
# The Impacts of Upstream Development on Wetland and Biodiversity Resources in Tonle Sap

### Thorn Riguen

BDP 2nd Regional Stakeholder Forum October 16, 2009

## Tonle Sap Lake 'Flooded forest' tall gallery stands of trees on the banks of lake and river (McDonald et al, 1997) Map of the Tonle Sap Lake and its flooded forest Present average dry season WL (1.44 m amsl) Flooded forest (JICA, 2002)





Sustainable Livelihoods



# Hydrology

- 1–2 m asl in the dry season
- 8–11 m asl in the wet season
- 20% of the Mekong River's floodwaters are absorbed by the Tonle Sap.
- 62% of the Tonle Sap's water originates from the Mekong River.
- 38% of the Tonle Sap's water originates from the Tonle Sap basin.
- The Tonle Sap is connected to the Mekong River by the 100-120 kilometer long Tonle Sap River, which reverses its flow seasonally (ADB, 2005; CNMC, 2004; WUP-FIN, 2003).

# "Flood pulse" in Tonle Sap



#### In Tonle Sap Lake:

- flooding submerges the Tonle Sap floodplain and riparian forests during the wet season and
- floods recede from the floodplain during the dry season. This is the "flood pulse" in Tonle Sap.

 Ecosystems that experience fluctuation between terrestrial and aquatic conditions are called pulsing ecosystems (*Kummu et al.,* 2008) Dams and Hydropower Dams in the Mekong



Since the 1950s:

nearly 6,000 large and small dams have been built in the Lower Mekong (FACT, 2001).

dams are mainly hydropower and irrigation.

#### Major water resource development projects in

#### the Mekong basin



| Yea                         | ar                 | No. of<br>Projects | Power characteristic |          | Irrigation potential (ha) |         | Active storage |
|-----------------------------|--------------------|--------------------|----------------------|----------|---------------------------|---------|----------------|
|                             |                    |                    |                      |          | Wet                       | Dry     | (mcm)          |
|                             |                    |                    | MW                   | GWh/year | season                    | season  |                |
| 19                          | 965-1975           | 9                  | 257                  | 1,266    | 209000                    | 189000  | 10012          |
| 19                          | 75-1995            | 6                  | 1681                 | 8330     | 53000                     | 35000   | 1058           |
| 19                          | 96-2005            | 8                  | 3240                 | 17597    | 0                         | 0       | 4148           |
| Gr                          | ant Total<br>1965- | 22                 | 5470                 | 07 400   | 075 000                   | 007.000 | 45 000         |
|                             | 2005               | 23                 | 5178                 | 27,193   | 275,000                   | 227,000 | 15,328         |
| Source: CNMC & NEDECO, 1998 |                    |                    |                      |          |                           |         |                |

# Impacts of Hydropower Dams



- The dams will have two main impacts on Mekong and Tonle Sap:
  - There will be below normal wet season flows to the Tonle Sap
  - There will be increased dry season flows in the Mekong slowing flood recession from the Tonle Sap

## The Decrease in the Wet Season Flow



| Impacts on flood (after ADB, 2004): |               |                             |  |  |  |  |  |
|-------------------------------------|---------------|-----------------------------|--|--|--|--|--|
| Duration:                           | <b>-5%</b> (  | (264 <b>→</b> 250 d)        |  |  |  |  |  |
| Flood volume:                       | <b>-16%</b> ( | (60 <b>→</b> 52 km³)        |  |  |  |  |  |
| Floodplain area:                    | -16% (        | (11,000 <b>→</b> 9,200 km²) |  |  |  |  |  |
| Min WL                              | +0.6 m        | (1.44 <del>→</del> 2.04 m)  |  |  |  |  |  |
| Max WL:                             | -0.6 m        | (9.17→8.57 m)               |  |  |  |  |  |
| ( <i>Kummu et al.,</i> 2008).       |               |                             |  |  |  |  |  |



# Increase in the Dry Season Flow

| Results of the CIAs on low WL: |         |  |  |  |  |  |
|--------------------------------|---------|--|--|--|--|--|
| MRC:                           | +0.15 m |  |  |  |  |  |
| Adamson (2001):                | +0.30 m |  |  |  |  |  |
| ADB (2004):                    | +0.60 m |  |  |  |  |  |

- Recent Cumulative Impact Assessment (CIA) studies made by
  - MRC under the IBFM (Integrated Basin Flow Management) project
  - ADB (2004): Cumulative Impact Analysis and Nam Theun 2 Contributions (prepared by Norplan and EcoLao)

Adamson (2001), and WL analysis of Garsdal (2004) are used to understand possible upstream development impacts.

## Dry season WL rise:impact on lake area



Dry season Tonle Sap Lake WL change, impact on lake area



#### Impact on lake area:

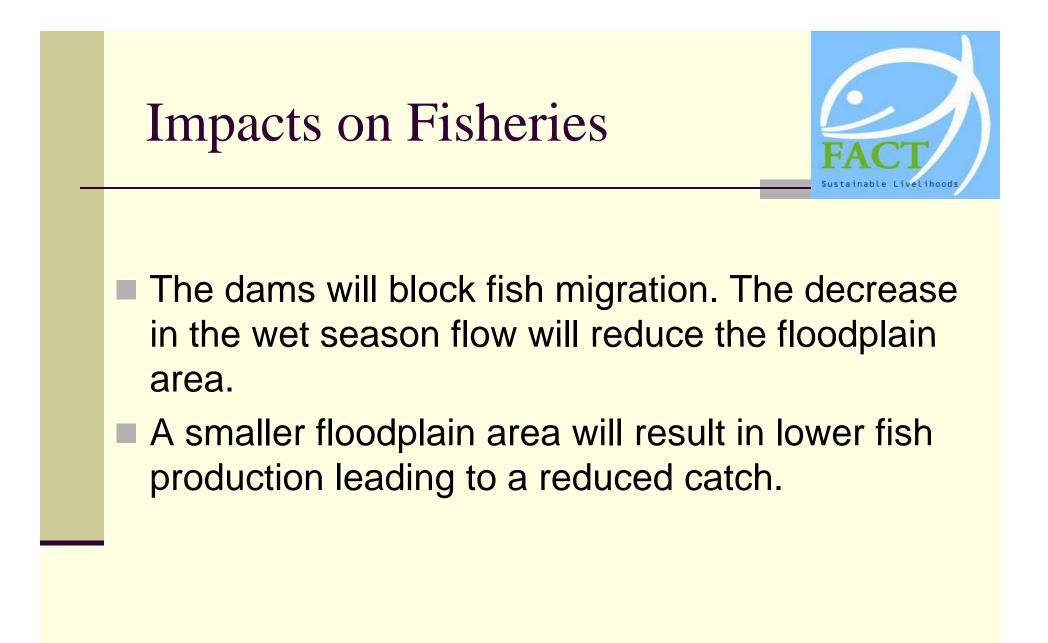
Dry season water level rise of 0.6 m would increase the permanent lake area by 40% (Kummu et al., 2008).

Aver min WL, 1.44 m (amsl): 2,300 km2 Aver min WL+0.15m: 2,700 km2 Aver min WL+0.3m: 3,000 km2 Aver min WL+0.6m: 3,200 km2 + Aver max WL, 9.17 m (amsl): 13,260 km2 50 km

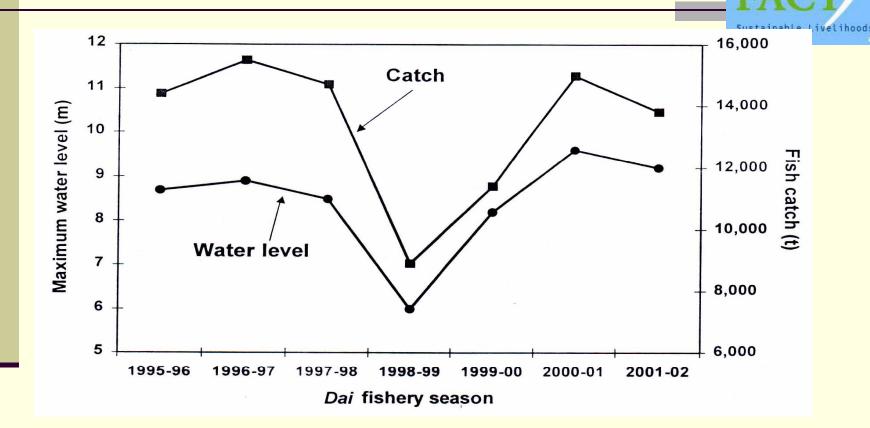
### Dry season Water Level rise after ADB (2004): impact on flooded forest



Dry season Tonle Sap Lake WL change, impact on flooded forest


Present avearge dry season WL (1.44 m amsl)

#### Impact on flooded forest:


Dry season water level rise of 0.6 m  $\rightarrow$ 80.4 km<sup>2</sup> of the present total area of flooded forest (197.2 km<sup>2</sup>) would become permanently inundated  $\rightarrow$  loss of 41% of the present flooded forest (Kummu et al., 2008).

Flooded forest under water WL rise +0.6 m (2.04 m amsl)

Flooded forest (JICA, 2002)



# Relationship between *dai* catch and maximum flood discharge of Tonle Sap River



*Fig 5.54* Relationship between *dai* catch and maximum flood discharge of Tonle Sap River (MRC, 2003)

#### **Concluding Comments**



Any upstream Mekong hydro development will alter the essential hydro-ecological processes upon which the Tonle Sap fishery depends. This fishery is critical to the livelihoods of over a million people in over 140 communities. The *cumulative* impacts of both mainstream and tributary dams could potentially disrupt one of the world's great inland fisheries and threaten the food security of the fishers of Cambodia.

# Thank You