  
(mean sea level anomalies). cv is the coefficient of variation and std is the standard 
deviation. For eddies, the parameter calculated is the frequency. For depth, the 
parameter is Log (⏐X⏐+1). Note that all values are displayed with a standard 
deviation (n=2) stretch. Variables and parameters used in the bioregionalisation 
are indicated with a black dot............................................................................................. 

 
 
 
 
 
 

9 

 
Figure 5. Cluster tree showing the hierarchical organisation of the 3 bioregions 
level 1, 22 bioregions level 2 and 60 bioregions level 3…………………………………...... 

 
 

12 
 
Figure 6. The bioregions level 1……………………………………………………………….. 

 
13 

 
Figure 7. The bioregions level 2. ……………………………………………………………… 

 
14 

 
Figure 8.  The bioregions level 3. …………………………………………………………….. 

 
15 

 
Figure 9. Map of the classification uncertainty. ……………………………………………... 

 
16 

 
 
 

LIST OF TABLES 
 
 
Table 1. Key ecological patterns and processes, and variables and parameters used 
for the bioregionalisation. The following acronyms are used to name the variables:  
sea surface temperature (SST), chlorophyll-a (CHLO), net primary productivity (NPP) 
and turbidity (K490). cv represents the coefficient of variation and std the standard 
deviation. ………………………………………………………………………………………… 

 
 
 
 
 

8 
 
Table 2. Spatial data sets collated for the pelagic bioregionalisation. …………………… 

 
10 

 
Table 3. Mean parameter values per variables lumped per bioregions level 1 and 2…... 

 
17 

 
Table 4. Mean parameter values per variable per bioregion. Higher values are 
highlighted in red while lower values are highlighted in blue. Top 10 % highest and 
lowest values for each parameter are shown in bold underlined…………………………… 

 
 
 

17 
 
 



3	
  
	
  

Report citation: 
Lagabrielle, E. 2012. Assembling data for coastal and marine spatial planning 
in the Western Indian Ocean - Section I: Pelagic bioregionalisation. Prepared for the 
A.S.C.L.M.E./Agulhas Somali Current Large Marine Ecosystem project, GEF/UNDP/UNOPS. 
20 p. 
 
1. INTRODUCTION 
 
Restoring, maintaining and conserving the ecological integrity of the Agulhas Somali Current 
Large Marine Ecosystem (Figure 1) while ensuring optimal and sustainable utilization of the 
resources has been identified as a priority (Obura et al., 2012), especially with regard to the 
development of policy for the establishment of transboundary Marine Protected Areas 
(MPAs). This task requires knowledge of the spatial distribution of the physical and biological 
patterns and processes than sustain marine biodiversity in the region (Lombard et al. 2007; 
Sink and Attwood 2008). Understanding the spatial characteristics of the large and complex 
pelagic realm is the foundation for assessing pelagic biodiversity and further planning and 
implementing a representative system of MPAs in the Western Indian Ocean region. 
Therefore, the aim of this study was to map and describe the pelagic bioregions of the 
ASCLME area of interest. The intended outcome was a set of pelagic bioregions that will 
underpin a spatial framework to support future coastal and marine spatial planning. 
Bioregionalisation is a process that aims to classify a geographic area into broad scale, 
biologically meaningful units, based on a set of physical and biological variables. For 
example, variations in depth, temperature or nutrient availability across space and time 
define different habitat types. In turn, these habitats are assumed to be correlated with 
different biological communities. In this report, we identify a spatially nested system of 
bioregions grouped into 3 agregative levels. 
 
2. A BRIEF OVERVIEW OF THE AGULHAS-SOMALI CURRENT 
 
The oceanic region of the Western Indian Ocean links the Indian Ocean, the Southern Ocean 
and the Atlantic Ocean (Figure 1). In this region, the global South Equatorial current is 
combined with two major coastal currents flowing Northward: The Agulhas Current and the 
Somali Current. The Agulhas Current is the Western Boundary Current of the southwest 
Indian Ocean. It flows down the east coast of Africa from 27°S to 40°S. It is narrow, swift and 
strong. It includes upwelling zones associated with the strong tropical Agulhas current 
flowing in a south-westerly direction along the East coast, toward its inflection zone at 40° 
South (Lutjeharms, 2006). The Somali Current runs along the coast of Somalia and Oman. 
This current is heavily influenced by the monsoons and is the only major upwelling system 
that occurs on a western boundary of an ocean. The water upwelled by the Somali current 
creates one of the most productive ecosystems in the ocean (Mann and Lazier, 2006). 
 



4	
  
	
  

 
 
Figure 1. Some of the major currents in the western Indian Ocean indicated schematically 
(adapted from Lutjeharms and Bornman, 2010) 
 
 
 
3. REVIEW OF EXISTING BIOREGIONALISATION METHODS AND APPROACHES 
 
Ever increasing threats to marine biodiversity have led international policy to focus on the 
protection of coastal and pelagic regions (Convention on Biological Diversity, CBD). The 10th 
CBD Conference of the Parties held in Nagoya  in 2010 agreed to a 10% conservation target 
for all oceanic regions by 2020. The objective of this policy is to conserve a representative 
sample of all marine habitats, including pelagic habitats, within MPA networks. 
Consequently, international and national initiatives have been undertaken to support the 
achievement of these conservation objectives for oceanic regions. Several projects are 
underway to map marine bioregions and habitats. A complete review of those projects and 
approaches to biogeographic classification of the world’s oceans has been proposed by 
Spalding et al. (2007) and Vierros (2007). The main applications of these bioregionalisation 
initiatives are conservation related but some also integrate fishery management 
considerations (Hewitt and Linen 2000). 
 
Since the introduction of the Large Marine Ecosystem approach (Sherman and Duda 1999) 
several projects have undertaken a bioregionalisation of the world oceans. Spalding et al. 
(2007) published a map of the marine coastal and shelf ecoregions of the world (Figure 2). 
This classification includes 229 coastal and shelf ecoregions. UNESCO (2009) recently 
published a world map of pelagic bioregions (Figure 2). These products have been 
undertaken at very broad scales to produce global expert-based conceptual maps rather 
than data-driven products suitable for management purposes at a regional and national 
scale. 
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Figure 2. Extract from the map of the marine ecoregions of the world (Spalding et al., 2007) 
in the Western Indian Ocean. 
 
National classifications of oceans into biologically meaningful units have been undertaken in 
Australia (Lyne and Hayes 2005) and New Zealand (Snelder et al. 2006) based on 
biophysical parameters derived from remote sensing and oceanographic models. In 2007, a 
group of 27 experts working on issues related to the Convention on the Conservation of 
Antarctic Marine Living Resources (CCAMLR) developed a bioregional habitat mapping 
protocol and a map for the Southern Ocean (Grant et al. 2006) using a similar approach. 
 
Marine biological data for pelagic ecoregions are generally scarce and their spatial and 
temporal coverage is often incomplete or biased. Consequently, remote sensing data are 
often used to develop bioregional habitat maps (Grant et al. 2006). Remote sensing data 
offer a seamless temporal and spatial coverage of the ocean. In addition, most satellite-
derived products are freely accessible on-line. The measured parameters that are generally 
used in classifying pelagic ecoregions are sea surface temperature, chlorophyll and sea 
surface height anomalies. 
 
Data derived from oceanographic models (e.g. HYCOM, ROMS, MICOM) are currently being 
used to complement satellite data. These types of modelled data allow three-dimensional 
bioregional habitat mapping across the water column (Lyne and Hayes 2005). Physical 
oceanographic models can also be coupled to biological models (Fennel and Neumann 
2001) to derive biological parameters that can further be integrated into the marine habitat 
mapping process. Other models use satellite imagery as inputs to model biological 
processes. For example, Behrenfeld and Falkowski (1997) developed algorithms to derive 
primary productivity from MODIS data (data used in this bioregionalisation study). 
 
The parameters measured by satellite or generate by models are used as surrogates to 
characterise the environment and classify marine habitats. These habitats are theoretically 
associated with distinct species assemblages. However, most studies that test relationships 
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between habitats, communities and physical surrogates have been conducted at finer scales 
than those required for broad scale marine habitat mapping purposes (Post 2008). Most 
associations have not been explicitly tested and very few data sets are available to test 
classifications. Nevertheless, Grant et al. (2006) consider that a bioregionalisation analysis 
“may not require much ecological detail in a first instance since physical and environmental 
data can provide an understanding of environmental heterogeneity which will inevitably affect 
the ecology of a region”. Literature reviews associated with expert workshops are generally 
undertaken to identify habitat-community associations and the most biologically meaningful 
variables that can be used to map their distribution. 
 
The ocean is three-dimensional with horizontal and vertical connectivity. The extent of the 
links between pelagic and benthic habitats is debated although consensus has been reached 
that benthic and pelagic ecosystems should be considered separately in bioregional 
analyses. Spalding et al. (2007) and UNESCO (2009) consider “the development of parallel 
biogeographic systems, particularly in deep water areas, for the sea floor and overlying water 
column layers” necessary. This idea was applied for the bioregionalisation analysis of 
Australian waters by Lyne and Hayes (2005) which has two distinct components; pelagic and 
benthic. Most studies also separate the coastal (fine scale) and the offshore environment 
(broad scale) (Beck et al. 2003). 
 
As biodiversity patterns and processes are scale-dependant, a hierarchical approach is often 
used to identify spatially nested habitats, from broad scale bioregions to fine scale habitats. 
For example, the Australian pelagic habitat classification is composed of four subsequent 
levels from the oceanic scale toward a finer scale that reflects more local processes 
(circulation regimes associated with gyres) (Lyne and Hayes 2005). 
 
The integration of temporal variability and seasonality of the ocean environment is another 
challenge for the classification of the pelagic environment. Similar to the spatial approach, a 
hierarchical systematic approach is often developed to identify and capture this temporal 
variability and link it to the distribution of biological patterns and processes (Lyne and Hayes 
2005). In practice, most bioregionalisation projects use annual or seasonal climatology data 
(complete time series) derived from satellite images (Grant et al. 2006). 
 
Data derived from remote sensing, direct observations or models have different dimensions 
that require integration. Generally, a linear normalisation is applied to project the data in a 
comparable dimension. Other transformations include the application of non-linear functions 
(for example log or exponential) and the application of thresholds. 
 
The bioregionalisation analysis aims to select and group data pixels (grid cells) into régions 
exhibiting similar ecosystem characteristics. This can be done by applying simple thresholds 
to key ecosystem parameters (e.g. to depth contours). When adding other parameters, the 
process becomes more complex as the potential number of combination of classes increases 
dramatically (Beck et al. 2003). To cope with such complexity, clustering algorithms are used 
to segment the geographic space into regions sharing similar properties and differing from 
other regions (Grant et al. 2006). In the context of a bioregionalisation analysis, the 
geographic space is partitioned into grid cells. Each cell contains the information on the 
environmental parameters (biotic or abiotic) that are used to identify cluster 
 
The clusters identified by the bioregionalisation process must be compatible with planning 
and management applications. This means that the shape of those clusters on the map must 
be compact and each individual spatial feature must have a minimum area determined by the 
scale of application. In most applications, the total number of habitat types does not exceed 
30. 
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4. METHODS AND DATA 
 
4.1. Overview of the method 
 
The purpose of a bioregionalisation is to classify an oceanic region into different sub-regions 
exhibiting similar bio-physical profiles. As biological data on marine ecosystem are generally 
scarce and fragmented, our method for the bioregionalisation analysis uses surrogate 
variables extracted from remote sensing data. Those variables (and related parameters) are 
integrated in a cluster analysis. 
 
The whole analysis is based on the assumption of a multi-scale spatio-temporal organization 
of the ocean. Indeed, the ocean exhibit patterns and processes observed at the broadest 
scale (such as latitudinal temperature gradients) and simultanously at mesoscale (mesoscale 
eddies, for example) and fine scale (waves for instance). Those patterns and processes are 
spatio-temporally nested. This method is a synthesis of the approaches developed by Grant 
et al. (2006), Lyne and Hayes (2005) and Post (2008). 
 
The pelagic bioregionalisation of the Western Indian Ocean involved the following steps 
(Figure 3) (adapted from Grant et al. 2006): 

I. Identification of the key bio-physical and ecological patterns and processes 
II. Identification of the relevant variables and parameters describing those patterns and 

processes, or their drivers. 
III. Collection of relevant data sets and pre-processing of the data (e.g. normalisation, 

transformation, resampling, etc.). 
IV. Application of clustering procedures  
V. Post-analysis of clusters with experts 
VI. Assessment and validation with experts 

 

 
 
Figure 3. Overview of the bioregionalisation process. 
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4.2. Step I and II: Identification of the key ecological patterns and processes, and 
relevant variables and parameters 
 
The table 2 summarizes the relevant variables and parameters associated to key ecological 
patterns and processes. Two scalar levels of organisation of the ocean ecosystem have 
been distinguished: broad and mesoscale. The map of variables and associated parameters 
are shown in Figure 4. Variables and parameters were selected based on a previous study in  
the Benguela Current System. 
 
Table 1. Key ecological patterns and processes, and variables and parameters used for the 
bioregionalisation. The following acronyms are used to name the variables: sea surface 
temperature (SST), chlorophyll-a (CHLO), net primary productivity (NPP) and turbidity 
(K490). cv represents the coefficient of variation and std the standard deviation. 
 
Key ecological patterns and processes Variables and parameters 
Bio-physical variables and parameters describing the average 
state of the ocean surface 

SST mean 

SST max 

K490 mean 

The distribution of  marine biota exhibits global patterns 
associated with latitudinal gradients of temperature, net 
primary productivity and turbidity. At the scale of oceanic 
basins, this distribution is also influenced by global westward 
geostrophic currents and upwelling. The key parameter to 
detect those gradients is the mean of those variables and the 
maximum temperature. NPP mean 
Bio-physical variables and parameters describing the mesoscale 
variability of the ocean surface 

SST std 

K490 cv 

NPP cv 

Eddies frequency 

Depth (Log (⏐Depth⏐+1)) 

SST fronts 

CHLO fronts 

Alongside with broad scale patterns, the distribution of 
marine biota exhibits mesoscale patterns (sub-regions of 
high primary productivity for instance, associated with fronts 
of chlorophyl-a, sea surface temperature and turbidity) driven 
by mesoscale oceanographic processes (eddies, upwelling 
for instance). Those mesoscale patterns can be detected by 
extracting the coefficient of variation on time series of 
temperature, net primary productivity and turbidity. 
Mesoscale oceanographic features, such as eddies, are 
detected using altimetry data. The depth also affects the 
distribution of biota at this scale (height of the water column, 
also correlated to the distance to the coast). K490 fronts 
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Figure 4. Overview of variables and parameters: sea surface temperature (SST), 
chlorophyll-a (CHLO), net primary productivity (NPP), turbidity (K490) and MSLA (mean sea 
level anomalies). cv is the coefficient of variation and std is the standard deviation. For 
eddies, the parameter calculated is the frequency. For depth, the parameter is Log (⏐X⏐+1). 
Note that all values are displayed with a standard deviation (n=2) stretch. Variables and 
parameters used in the bioregionalisation are indicated with a black dot. 
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4.3. Step III: Collection of relevant data sets and pre-processing  
 
The data sets listed in Table 1 and shown in Figure 4 were collated to develop the pelagic 
bioregionalisation analysis (IIIa on Figure 3). The table 3 lists the variables, source of data, 
spatial resolution, parameters calculated and units (Table 2). More details about access to 
these data sets is available in Appendix 1.  
 
Table 2. Spatial data sets collated for the pelagic bioregionalisation. 
 

Variable Source Resol. 
(km) Parameters Units 

mean, min, max, std °C 
cv - Sea Surface 

Temperature 
MODIS SST 4 2003-2011 l3 
mapped 8 days 4 

fronts frequency % 

mean, min, max, std mg.m-3 
cv - Chlorophyll-a MODIS Chlorophyll-a 2003-2011 l3 

mapped 8 days 4 

fronts frequency % 
mean, min, max, std m-1 

cv - Turbidity MODIS K490 2003-2011 l3 mapped 
8 days 4 

fronts frequency % 
mean, min, max, std  mgC m-2 day-1 
cv - Net Primary 

Productivity 
NPP MODIS 2003-2011 l4 8 days 
Oregon University  9 

Fronts frequency % 

Mesoscale 
eddies  

AVISO Delayed Time Mean Sea 
Level Anomalies 8 days 1992-2011 
South of 5° South 

30 eddies frequency % 

Mean sea 
level 
anomalies 
(MSLA) 

AVISO Delayed Time Mean Sea 
Level Anomalies 8 days 1992-2011 30 absolute mean sea level 

anomaly cm 

Depth DEM DEM SRTM V7 Plus 0.9 log (⏐Depth⏐  +1) - 
* Dataset used for the clustering are indicated in bold. 
 
In IIIb (Figure 3), all datasets were projected in a geographic projection (datum WGS 1984) 
using ArcGIS 10. In step IIIc, SST MODIS data were transformed to derive their physical 
values based on the formula provided in the header of each image. Fronts were detected 
using the Cayula and Cornillon (1992) algorithm implemented in the Arctool Box MGET 
(Roberts et al., 2010). The fronts were extracted from MODIS Level 3 mapped images with 
stretched value to ease the detection of fronts (linear stretching on 16 bits). Eddies features 
were detected on MSLA data using the Okubo-Weiss algorithm, also implemented in MGET 
with default algorithm parameters (the algorithm is not valid between at the equator between 
5°N and 5°S). We used the DEM SRTM 30 PLUS Version 5 developed by Becker et al. 
(2009). Depth values were log (⏐X⏐+1) transformed to « flat » extreme values. All statistical 
parameters were calculated for each cell across time series (mean, min, max, standard 
deviation and coefficent of variation).  
 
In IIIc (Figure 3), we clipped all images to a similar rectangular extent (5S, 40S, 10W, 30E). 
We applied a land-sea mask and normalised all parameter values from 0 to 1 using a fuzzy 
linear function in ArcGis. Finally, all datasets were re-sampled to 9 km (mean function). 
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4.4. Step IV: Clustering 
 
In IVa (Figure 3) we used the clustering method “iso-cluster” in ArcGIS 10 Spatial Analyst 
Extension (ESRI) to identify clusters of cells exhibiting similar bio-physical profiles. This 
iterative algorithm allocates each cell to a cluster according to its profile in a multidimensional 
space defined by the variables and related parameters listed in Table 1. The number of 
clusters is specified by the user. The algorithm aims to minimize Euclidian distance among 
cells within each cluster. If clusters are too similar, the algorithm merges them. We limited 
the initial number of clusters to 60 and ran the clustering algorithm with 10 000 iterations and 
a sampling value of 1 to produce robust clusters. 
 
In IVb, a dendrogram (or cluster-tree) was derived to visually analyse distance among 
clusters. The most distant clusters are the ones that are the most clearly differentiated. We 
cut the classification tree to a distance threshold of five, resulting in merging clusters with a 
distance inferior to this treshold. We then recalculated the final cluster tree with the merged 
clusters (Figure 5). 
 
In IVc (Figure 3), we used the clusters from IVb as signatures to perform a Maximum 
Likelihood classification (MLC). The MLC allocates each cell of the image to a cluster and, at 
the same time, produces an image of the probability that each cell belongs to the given 
cluster. This uncertainty map is very useful for management as it informs the users about the 
spatial distribution of uncertainty across the planning domain (Figure 10). 
 
The map of cluster was generalized using the following protocol in ArcGis : a) identify 
patches of area inferior to 50 neighbor pixels (neighbor of 4), b) remove those small patches 
(resulting in holes), c) expand the remaining patches, d) fill the holes with expanded patches, 
e) apply the « boundary clean » function, f) apply a majority filter, g) re-apply the « boundary 
clean » function, h) re-apply a majority filter, i) raster to vector transformation . 
 
 
4.5. Steps V and VI: Post-analysis of clusters and validation 
 
The uncertainty map provides a quality assessment indicator. The validation of the final 
classification of habitats should be undertaken through expert consultation with 
oceanographers, marine ecologists and fisheries biologists.  
 
 
5. RESULTS 
 
The final pelagic bioregions map contains 60 bioregions level 3 (Figure 8), hierarchically 
grouped into three bioregions level 1 (Figures 5 and 6) and 22 bioregions level 2 (Figure 7). 
 
An analysis of the cluster-tree (Figure 5), cluster maps (Figures 6, 7 and 8) and cluster 
profiles (Figure 9) reveals that bioregions level 1 are organized along latitudinal gradients : 
- South of 45°S, in the cold Southern Ocean, the bioregion A is clearly differentiated from 
other bioregions. Its mean temperature is 4,9°C, the productivity is low and the 
environmental conditions are stable (low variations of temperature, productivity and turbidity, 
low frequency of fronts and eddies). 
- Between 45°S and 30°S, in the temperate Southern Ocean, the bioregion B is caracterised 
an average temperature of 16°C, an average productivity. Its environmental conditions are 
less stable with an average frequency of eddies 20,2 % and a higher frequency of fronts of 
sea surface temperature and chlorophyll. 
- Located North of 30°S, the bioregion C is caracterised by sub-tropical water (mean 
temperature of 25,6°C), frequent eddies (22%) and a moderate frequency of fronts.  
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Among the 22 bioregions level 2, the bioregions Bi (Agulhas current retroflection zone) and 
Ct (Mozambique channel) exhibit high frequency of eddies (34,7 % and 44,5 % respectively). 
The bioregions Bd and Be in the Benguela Current are caracterised by very high level of 
primary productivity, cold water and stable environmental conditions indicative of an 
upwelling. The bioregion Cu is the Aghulas Current caracterised by sub-tropical 
temperatures and a very low frequency of eddies. 
 
 
 
 

 
 
Figure 5. Cluster tree showing the hierarchical organisation of the 3 bioregions level 1, 22 
bioregions level 2 and 60 bioregions level 3. 
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Figure 6. The bioregions level 1. 
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Figure 7. The bioregions level 2. 
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Figure 8.  The bioregions level 3.  
 



16	
  
	
  

 
 
Figure 9. Map of the classification uncertainty. 
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Table 3. Mean parameter values per variables lumped per bioregions level 1 and 2. 
 

 
 
Table 4. Mean parameter values per variable per bioregion. Higher values are highlighted in 
red while lower values are highlighted in blue. Top 10 % highest and lowest values for each 
parameter are shown in bold underlined. 
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6. DISCUSSION AND CONCLUSIONS 
 
6.1. Synthesis of results and application 

 
This study focuses on pelagic ecosystems. Three pelagic main bioregions are identified 
(bioregions. Those bioregions are divided into 22 bioregions level 1 and 41 clusters. 
 
This analysis represents a step forward in the assessment and conservation of pelagic 
biodiversity in the Benguela Current System. The mapping method is based on a hierarchical 
approach. Our classification approach is similar to the one developed by Post (2008). It 
includes a clustering step followed by a cluster tree analysis and a Maximum Likelihood 
Classification. The production of a membership probability is very useful to inform 
management about the robustness of the map at different locations. 
 
Several data sets have been collated, mainly on physical processes and patterns. Biological 
patterns and processes were integrated in the analysis through the use of surrogates. 
Parameters for such surrogates were measured from remote sensing data. The Net Primary 
Productivity layer was the most “biology-related” dataset.  
 
 
6.2. Limitations and improvements 

 
We assumed that water surface parameters reflect the properties of the water column 
although we recognise that this is not always appropriate. We did not integrated three-
dimensional oceanographic models or validation data sets but the bioregionalisation process 
could be improved using such models and data sets. 
 
The use of data sets extracted from three-dimensional oceanographic models should allow 
the distinction of depth layers and the production of bioregional maps in different depth 
zones. Such products will be more complex to analyse but a similar approach has already 
been implemented for the bioregionalisation of the Australian EEZ (Lyne and Hayes 2005). 
 
The surrogacy of habitats for marine biodiversity as a whole should be tested using species 
distribution data. In addition, each habitat should be associated with key bibliographic 
references. 
 
Further improvements of the pelagic bioregionalisation map require the collection, collation 
and integration of in situ biological data sets. The collation of such validation data sets is a 
challenge since most data sets are only available at local scales for few locations and are not 
easily accessible. 
 
The bioregions, biozones and clusters identified during the bioregionalisation process should 
be used with caution because they only reflect areas of similarities based on a set of defined 
variables. They are not necessarily habitats with distinct biological assemblages (although 
we use this terminology for ease of reference) and the user should be aware of their 
definitions in terms of parameter values. 
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