Environmental risk assessment in European Community –

background for environmental risk assessment; differences between risk assessment and hazard assessment

RF-Akvamiljø Mekjarvik 12 4070 Randaberg

http://www.rf.no

Contact person:

Dr. Odd Ketil Andersen Head of Research

Tel.: +47 51 87 50 50

E-mail: oka@rf.no

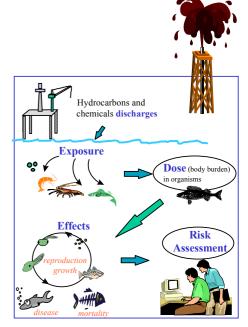
Environmental Risk Assessment

Definition

 Capacity for determination of the relationship between a predicted exposure and adverse effects

Background

- European policy
 - sustainable development of industrial activities
 - no harm to the environment
 - policy in European maritime areas to avoid harmful environmental impacts in a proactive way
- Necessary to develop tools for a <u>proactive</u> approach need for 'early warning'
 - based on sound scientific methods and knowledge
 - · In lack of scientific basis the precautionary principle will be applied
 - example: Off-shore oil exploitation in the Norwegian Arctic



Environmental Risk Assessment ERA

· ERA implies...

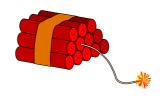
- Predictions (what will happen)

- ~ Forecasts (prediction of future situations)
- ~ Prognosis (forecast esp. related to health)

Environmental Hazard Assessment

Definition

 adverse effects indicating that a substance has an inherent capacity to cause cellular or organism damage



Environmental predictive assessments different approaches

Not very acute differences...

Hazard

Emphasis on...

Environmental properties of discharged chemical product

Risk

Emphasis on. .

Fates and effects of discharge in a particular environmental compartment

Environmental Risk Assessment (EUs TGD, OSPAR)

- Capacity for determination of the relationship between a predicted exposure and adverse effects, in the following major steps:
- Assessment of Effects; comprising
 - Hazard identification
 - definition of adverse effects that a substance has an inherent capacity to cause
 - Dose (concentration) response (effect) assessment
 - estimation of the relationship between the dose (or level of exposure to a substance), and the incidence and severity of effect, where appropriate

Exposure assessment

- determinations of concentration/doses to which environmental compartments are or may be exposed

Risk characterisation

- estimation of the incidence and severity of the adverse effects likely to occur in an environmental compartment due to actual or predicted exposure to a substance.

Environmental Risk Assessment

(alternative meaning of the term)

- Capacity for determination of the relationship between a <u>measured</u> exposure (or dose) and adverse effects
 - Commonly used in the U.S. and also in the European scientific community
 - Different meanings cause confusion and should as far as possible be avoided!

Environmental Impact Assessment

- EIA A term used somewhat ambiguously (?)
 - Assessment of environmental impact
 - based on
 - prognostic information ('desk estimate'),
 possibly augmented with
 - diagnostic data ('field measurement')
 - » = Environmental (or Biological) Effect Monitoring called: EEM, BEM or 'Biomonitoring'

Environmental Effect Monitoring (EEM)

Overview - which measurement tools for which purpose?

- exposure -
- biological uptake and transformation harmful effects -
- ecosystem disturbances

Field Monitoring

(Laboratory tests)

(Laboratory) and Field Monitoring

chemical anal.
biomarkers
biosensors
(bioassays - lab)

survival- and reprod. capacity (fitness)

biodiversity
indicator species
animal density, biomass

Communities

Difficultate warning imptly partment

Populations

Difficult to measure in field

Individua

Late effects

Ecosystem

disturbances

Chain of events...

...up levels of biological organisation

Chemical exposure

Molecules

EMelasurabledn pelagitineld and benthic animals

Cells

Early effects

Biochemical responses

RF-Akvamiljø

Summary of Assessments

- Hazard Assessment
 - Laboratory based
 - Bio-assays (TIE), Toxicity tests (fitness)
- Risk Assessment
 - 'Desk assessment' based on
 - Exposure predictions and Laboratory tests (toxicity; fitness)
- Impact Assessment
 - 'Desk' assessment based on
 - site specific information
 - Field assessment based on
 - Environmental Effect Monitoring (EEM or 'Biomonitoring')

Key elements in present ERA developed in Europe

PEC:PNEC

· 55D

PEC:PNEC

Explanations

- PEC = Predicted Environmental Concentration
- PNEC = Predicted No Effect Concentration
 - If PEC > PNEC, then there is an environmental risk

Strengths

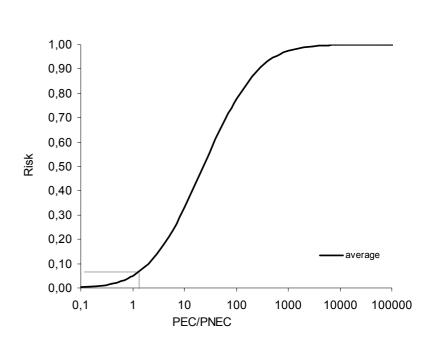
- Screening, prioritizing hazards

Limitations

- The environmental risk is not graded
- Bioavailability and Depuration are poorly represented
- No quantification of likelihood of effects
- No characterization of the extent of effects
- Only an indicator of risk

Alternatives

- Dose related (BB:CBB)
 - Body Burden/ Critical Body Burden
- Future (?):
 - Exposure / Biological Response Related (PEC:'TBR')
 - PEC: 'Threshold Biomarker Response' (?)



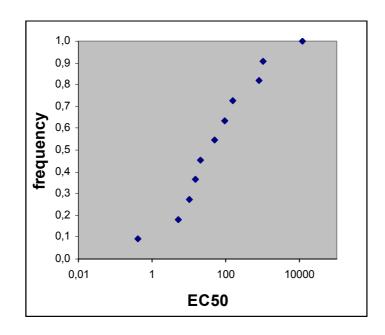
SSB

- Species Sensitivity
 Distributions
 - Concept used to represent the environmental sensitivity in ERA
 - Why & How?

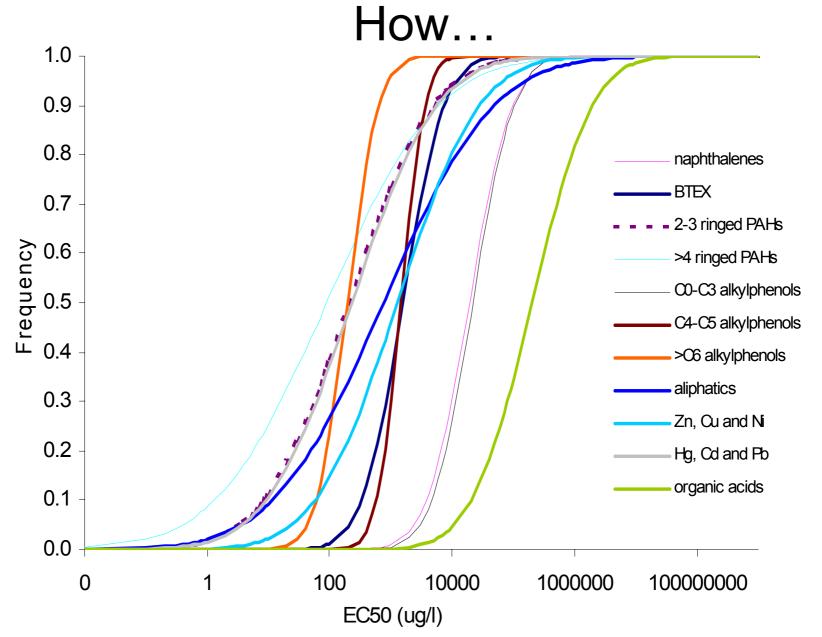
average

SSB - Why...

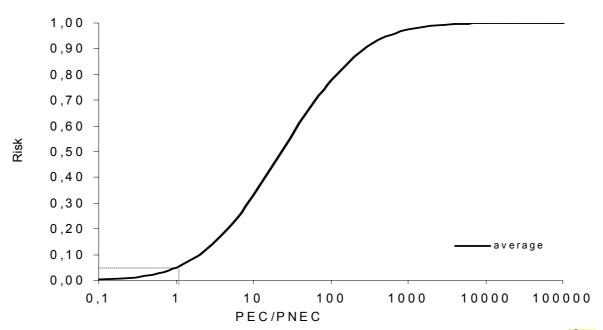
- To estimate the sensitivity of "all" species from a limited set of toxicity data
 - Used instead of "the most sensitive species"
- To estimate a concentration that would protect a certain percentage of species from any kind of adverse effects
 - usually 95%, but it is arbitrary!
 - Predicted No Effect Concentration (PNEC)



How...


- Toxicity data are needed for various species
 - Could be NOECs, or EC50s, or ...
 - Preferably from different taxonomic groups

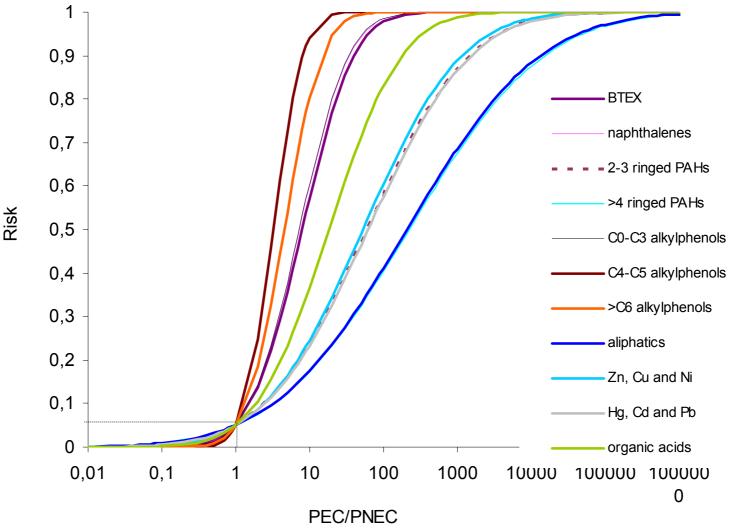
	Species	EC50	Fequency
1	crustacean A	0,4	0,09
2	mollusc A	5	0,18
3	crusacean B	10	0,27
4	fish A	15	0,36
5	mollusc B	20	0,45
6	mollusc C	50	0,55
7	alga B	90	0,64
8	fish B	150	0,73
9	echinoderm	800	0,82
10	alga A	1000	0,91
11	annelid	12000	1,00



How... Average curve PEC:PNEC=1; risk = 5%

The variation of sensitivity is fitted assuming a log-normal distribution

average



How...

Average curve PEC:PNEC=1; risk = 5%

Environmental Risk Assessment Tools

- ERA High complexity
 - Need for calculation tools
 - standardized and powerful

- Several developed for oil industry
 - Computer simulation models / spreadsheet calculation / expert systems
 - Most important related to oil industry in Europe are:
 - CHARM, EUSES, OSCAR, DREAM, PROTEUS, EIF, ParTrack, ERMS, MEMW...
 - ... next presentation →

