# Land Use Types in Mongolia and Results of Land Use Condition Monitoring

#### MYAGMARTSEREN PUREVTSEREN

Department of Land Management & Geo-ecology, National University of Mongolia, Ikh surguulliin gudamj 2 -NUM building 6, Ulaanbaatar 210646, Mongolia, E-mail - land\_management@hotmail.com

#### ABSTRACT

The goal of our work was to assess human impact to main land use types of Mongolia and study land use change trend and main influence/impact types of land degradation. In this paper we are presented some result of our land condition monitoring activity from 1998 to 2006 which were covered most territory of Mongolia - 147,895,400 hectares.

Mongolian land use type classes by the land cover classification: 81.2 % is rural land, 5.1 % is urban land, 8.2 % is Forest land and shrub covered area, 1.4 % is Surface water, 4.1 % is Unused, Unsuitable and Conservation area .

Land use has changed since 1970: settlement, natural protected land and mining areas are increased, cultivated land is decreased. National Land Monitoring on the agricultural /pasture and arable land/ land, Natural parks, Urban areas showing from 21 until 57.2 per cent of the area s of those land use types degraded which is in future will severe problem in land protection and presenting weak land use controls and management.

*Keywords*: land use change, land use condition monitoring, land degradation

#### **INTRODUCTION**

By the increasing demand of land for agriculture, concentration of urban land in central region, development of mining industry and land privatization, the conditions of Mongolian land usages are getting more unsuitable for use.

The goal of our work was to assess human impact to main land use types of Mongolia and study land use change trend and main influence impact types of land degradation.

In this paper we are presented some result of our land condition monitoring activity from 1998 to 2006 which were covered most territory of Mongolia - 147,895,400 hectares. In the new Mongolian land law (1994) it is stated:

The State must regularly control negative land usages and avoid negative influence to population. State land authority must organise "land use condition control and state certification (monitoring)" activity in all kinds of land use in the territory of Mongolia (Chapter6).

Due to this activity it is very important to monitor land usage and assess degradation of land and test new methodologies in the certain area and develop the monitoring activities for common purpose.

# Methods

The study was made in two steps.

- 1. Identification of main land uses types and change trend evaluation. We used instruction of land survey (Administration on Land Affaires Geodesy and Cartography, 1995) and land use inventory.
- 2. Field trip reference areas to observe and test indicators on chosen areas. For assessment of degradation we used the following indicators:
- Vegetation general canopy cover, dominant species canopy cover, invader plants canopy cover per cent presented in 1 m<sup>2</sup> surface. Height of plants in cm.
- Plant bio mass production. Yield in dry matter- kilograms/ha
- Vegetation association structure. Invaders, decrease, increase of member plants in the association (Karamysheva, 1981; Rachkovskay, 1995).
- Bio indicator of degradation. Plants determining pasture degradation. We found 27 plant species growing aggressively in the degraded places.
- Soil stability indicators and evaluating score. We used standard American equipment and methodology (Pellant *et al.*, 2000).

We used for degradation impact assessment three kinds of methods. The first is Soviet-Mongolian scientists developed method for ecosystem degradation evaluation in Mongolia (Gunin *et al.*, 1989). The method is based on several vegetation indicators such as bio mass, association structure change, canopy cover, height, bio-indicator plants, etc.

The Second was rangeland health monitor's soil stability indicator method (Pellant *et al.*, 2000). American Upland rangeland monitoring is including 17 indicators and has too detailed worksheet and procedure. Therefore we chose only soil stability indicators, which are not clearly included in the Soviet-Mongolian method.

The Last one was land use condition control and state certification introduction method (Administration on Land Affaires Geodesy and Cartography, 1995). In this introductory content more attention is paid to the mapping and erosion identification and grading in different types of land.

#### Results

The results of our study were consisted in two parts: land use types and trend of change and result of land use condition monitoring.

#### 1. Mongolian land use types and trend of change

Mongolia as a continental country which biggest resource of land has a 1.16 percent of the total land resource of the world / Table 1 /.

# Table1. World and Mongolian land resource

|                                          | Total area | Oceans | Continents | Total land<br>resource | Agricultural<br>land |
|------------------------------------------|------------|--------|------------|------------------------|----------------------|
| World                                    | 510.20     | 361.06 | 149.14     | 133.92                 | 45.53                |
| Mongolia                                 | 1.56       | -      | 1.56       | 1.56                   | 1.21                 |
| Per cent of Mongolia in<br>the world (%) | 0.31       | -      | 1.04       | 1.16                   | 2.66                 |

/ Million square km /

Last 30 years Mongolian population land resource demands become more pressing every year. Even in Mongolian country side where access of land is plentiful, from 1970 to 2000 land recourse demands had double increased (Purevtseren, 1995) /Table 2/.

| Years | Population density in 1 km <sup>2</sup> | Land resource per one citizen /in hectares / |
|-------|-----------------------------------------|----------------------------------------------|
| 1919  | 0.41                                    | 242                                          |
| 1940  | 0.47                                    | 211                                          |
| 1960  | 0.60                                    | 164                                          |
| 1970  | 0.79                                    | 125                                          |
| 1980  | 1.05                                    | 94                                           |
| 1990  | 1.34                                    | 74                                           |
| 2000  | 1.52                                    | 65                                           |

# Table 2. Mongolian population land resource demands in XX century

In the beginning of the XX century Mongols used their land just 8-10 types. Today it comes more than 140 land use types (Myagmartseren, 2004).

The territory of Mongolia - percent of land classes by the land cover classification 83.46 % is **rural land**, 0.49 % is **urban land**, 11.69 % is **Forest land and shrub covered area**, 1.06 % is **Surface water**, 3.3 % is **Unused**, **Unusable and Conservation area** /Table 3/.

|       |            |             | Land Use Types |                       |         |                 |                    |  |  |  |  |  |
|-------|------------|-------------|----------------|-----------------------|---------|-----------------|--------------------|--|--|--|--|--|
|       | Total area | Agriculture | Urban          | Road and rail network | Forest  | Water<br>bodies | Special<br>purpose |  |  |  |  |  |
| /km²/ | 156411.6   | 115455.7    | 441.1          | 353.8                 | 14689.0 | 967.7           | 24504.3            |  |  |  |  |  |
| %     | 100        | 74.0        | 0.2            | 0.2                   | 9.0     | 0.6             | 16.0               |  |  |  |  |  |

#### Table3. Main Land Types in Mongolia (Areas in thousand hectares)

From the state land use cadastre inventory and National Land Information Database we can see land use changes in 30 years. Land use change trend is dividing into two periods from 1975-1990 and 1990-2005, which had been presented by quite different social and economic constraints and stimulations to diverse type of land usage (Table4).

| Year<br>Land use types              | 1975     | 1990     | 2005     | Change in<br>period<br>1975-1990 -<br>,+ | Change in period<br>1975-2005<br>-,+ |
|-------------------------------------|----------|----------|----------|------------------------------------------|--------------------------------------|
| Pasture                             | 120990.4 | 119304.6 | 111229.7 | -1,685.8                                 | -9760.7                              |
| Arable land                         | 748.5    | 1281.6   | 697      | +533.1                                   | -51.5                                |
| Fallow, abandoned agricultural land | 196.9    | 84.4     | 478.4    | -112.5                                   | +281.5                               |
| Town and Settlements                | 464.6    | 501.0    | 466      | +36.4                                    | +1.4                                 |
| Mining area                         | 46.8     | 58.9     | 97       | +12.1                                    | +50.2                                |
| Road                                | 61.1     | 203.8    | 278.2    | +142.7                                   | +217.1                               |
| Natural Parks                       | 132.5    | 5282.7   | 20864.8  | +5,150.2                                 | +20732.3                             |
| Utility                             | -        | 4.5      | 50.1     | +4.5                                     | +50.1                                |
| Military                            | 2543.3   | 2593.2   | 218.1    | +49.9                                    | -2325.2                              |
| Forest land                         | 15171.5  | 14403.1  | 14748.1  | -768.4                                   | -423.4                               |
| Water bodies                        | 1619.2   | 1630.5   | 667.8    | 11.3                                     | -951.4                               |
| Total                               | 156411.8 | 156411.8 | 156411.8 |                                          |                                      |

Table 4. Land use change in the period 1975- 2005(Areas in thousand hectares)

General land use changes in two periods are: agricultural sector development and destruction, rapid urbanization (rural areas population's migration to urban areas) and transformation of nomadic livestock husbandry to semi-sediment husbandry which is go behind overgrazing and desertification, global warming and human impact which have been presented by reduction of forest and surface water areas (Figure 1,2).









From the above figures we could find main change trend and based on that trends we are estimated future land use change to 2020 using formula (I-III) and estimated probable land area (Table 5).

$$y = a + bx \quad (I) \quad \Rightarrow b = \frac{n \sum x_i \ y_i - \sum x_i \sum y_i}{n \sum x_i^2 - (\sum x_i)^2}; \ a = \overline{y} - b\overline{x} \Rightarrow \ a = \frac{\sum x_i}{n} - b \frac{\sum x_i}{n} (II)$$

 $y_i$  \_ land use type , ha  $x_i$  \_ year

$$y = \left( \left( \frac{\sum x_i}{n} - b \frac{\sum x_i}{n} \right) + \left( \frac{n \sum x_i y_i - \sum x_i \sum y_i}{n \sum x_i^2 - \left(\sum x_i\right)^2} \right) \right) x_i$$
(III)

|                   |          | Estimated change |          |             |             |               |  |  |  |  |
|-------------------|----------|------------------|----------|-------------|-------------|---------------|--|--|--|--|
|                   | L        | and Use Cha      | nge      | Using mid   | Using short |               |  |  |  |  |
|                   |          |                  |          | term change | term change | Average trend |  |  |  |  |
|                   |          |                  |          | trend       | trend       |               |  |  |  |  |
|                   | 1975     | 1990             | 2005     | in 2020     | in 2020     | in 2020       |  |  |  |  |
| Total agriculture | 125475,3 | 124747,5         | 115532,6 | 111975,8    | 117356,1    | 114666,0      |  |  |  |  |
| Pasture           | 120990,4 | 119304,6         | 111229,7 | 107414,2    | 113872,3    | 110643,3      |  |  |  |  |
| Arable land       | 748,5    | 1281,6           | 697,0    | 637,0       | 875,5       | 756,3         |  |  |  |  |
| National Park     | 132,5    | 5282,7           | 20864,8  | 29492,3     | 33065,9     | 31279,1       |  |  |  |  |
| Forest            | 15171,5  | 14403,1          | 14748,1  | 14350,8     | 16442,3     | 15396,6       |  |  |  |  |
| Total urban       | 464,6    | 501,0            | 466,0    | 478,6       | 433,1       | 455,9         |  |  |  |  |
| Mining            | 46,8     | 58,9             | 97,0     | 117,8       | 91,6        | 104,7         |  |  |  |  |
| Road              | 61,1     | 203,8            | 278,2    | 398,1       | 400,6       | 399,4         |  |  |  |  |
| Communications    | 0,0      | 4,5              | 50,1     | 68,3        | 84,8        | 76,6          |  |  |  |  |
| Military and      |          |                  |          |             |             |               |  |  |  |  |
| National Security | 2543,3   | 2593,2           | 218,1    | 190,5       | 0,0         | 0,0           |  |  |  |  |
| Surface water     |          |                  |          |             |             |               |  |  |  |  |
| bodies            | 1619,2   | 1630,5           | 667,8    | 354,4       | 738,6       | 546,5         |  |  |  |  |

 Table 5. Trend of change and estimated area of land use types

 (Areas in thousand hectares)

The estimated land use until 2020 are: the reduce of the agricultural areas and surface water bodies; rapid development of settlement land, road, mining industry. In generally land use change trend and estimated areas presenting futur problems related to the agricultural reform, land protection and urban palnning.

### 2. Result of Land Use Condition Monitoring

In this paper we are presented some result of the state land condition monitoring activity from 1998 to 2006 which were covered most territory of Mongolia - 147,895,400 hectares.

In agricultural land usage most area is using under pasture grazing and it is around 87 per cent of agricultural territory. Result of pasture land condition monitoring were showed by land evaluation zones and 61.9 % area of the pasture are in normal conditions and 20.8 % are degraded (overgrazing, soil eroding, desertification etc.) and 20.1 % are at non usage due to the marginal location, non irrigation, less infrastructure or unsuitable for livestock grazing (table6).

#### Table6. Pasture land conditions by the land evaluation zones

|    |                               |                  |          | In U |          |      |                         |               |
|----|-------------------------------|------------------|----------|------|----------|------|-------------------------|---------------|
|    | luation                       | area<br>tal      | In norm  |      | Degrad   | ed   | Non usage<br>unsuitable | e and<br>area |
| No | Land eva<br>zon               | Pasture<br>In to | Hectares | %    | Hectares | %    | Hectares                | %             |
| 1  | Khangai & Khentey<br>mountain | 25916,2          | 16634,1  | 64.8 | 6098,4   | 23.8 | 1705,4                  | 6.6           |
| 2  | Altay mountain                | 18916,5          | 12142,9  | 64.2 | 3567,5   | 18.9 | 2451,6                  | 13.0          |
| 3  | Gobi                          | 47172,1          | 29359,3  | 62.2 | 11096,4  | 23.5 | 12495,3                 | 26.5          |
| 4  | Steppe                        | 18924,8          | 10627,3  | 56.2 | 2399,4   | 12.7 | 5662,3                  | 29.9          |
|    | Total                         | 110929,6         | 68763,6  | 61.9 | 23161,8  | 20.8 | 22314,6                 | 20.1          |

#### (Areas in thousand hectares)

In different land evaluation zones of Mongolia has different types of land degradation and mainly overgrazing, grasshopper and vole spread influence and desertification are reason of pasture degradations in all zones (table7).

| Degradation<br>impact                | Khangai &<br>Khentey<br>mountain |      | Altai mountain |      | Gobi     |      | Steppe   |      |  |
|--------------------------------------|----------------------------------|------|----------------|------|----------|------|----------|------|--|
|                                      | hectares                         | %    | hectares       | %    | hectares | %    | hectares | %    |  |
| Road network                         | 170202                           | 0.7  | 37777          | 0.2  | 271387   | 0.6  | 37168    | 0.20 |  |
| Mining and industry                  | 1089                             | -    | 4628.0         | -    | 96.0     | -    | 20.0     |      |  |
| Over grazing                         | 4796175                          | 18.3 | 2976376        | 15.6 | 7080263  | 14.9 | 2065243  | 10.8 |  |
| Pollution                            | 57082.0                          | 0.2  | 7714.0         | -    | 43911.0  | 0.09 | 28468.0  | 0.1  |  |
| Line erosion                         | 122375                           | 0.5  | 17797          | 0.1  | 251977   | 0.53 | 16581    | 0.1  |  |
| Desertification                      | 294352                           | 1.1  | 203244         | 1.1  | 2340361  | 4.96 | 6192     | -    |  |
| Water flood                          | 42737                            | 0.2  | 30343          | 0.2  | 127733   | 0.3  | 47923    | 0.2  |  |
| Damage of<br>vole and<br>grasshopper | 614441                           | 2.4  | 289673         | 1.5  | 980696   | 2.1  | 197767   | 1.0  |  |
|                                      | 6098453                          | 23.8 | 3567551        | 18.9 | 11096424 | 23.5 | 2399363  | 12.7 |  |

# Table 7. Main pasture degradation impacts(Areas in thousand hectares)

In addition Mongolian pasture land has own unique characteristics and quality: not depending geographic location (Yunatov, 1942.) more and less composition of shrubs and soil surface stones has everywhere (table8).

|                                  |                       |                        | Pasture types |                       |     |                                       |      |               |      |  |  |
|----------------------------------|-----------------------|------------------------|---------------|-----------------------|-----|---------------------------------------|------|---------------|------|--|--|
| Land<br>evaluation               | Pasture<br>total area | Pasture with<br>shrubs |               | Pasture with tussocks |     | Pasture with<br>stones and<br>pebbles |      | Clear pasture |      |  |  |
| Zones                            |                       | hectares               | %             | hectare<br>s          | %   | hectares                              | %    | hectares      | %    |  |  |
| Khangai &<br>Khentey<br>mountain | 25916,2               | 4816081                | 18.8          | 2003,2                | 7.8 | 9909,1                                | 38.6 | 7359,7        | 28.7 |  |  |
| Altai<br>mountain                | 18916,5               | 4892,8                 | 25.9          | 499,8                 | 2.6 | 6504,6                                | 34.4 | 5272,5        | 27.9 |  |  |
| Gobi                             | 47172,1               | 18073,2                | 38.3          | 2520,7                | 5.3 | 14199,5                               | 30.1 | 8220,5        | 17.4 |  |  |
| Steppe                           | 18924,8               | 5247,7                 | 27.7          | 1277,3                | 6.7 | 3125,6                                | 16.5 | 8321,9        | 44.0 |  |  |
| Total                            | 110929,6              | 33029,8                | 29.7          | 6301,1                | 5.7 | 33738,8                               | 30.4 | 29174,7       | 26.3 |  |  |

# Table 8. Pasture land quality(Areas in thousand hectares)

By the land inventory (1998) most of arable lands are abandoned or getting fallow land. In 1989 our country has 1209500 hectares arable land and in the end of 90's only using 14.3 percentage of these resources has been in usage. Main reason of the abandoned arable land is poor and not effective management and financial situations since most state enterprises privatized and unexpectedly end of state investment (Jigjidsuren and Purevtseren, 1998). Due to the old technologies used in agriculture was an origin of soil erosion and unproductively quality of soil. Where indicator of soil degradation were newly appeared sand layer on top of soil (table9).

# Table 9. Arable land degradation

|                   |                             |          |                         | Condition |                                                           |               |                 |               |         |      |  |  |  |
|-------------------|-----------------------------|----------|-------------------------|-----------|-----------------------------------------------------------|---------------|-----------------|---------------|---------|------|--|--|--|
| Economic<br>zones | TotalParcelarablenumberland |          | In<br>Norma<br>conditio | al<br>on  | Degraded arable land<br>/ by surface sand layer height in |               | nd<br>ht in cm/ | l<br>t in cm/ |         |      |  |  |  |
|                   |                             |          | Hectares <sub>0/</sub>  |           | 1-8 cm                                                    |               | 8-15 cm         |               | 15 cm > |      |  |  |  |
|                   |                             |          | (ha)                    | 70        | ha                                                        | %             | ha              | %             | ha      | %    |  |  |  |
| Western           | 174                         | 16836,5  | 12107,0                 | 71,9      | 366.8                                                     | 2.1           | 384,68          | 2,3           | -       | -    |  |  |  |
| Khangay's         | 1370                        | 99398,1  | 48368,9                 | 48,6      | 30433.0                                                   | 30.5          | 7731            | 7,8           | 12867,0 | 12,9 |  |  |  |
| Central           | 4609                        | 437108,3 | 187946,2                | 42,9      | 164109.1                                                  | 164109.1 37.5 |                 | 9,9           | 38240,4 | 38,5 |  |  |  |
| Eastern           | 278                         | 41653,5  | 5810,1                  | 13,9      | 4059.1 9.7 4002,2 9,6                                     |               | 27782,1         | 66,7          |         |      |  |  |  |
| Total             | 6431                        | 594996,5 | 254232,3                | 42,7      | 198978.2                                                  | 33.4          | 55425,4         | 9,3           | 78889,5 | 13,3 |  |  |  |

The study showing only 42.7 per cent of arable land has been in normal condition and rest of land is degraded.

The Natural Park Network areas study showing 22.98 per cent of the total area were influenced by human activity and degraded which is in future will seroiuse problem in land protection and presenting weak land use controls and administration (table 10).

|                       |                                      | Grassland area |        |            |                   |                     |              |  |  |  |  |  |
|-----------------------|--------------------------------------|----------------|--------|------------|-------------------|---------------------|--------------|--|--|--|--|--|
| uo                    |                                      |                | Ν      | /lain impa | acts in area (hec | tares)              |              |  |  |  |  |  |
| Classificati          | Total area<br>/thousand<br>hectares/ | Road impact    | Mining | Pollution  | Overgrazing       | Desertificati<br>on | Soil erosion |  |  |  |  |  |
| Strictly<br>protected | 2657,1                               | 1393           | 563.3  | 0          | 62545.3           | 91306.26            | 194          |  |  |  |  |  |
| Natural<br>park       | 3039,3                               | 1495.3         | 6408.2 | 6944       | 462758.2          | 222683              | 628          |  |  |  |  |  |
| Natural<br>monument   | 28,2                                 | 217.5          | 295.6  | 0          | 825.6             | 441.5               | 0            |  |  |  |  |  |
| Natural<br>reserves   | 1560,3                               | 14452.11       | 15     | 21         | 176055.8          | 31071.2             | 6935.3       |  |  |  |  |  |
| Total                 | 7284.9                               | 17557.91       | 7282.1 | 6965       | 702184.9          | 345501.96           | 7757.3       |  |  |  |  |  |

# Table10. National Park's grassland degradation

# DISCUSSION

We need more detailed research to identify which factor most influencing land degradation. In our study we can't say if limit of carrying capacity or weather warming and several years' weather change is most influencing. To make a detail study we need a protected area which is not under usage during long a time period. Also we need long duration monitoring to be verifying factors' size and impact. Soil stability research was made only in 2000. Earlier studies did not include soil study. Therefore we can't compare soil character which was very important in our study. In our view soil character is more constant during weather change than vegetation indicators. We recommend using both vegetation and soil stability indicators for rangeland. Reference areas result show big differences between 1975, 1990 and 2005. Without detailed result there are unclear reasons of vegetation indicator changes. Another complicated problem is how to manage carrying capacity of land use. Therefore we need a study of number and intensity of land use and degradation level in certain areas.

#### CONCLUSIONS

The territory of Mongolia percent of land classes by the land cover classification  $81.2 \ \%$  is **rural land**,  $5.1 \ \%$  is **urban land**,  $8.2 \ \%$  is **forest land and shrub covered area**,  $1.4 \ \%$  is **surface water**,  $4.1 \ \%$  is **unsuitable and conservation area**.

Land use has changed since 1970: settlement, natural protected land and mining areas are increased, cultivated land is decreased.

National Land Monitoring on the agricultural /pasture and arable land/ land, Natural parks, Urban areas showing from 21 until 57.2 per cent of the area s of those land use types degraded which is in future will seroiuse problem in land protection and presenting weak land use controls and management.

#### ACKNOWLEDGEMENT

I would like to thank professor S.Jigjidsuren, professor O.Battulga, B.Chinbat, M. Bayantor and D. Dorjgotov for all their help. Furthermore, I would like to thank all the colleagues at the Administration on Land Affaires Geodesy and Cartography and province land officers and local people for allowing me to use archive and working materials and for support in the field research.