

Mekong climate change project - agricultural impacts and adaptation

Mac Kirby, Mohammed Mainuddin, Judy Eastham

Bangkok workshop, September 2009

A component of the MRC-CSIRO Project

Three main components of the project:

- Assessment of climate change impacts on Mekong hydrological regime – presented by Dr Hoanh
- Impacts of climate change on Mekong hydrological baseline and development scenarios – presented by Dr Kittipong
- Potential impact of climate change impacts on agriculture, fish and food security and adaptations strategies – this presentation

Outline

- Selection of sites for modelling
- Model set-up for the selected sites
- Modelling impact of climate change on rainfed rice and some results
- Possible adaptation strategies for rainfed rice cultivation and sensitivity analysis
- What is next

Site selection – estimation of spatial average rainfall and PET

We have estimated spatial average rainfall and PET from the rainfall and PET surfaces of the Basin for 1980-2005

Rainfall surfaces of 1994

PET surfaces of 1994

Spatial variability in rainfall is higher than in PET

Selection of site

- Based on the provincial average annual rainfall, provinces are divided into groups:
 - Laos 3
 - Thailand 4

Cambodia – 4

Vietnam – 3 (1 in Central Highlands, and 2 in the Delta)

- One sub-catchment as defined by the MRC-DSF from each group has been selected for modelling to represent the group
- Sub-catchment has been selected from the province having highest planting area of the selected crop

Selection of site – location map of rainfed rice

No of provinces in each group:

- Laos 1 6 Laos 2 – 7 Laos 3 – 5
- Thailand 1 2Thailand 2 - 5Thailand 3 - 7Thailand 4 - 8
- Cambodia 4 Cambodia – 5 Cambodia – 8 Cambodia – 3
- Vietnam 1(CH) 4 Vietnam 2 (MD) - 5 Vietnam 2 (MD) - 7

Model selection

- We have selected AQUACROP model developed recently by FAO
- AquaCrop is a water-driven simulation model that requires a relatively low number of parameters and input data to simulate the yield response to water of most of the major field and vegetable crops cultivated worldwide.
- Its parameters are explicit and mostly intuitive and the model maintains sufficient balance between accuracy, simplicity and robustness.
- Very useful for scenario simulations and for planning purposes. It is suited for perspective studies such as those under future climate change scenarios.
- Its performance has been tested for several crops with very satisfactory results.

Model set-up - data

- Model has been set up for each location considering the climatic data of the sub-catchment and provincial average yield data (only available data for yield)
- Due to the higher year to year variability of the model parameters such as planting date, fertilizer input etc. the baseline condition has been considered for 5 years (1996-2000) (MRC model has climate data up to 2000)
- Major soil class representing the area has been considered.
- Crop calendar published by the MRC (Technical Paper 11) used in defining the crop growing period for modelling.
- We tried to match the model yield with the observed yield by changing mostly the planting date, fertilizer stress and harvest index.

Model set-up – observed vs modelled yield of rainfed rice for baseline condition, Laos

Laos 1 - Savannakhet

Laos 2 – Vientiane Municipality

Laos 3 - Oudomxay

Model set-up – observed vs modelled yield of rainfed rice for baseline condition, Thailand

Thailand 1 – Ubon Ratchathani

Thailand 3 – Roi Et

Thailand 2 – Sakhon Nakhon

Thailand 4 – Nakhon Ratchasima

Model set-up – observed vs modelled yield of rainfed rice for baseline condition, Cambodia

Cambodia 1 – Kampong Speu

Cambodia 3 - Kratie

Cambodia 2 - Battambang

Cambodia 4 – Siem Reap

Model set-up – observed vs modelled yield of rainfed rice for baseline condition, Vietnam

Vietnam 1 (Central Highland) – Gia Lai

Vietnam 3 (Mekong Delta) – Kien Giang

Vietnam 2 (Mekong Delta) – Dong Thap

Model set-up – observed vs modelled yield of rainfed rice for baseline condition, overall comparison

Comparison of observed and modelled yield for all location

The model represents well the average condition for the period of 1996-2000

Modelled yield vs observed for all location (1:1 plot)

Model run for future climate scenario

- Model set up for the baseline condition was used with changed climatic data and CO2 emission only.
- Model has been run for A2 and B2 climate scenario for the period of 2010 to 2050
- CO2 emission has been considered varying from year to year according to SRES scenario

Results – rainfall during the growing season of rainfed rice

A2 Scenario

B2 Scenario

Results – rainfall during the growing season of rainfed rice (up-scaling)

Results - variation in yield of rainfed rice

Results – variation in yield of rainfed rice

Results – probability of yield

Results – change in average yield for the scenarios compared to the baseline

Site	Province	Change (%) from the baseline condition with failed year						
		Rainfall, A2	Rainfall, B2	With failed year		Without failed year		
				Yield, A2	Yield, B2	Yield, A2	Yield, B2	
L1	Savannakhet	23.4	14.1	10.3	-4.3	16.0	6.0	
L2	Vientiane Municipality	-12.2	-3.3	28.1	21.9	28.1	21.9	
L3	Oudomxay	-7.9	-10.6	27.6	26.6	27.6	26.6	
T1	Ubon Ratchathani	2.9	-0.8	7.7	15.1	7.7	15.1	
T2	Sakon Nakhon	14.3	5.1	17.6	11.4	17.6	11.4	
Т3	Roi Et	17.2	11.2	10.8	15.1	13.6	15.1	
T4	Nakhon Ratchasima	31.5	30.8	16.5	27.7	22.5	37.8	
C1	Kampong Speu	-16.4	-15.6	-14.2	-2.9	0.6	13.7	
C2	Battambang	12.7	12.2	2.7	-3.0	10.8	13.7	
C3	Kratie	-1.3	-0.6	6.3	-8.4	9.0	-1.1	
C4	Siem Reap	3.5	5.0	14.6	14.5	20.5	20.3	
V1	Gia Lai	11.3	2.8	6.4	-10.1	14.8	-5.5	
V2	Kiên Giang	-10.9	-9.7	11.9	-6.8	11.9	0.6	
V3	Đồng Tháp	-8.8	-7.6	-1.6	-11.0	12.1	-1.4	

- Yield increases in A2 scenario for all sites except two
- In B2 scenario, in general yield decreases in Cambodia and Vietnam
- Yield increase is higher in A2 than that of B2
- For few location (eg. L1 and V2) yield increase in A2 and decreases in B2

Results – change in average yield (up-scaling with failed year)

Results – change in average yield (up-scaling without failed year)

Results – why yield is 12% higher in A2 and 7% lower in B2 for location V2 (Upper Mekong Delta)

Rainfall

Rainfall/PET

Results – No yield with much higher growing season rainfall

Site L1, Scenario A2

Year	Rainfall, mm	PET, mm	Yield, tonne/ha
2013	1025	588	0.00
2015	952	608	0.00
2023	630	499	3.44

- For about a month there was no rainfall in 2013 and 2015 while the PET was very high, so crop died during this period. Though there was lot of rainfall afterwards.
- In 2023, rainfall was low so was PET but crop did not suffer severe drought.
- While total amount of rainfall is important, the distribution of rainfall is equally important for crop growth.

Conclusions so far.....

- It is likely that yield will not be affected by the climate change for most part of the basin (does not consider extreme event such as flood, storm, cyclone damage, etc.)
- There is potential to increase yield particularly in Laos and Thailand
- Yield increase is higher in A2 scenario
- The trend of the results is grossly similar to that of the other studies (Eastham et al., 2008; Chinavanno 2004; SEA START RC, 2006; IRRI, 1995)

What is next - rainfed rice

- Run the model by changing the planting date by two weeks forward and backward and compare the results
- Reduce fertilizer stress by some percentage and compare the results
- Use supplementary irrigation
- Literature suggest high CO2 concentration increases rice yield – test for the Mekong
- More?

What is next – other crops & food security

- Consider other crops such as irrigated rice, maize, sugarcane, etc. (no of crops depends on the time and resources)
- Analysis of basin overall food security considering future population growth

What is next - fish

- 1. Capture:
 - 1. flow response functions of production vs flow very few studies show this
 - 2. Expert judgement based on fish river ecology and flow changes
- 2. Aquaculture primarily driven by policy and economics not affected by climate change?

Climate change in the Mekong

funded by AusAID

www.csiro.au

