Impacts of climate change on rice, sugarcane, cassava and maize production in Thailand

by

K. Pannangpetch, C. Buddhaboon, V. Sarawat, S. Ratanasriwong, S. Boonpradub, P. Kapetch, K.KunKet, V. Damrhikhemtrakul, and K. Ek Un

Consequences of CC on crop production

Long term change in yield due to CO₂ and T
Variability of yield due to climate extremes

Tools to derive the necessary information Crop model

- Mechanistic and dynamic with 1 day time step
- Input:
 - Driving variables: daily weather
 - System parameters: crop, soil and management
- GIS

Simulation specifications

- No pests and weeds
- Crop management as recommended by MOAC

Procedure

- 1. Defining boundary of the area planting each crop
- 2. Overlaying the area with soil and weather maps to obtain Simulation Mapping Units (SMU)
- 3. Simulate crop growth and yield in each SMU
- 4. Temporal and spatial analysis of the impacts

Land Use Map

Rice growing area

Sugarcane growing area

Cassava growing area

Maize growing area

Soil group map

Weather grids 20x20 km. ECHAM-PRECIS

Example:

Weather: 4 units

Soil: 2 units

Crop growing area

6 SMUs

Sugarcane SMU

Cassava SMU

Maize SMU

Growth and yield in each SMU each year, $\sim 2,160,000$ dataset

Trend and variability of rainfed lowland rice KDML105 yield

Trend and variability of irrigated rice Suphanburi 1 yield

Trend and variability of rainfed sugarcane K84-200 yield

Conclusions

- Trend 6% increases
- Temporal variation CV 18%
- Spatial variation CV 23%

Trend and variability of rainfed cassava Kasetsart 50 yield

Conclusions

- Trend 43% decreases
- Temporal variation CV 34%
 - Spatial variation CV 33%

Trend and variability of rainfed maize Suwan 1 yield

Conclusions

- Trend 15% decreases
- Temporal variation CV 41%
 - Spatial variation CV 45%

Consequences of CC on crop production

- Long term trend of change in yield due to CO₂ and T is small, except cassava
- Temporal variability of yield due to weather extremes is obvious with cassava and maize
- Spatial variability is large and greater than temporal

Since spatial variation is large, questions

• Where are those hard hit areas by CC

- Timing and duration of the impacts
- How the areas change/displace with time

Relative rainfed rice yield to the mean of the country 1980-89

Rainfed rice where yield < 70% of the base year mean

Irrigated rice where yield < 70% of the base year mean

Sugarcane where yield < 70% of the base year mean

Cassava where yield < 70% of the base year mean

Maize where yield < 70% of the base year mean

To identify the timing of occurrence and duration, time series maps of affected area are overlaid

	Period			
class	1980-89	2030-39	2090-99	
1	0	0	0	
2	1	0	0	
3	0	1	0	
4	0	0	1	
5	1	1	0	
6	0	1	1	
7	1	0	1	
8	1	1	1	

3 maps yield 8 classes of the affected area:

Classes of impact = $2^{\text{No. of maps}}$

Information needed for adaptation

Classes of the maize affected areas

Assessment of the CC impacts: Impact Factor

- magnitude
- area
- duration/frequency
- time of occurrence

Impact Factor = magnitude x affected area x duration x timing

Impact Factor assessment of the rainfed rice area

% of			Timing	Impact
Class	total area	duration	inverse of order	Factor
1	85.1	0	0.0	0
2	4.3	10	1.0	0.0142511
3	3.0	10	0.5	0.0050299
4	1.3	10	0.3	0.0014063
5	1.4	20	1.0	0.0093843
6	4.4	20	0.5	0.0145675
7	0.1	20	1.0	0.0004211
8	0.5	30	1.0	0.0053479

Class 6: yield < 70% of mean, duration 20 years 2030-39 & 2090-99

Map of the class 6 of the affected rainfed rice area

- yield < 70% of mean
- **area** 4%
- duration 20 years
- from 2030-39 & 2090-99

Map of the affected irrigated rice area with highest IF

- yield < 70% of mean
- area 14%
- duration 20 years
- from 2030-39 & 2090-99

Map of the affected sugarcane area with highest IF

- yield < 70% of mean
- area 12%
- duration 10 years
- From Present 2029

Map of the affected cassava area with highest IF

- yield < 70% of mean
- area 37%
- duration 20 years
- from 2030-39 & 2090-99

Map of the affected maize area with highest IF

- yield < 70% of mean
- area 5%
- duration 30 years
- from present & 2090-99

Information needed for adaptation

Next steps

casual analysis of the CC impactoptions for adaptation

