

TOWARDS A NEW FLOOD FORECASTING SYSTEM FOR THE LOWER MEKONG RIVER BASIN

Regional Flood Management and Mitigation Centre (Cambodia) SunWater (Australia); HKV Consultants (The Netherlands)

• **RFMMC flood forecasting at present**

- Short term 1-5 day forecasts
- 23 locations along Mekong River
- SSARR model
- Published at website
- Distributed by email

Introduction

Data

Models

Example

Future

Conclusions

Mekong River Commission

Data

Models

Example

Future

Conclusions

Introduction

- Road Map Mission of May 2006
 - identified need for more accurate medium to long term flood forecasts
- Improvements required:
 - Real time data (observations & communication)
 - Flood forecasting techniques
 - Access to results
 - Integration of available expertise
- New models are just one part of achieving the objective

Data Requirements

Introduction

Data

Models

Future

Example

Conclusions

•	Water	level	data

- Near real time water level main stream
- Near real time water level main tributaries
- Rainfall Data
 - WMO GTS rainfall data
 - Existing near real time rainfall data at agencies
 - Extension of network of near real time rainfall stations
- Satellite Rainfall Estimates
 - Satellite Rainfall Estimates
 - Satellite Rainfall Estimate Forecasts

Mekong River Commission

SunWater

Rain Gauge Network

Introduction

Data Models Example

Future

• Network Coverage

- Average coverage good in Thailand and Viet Nam
- Spatial distribution may need improvement
- Both are insufficient in Cambodia and Lao PDR
- Operation and Maintenance
 - Thailand and Viet Nam need little support
 - Cambodia and Laos face problems
 - Historical stations need attention

Analysis Cambodia

- Introduction
- Data

Models

Example

Future

Conclusions

- Department of Hydrology and River Works, Ministry of Water Resources and Meteorology
 - Presently 5 rainfall stations reported
 - After upgrade 9
- Department of Meteorology (MOWRAM)
 - Presently 21 rainfall stations near real time
 - After upgrade 36
 - First phase (upgrade of 9 stations) started
 - Second phase (6 new stations) in November 2007
- M-HYCOS
 - 7 stations proposed

CINESE DAILS

Mekong River Commission

Analysis Lao PDR

Introduction

Data

Models

Example

Future

Conclusions

- Waterways Administration Division, Department of Roads, Ministry of Communication, Transport, Post and Construction
 - Presently 8 rainfall stations reported
 - After upgrade 10-12
- Department of Meteorology and Hydrology, Ministry of Agriculture and Forestry
 - Presently 25 rainfall stations near real time
 - After upgrade 31-33
 - After extension network up to 40

Models

Introduction

Data

Models

Example

Future

Conclusions

Development of new system based on URBS

- Conceptual hydrological flood routing
- Parameter-poor
- Robust operational
- Input primarily rainfall data
- Advantages
 - Lack of data from one station or one data supplier permitted
 - Minimum set of rainfall data from WMO-GTS always available

Mekong River Commission

16

URBS

Data

Introduction

Models

Example

Future

Conclusions

• URBS is now used at the RFMMC

- as trial model
- to build expertise

URBS has the following characteristics

- Semi-distributed non-linear network model
- Combines rainfall-runoff and runoff-routing
- Ability to model spatial & temporal variability of rainfall
- Proven record in large rivers

URBS

18

Data

Models

Example

Future

Conclusions

• Features of URBS include

- Enhanced Data Management
- Robust Performance
- Forecast Rainfall
- Linked Ratings
- Reservoir Behavior
- Adaptability

Data

Models

Example

Future

Conclusions

CatchmentSIM

- GIS topographic parameterisation & hydrologic analysis software
- Automatically delineates watersheds & subcatchments
- Includes a flexible macro language to fully couple the output with any hydrologic model
- Uses publicly available digital elevation data from the NASA Shuttle Radar Topography Mission

Mekong River Commission

- Flow at any location
- Height at any location with a H-Q relationship

Mekong River Commission For Sustainable Development 21

-HKV COMPACIONIS

(SunWater

Conclusions

Data

Introduction

Models

Example

Future

Conclusions

• Data

- Upgrade existing historical rain gauge stations
- Extend existing rain gauge station network
- Use mobile phone SMS
- Use manual rain gauges
- Low tech, low budget, low O&M
- Complementary to AHNIP and M-HYCOS
- Secure direct access to AHNIP and M-HYCOS
- Secure GTS connection for RFMMC

Conclusions

Data	

Introduction

Models

Example

Future

Conclusions

Models

- URBS model selected as trial flood forecasting model
- Basic and advanced training of staff completed
- Example on Se Bangfai developed using CatchmentSIM shows the model has potential
- Program to develop & calibrate 50 models almost completed (September 2007)
- Overall Mekong model set up
- Work on Cambodian floodplain and Great Lake system ongoing
- Possible use during 2008 flood season if sufficient real time data is available

Mekong River Commission

SunWater ----

26

Thank you very much for your attention !

