Main challenges for the use of biomarkers towards a sustainable management for the marine environment protection

> Challenges related to the linking of impact prognostics (predictions) and diagnostic monitoring tools. Challenges in balancing environmental cost contra benefit.

RF-Akvamiljø Mekjarvik 12 4070 Randaberg http://www.rf.no

Contact person:

Dr. Odd Ketil Andersen Head of Research Tel.: +47 51 87 50 50 E-mail: oka@rf.no

Linking of impact prognostics (predictions) and diagnostic monitoring tools

- Integration of Biomarkers in ERA
 - Motivation
 - Approach
 - Solutions
 - Challenges

Integration of Biomarkers in ERA Motivation and Approach

Integration of Biomarkers in ERA EEM - ERA link

- Approach
 - Build a 'Biomarker Bridge'
 - Why?
 - enables field monitoring of accepted biological effect levels determined by risk assessment
 - · How?
 - strengthen the relationships between biomarkers and fitness (lab studies)
 - Additional benefit!
 - this will improve understanding of biomarker signals
 -> contributes to interpretation basis for biomarkers
 - Alternative approach: fully unite 'Test endpoint' to 'Assessment endpoint' (=Biomarkers)
 - Realistic alternative?
 - Ecological relevance of biomarker responses remains to be fully defined
 - Definition of threshold levels and criteria to quantify ecological relevance must be established for biomarkers !

Integration of Biomarkers in ERA Challenges

- The correlations between fitness and biomarkers are not necessarily based on causal relationships !
 - Only some of the links between biomarkers and fitness effects are well known and understood in a mechanistic way
 - Same dilemma as in human health research
- To overcome this problem
 - There is a need for sufficient amount of data to be able establish statistical relationships or 'weight of evidence' to determine the relevance of biomarkers in relation to fitness and ecological effects
 - An advantage before human health research is that we can be more experimental !

Integration of Biomarkers in ERA

Solutions

- Building the 'Biomarker bridge'

- Two examples:
 - Vertebrate
 - » Fish (sheepshead minnow Cyprinodon variegatus)
 - Invertebrate
 - » Crustacea (Northern shrimp Pandalus borealis)

Building of the 'Biomarker bridge'

Correlations fitness and biomarkers (example): Lab. Effect study exposure of fish

Building of the 'Biomarker bridge'

Fitness: reproductive output (as fecundity) coherent with to biomarker values

Building of the 'Biomarker bridge' **PROOF** "Validation" - experiments

ERA effect validation & Biomarker responses

		Effect validation	Biomarker responses
	Invertebrates	Oil dispersions - sensitive life stage test	Oil dispersions – sensitive life stage test
		(PROOF – RF-AM)	Drilling Discharges - lab experiment
		Drilling Discharges - field experiment	Drilling Discharges - field experiment
Fich		(PROOF-IMR)	Alkylated Phenols - lab. Experiment
	1 1311	Oil disp. / sim.PW - lab. experiment	Oil disp. / sim.PW - lab. experiment
		Produced Water - field experiment	Produced Water - field experiment
	Practical connections to):	· · · · · · · · · · · · · · · · · · ·
RI	FRMS	PROOF	TTT

BioSea JIP

•

FRUU

WCM - OLF

Building of the 'Biomarker bridge' **PROOF** "Validation" - experiments **ERA effect validation & Biomarker responses** • Effect validation **Biomarker responses Oil dispersions** -**Oil dispersions –** Invertebrates sensitive life stage test sensitive life stage test **Drilling Discharges -**(PROOF lab experiment Crustacean & mollusk (& echinoderm): North Sea dispersed oil Fish survival offspring mollusks: exposed parents / exposed larvae; crustaceans: exposed as embryos / as larvae actical connections to: ERMS PROOF **RF-Akvamili BioSea JIP**

WCM - OLF

Building of the 'Biomarker bridge Early life stage mortality - Northern shrimp

Bodil K. Larsen

•

- significant mortality when exposed as embryo & larvae dose dependent mortality when exposed as embryo significantly higher mortality in 0.09 ppm
- embryo exposure most severe

Building of the 'Biomarker bridge' PROOF "Validation" - experiments

ERA effect validation & Biomarker responses

•

	Effect validation	Biomarker responses	
Invertebrates	Oil dispersions - sensitive life stage test	Oil dispersions – sensitive life stage test	
	(PROOF – RF-AM)	Drilling D harges - lab e ht	
	Drilling Discharges -	Drillinç	
Fish	Crustacean & Mol N.Sea oil exposur Chemical burden	Crustacean & Mollusks N.Sea oil exposure Chemical burden & Biomarkers	
	(1 month exposure))	
ERMS	GST, Catalase, TOSC Larvae: Comet (M), A	C Nk.Unw. (C)	
BioSea JIP	WCM - OLF	RF-Akvamiljø	

Building of the 'Biomarker bridge Example of Biomarker in shrimp: Glutathione S-Transferase (GST)

Bodil K. Larsen

- other biomarkers measured for other projects in the same exposure
- joint evaluation of a larger biomarker set

_>

Integration of Biomarkers in ERA Use of the results...

- Compare (validate!) the PNEC values currently used in ERA by comparison with the found NOEC levels
 - based on organism health and fitness parameters
- Biomarker values associated with these NOEC levels can be established as threshold level signals
 - "Biomarker NOECs"
- Then these biomarkers
 can be used in Environmental Effect Monitoring (EEM)
 after field validation (QA, etc.→)
 - linked to Environmental Risk Assessment (ERA)!

Other Challenges New frontiers of oil & gas industry...

- Research...
 - adapt methods and tools to the new frontiers
 - deep-sea and Arctic
 - other geographical areas
 - adapt methods
 - from North Sea & laboratory conditions
 - develop tools (ERA, EEM)
 - based on the existing ones another example: 'tropicalisation of ERMS'

An example: Blood diagnostics

...with biomarkers in deep-sea sea stars (Girassol - Total Cold W<u>at</u>er project)

Interpretation – different aspects

- Standardization
- Analytical variance
- Other QA aspects
- Spanning the scales
- Determination of threshold levels
- Combination of information

Biomarker interpretation basis

Biomarker interpretation basis

Optimizing the biomarker approach

- Stepwise EEM !
 - Environmentally relevant and cost efficient
 - 1.step Screening
 - Simple techniques
 - On-board analyses
 - 2.step Effect cause and severity
 - » (dependant on results of 1.step)
 - Follow-up investigations (e.g. the North Sea DNA adduct case)
 - » Application of additional adequate biomarkers
 - » Chemical analysis
 - » Population or community investigations
 - Combination with classical methods

RF-Akvami

Decision support – Balancing environmental cost / benefit

- Poorly developed
 - In Norway:
 - The zero harmful effects discharge sets a regulatory / politically based environmental goal
 - Which strongly influences the decisions
 - In Oil contingency planning :
 - Net Environmental Benefit Analysis (NEBA)
 - Environmental cost / benefit (='Risk benefit') needs to be developed further and integrated with ERA and EEM in the total Risk Management process ->

Balancing environmental cost / benefit Decision making in <u>Risk Management</u>

Summary of Main challenges

- For the further use of biomarkers towards a sustainable management for the marine environment protection following challenges must be met
 - Biomarkers and ERA must be integrated ('Biomarker bridge')
 - Definition of threshold levels and criteria to <u>quantify</u> ecological relevance must be established for biomarkers
 - Adapt the methods to the new frontiers of the oil & gas industry
 - QA: the biomarker protocols must be standardized and the modes of interpretation biomarker results must be harmonized
 - Optimize the biomarker approach to a stepwise EEM
 - Balance the environmental cost / benefit in the Risk management process

