Environmental risk assessment in connection with offshore studies

How ERA is used toward offshore activity, differences between issues related to sediment and produced water; methodologies and models practiced in ERA for offshore activities

RF-Akvamiljø Mekjarvik 12 4070 Randaberg

http://www.rf.no

Contact person:

Dr. Odd Ketil Andersen

Head of Research

Tel.: +47 51 87 50 50

E-mail: oka@rf.no

Hazard assessment - tool: CHARM

CHARM

Chemical Hazard Assessment and Risk Management

Weighs properties of the chemical product:

Acute toxicity

(marine algae, zooplankton, sediment reworker, fish test data)

Biodegradability

(O2 consumption or CO2 evolution tests)

Bioaccumulation potential

(Octanol/water partitioning)

Discharge characteristics

(amounts, dilution factor etc.)

HAZARD quotient

Chemical RANKING

Environmental Risk Assessment - tool **DREAM**

DREAM

Effluent

Discharge

Dose related Risk and Effect

Assessment Model

- Links together:
 - discharges (multi sources)
 - physical/chemical fates of discharges
 - biological uptake
 - biological long term effects
 - expressions of risk

FATE

DOSE

EFFECT

Model

Experiments & Analyses

DREAM proposed follow-up

- Different purpose tools

...important to remember that a model is only one of several tools in a decision process... (SFT)

Risk & Effect assessment model

Decision support tools

'Environmental Management System'

DREAM – EIF Produced water

- A Decision support tool made for the zero discharge plans for the North Sea
- EIF based on PEC:PNEC
 - PEC = Predicted Environmental Concentration
 - PNEC = Predicted No Effect Concentration
- PEC calculation based on DREAM
 - DISCHARGE and FATE
 - Imported to an Excel spreadsheet (EIF sheet) for weighing

Proposed PEC/PNEC Risk Measures for DREAM

Water volumes exceeding selected risk ranges:

- time-averaged or maximum risk fields
- exposure-variable PNEC analysis (TNO)

Snapshot of total risk from produced water from a single platform

Prediction of environmental concentration (PEC) using DREAM

User-Specification of Release

Release of Complex Mixtures

DREAM fate simulation:

hydrocarbons in produced water from 95 platforms

EIF output — Table & PIE chart

Spreadsheet weighting - Table output

Scenario X	_		_		Simulated EIF	101
MEMW 1.2beta	Standard input	13.5 m dd Scenario specific input				Chemical specific input
		(dd= discharge	_			
	Dishcharge tonn/day	Conc	nnm	PNFC nnh	1	

			(dd= discharge	e depth)			_			
	Dishcharge tonn/day		Conc. ppm		PNEC ppb					
Component group	Simulated	New	Basis	New	Basis	New	Contr. to risk	Contr. EIF	Weight	Weighed contr.
Total	24273	24273					%			
BTEX			6,2	6,2	17	17	3,64	3,6764	1	3,68
Naphthalenes			0,741	0,741	2,1	2,1	8,5	8,585	1	8,59
2-3 ring PAH			0,03162	0,03162	0,15	0,15	16,77	16,9377	1	16,94
4-ring+ PAH			0,00038	0,00038	0,05	0,05	0,45	0,4545	2	0,91
Phenol C0-C3			2,3583	2,3583	10	10	4,54	4,5854	1	4,59
Phenol C4-C5			0,01	0,01	0,36	0,36	1,36	1,3736	1	1,37
Phenol C6-C9			0,0026	0,0026	0,04	0,04	5,03	5,0803	2	10,16
Alifates			16	16	40,4	40,4	33,7	34,037	2	68,07
Cu			0,000526	0,00053	0,02	0,02	1,64	1,6564	1	1,66
Hg			0,000035	3,5E-05	0,008	0,008	0,27	0,2727	1	0,27
EC-6165A			0,428	0,428	426	426	0,05	0,0505	1	0,05
KI-384			0,068	0,068	63	63	0,04	0,0404	1	0,04
FX-2099			0,0023	0,0023	18,3	18,3	0	0	1	0,00
PI-795			0,00113	0,00113	37	37	0	0	2	0,00
EC-9242ASiFI			0,000765	0,00077	30700	30700	0	0	2	0,00
EC-6191A			0,374426	0,37443	10	10	2,92	2,9492	1	2,95
Grid size: 100x100km	1							Adjusted	EIF	119

EIF output — Table & PIE chart

PIE chart examples:

Contributions to risk from different PW components

for scenarios at a North Sea oil field

PROTEUS

Pollution Offshore Risk Technical EvalUation System

Predicts the physical dispersion, chemical interactions and ecotoxicological risk for discharges during exploration, production and decommissioning

Exploration Drilling

- unique database to generate suitable cuttings size distributions
 - based on drilling plans.
- simulates complete drilling operation
 - multiple sections
 - different mud systems
 - · workover delays
 - · bulk or continuous discharges of material

· Decommissioning

- disturbance of existing piles during the decommissioning process
 - detailed hydrodynamic information to simulate re-distribution of mud/cuttings following intervention or removal operations

Produced Water Discharges

 dynamic, buoyancy and passive mixing phase of produced waters discharged into seawater

DREAM – EIF Drilling Discharges under development (ERMS project)

- DD EIF water column
 - New definition of discharge chemicals; + particles
 - Merging 'DREAM EIF Produced Water' & 'ParTrack' models
- · DD EIF sediment
 - Merging as above + new features
 - Other disturbances (than chemical stress)
 - Oxygen depletion
 - Burial
 - Change in grain size

Example of Risk model procedure in DD- EIF Sediment: From exposure to risk (grain size)

- Calculate change in median grain size
- Compare change in grain size with maximum allowable change in grain size (threshold)
- · Calculate % risk using SSD for grain size
- Result: Sediment Area with certain risk value caused by altered grain size

Example of Risk model procedure in DD- EIF Sediment:

Integration of risks / surfaces with risks (under development)

- Alternative 1:
 Risk value per sediment area of all four disturbances
- Show sediment surface area where PEC/PNEC > 1 for:
 - Burial
 - Oxygen depletion
 - Change in grain size
 - Chemical stress (toxicity)

Example of Risk model procedure in DD- EIF Sediment:

Integration of risks / surfaces with risks (under development)

- Alternative 2: Integrate risks areas of the four disturbances
 - Assume Additivity, or
 - Using weight factors

 Show area with an integrated risk value of > 5%

■ INTEGRATED RISK > 5%

EIF Sediment = area with integrated risk > 5% (under development)

Based on PEC/PNEC approach

 $EIF = 500 m^2$

How to combine EIF_{water} and EIF_{sediment}

(under development)

Unit of EIF water = m³
 PW:

Maximum value during the simulation time

DD:

- Will be present only few days
- Will quickly decrease to zero after discharge stops
- Unit of EIF sediment = m²
 - Will increase during discharge
 - · Will slowly decrease after discharge, time scale in months

Summary

...important to remember that a model is only one of several tools in a decision process... (SFT)

- Different tools are being developed for different assessment purposes
- We have here shown
 - CHARM (Hazard ranking of chemicals)
 - DREAM (Risk and Effect assessment of PW)
 - DREAM EIF (Decision support for PW based on Risk indication
 - PROTEUS (Risk predictions for DD, PW & Decommissioning)
 - DREAM EIF DD (Decision support for DD based on risk indication; = ERMS)
 - DREAM EIF DD Water
 - DREAM EIF DD Sediment
- Next we will see how EIF are being used for North Sea operations

