

A. Findings from site visits and consultations with MRC programmes

B. Draft outline of revised discharge and sediment monitoring plan

Iwona Conlan

Discharge & sediment data needs of MRC Programmes

- Accurate stage-discharge rating curves for flood forecasting
- Predicting consequences of development scenarios
 - Basin Development Planning (BDP)
 - Decision Support Framework (DSF)
 - Hydrological, hydraulic and sediment transport modelling (TSD)
- Hydraulic parameters and sediment data for fisheries management and research
- Bed load data and tools for estimating reservoir sedimentation rates
- Sediment transport and channel morphology data for predicting effectiveness of:
 - Navigation channel dredging/maintenance projects
 - Bank protection works

Data needs for sediment transport modelling

- Accurate cross-section data
- Observed cross-section profile changes (for model calibration)
- Bed load estimates
- Suspended sediment grain-size
- Bed-material grain size
 - Existing data from one survey in 2005
 - Sampling every 100-150 km
- Tributary sediment input data

Developing sediment transport models

Priority locations for collecting sediment and channel morphology data

Model boundaries

- 1-D basin model e.g. Chiang Saen, tributary junctions
- Ecologically sensitive areas
- Populated areas
- Near planned hydropower dam sites
- Locations important for navigation, bank erosion etc. (e.g. Huay Xai, Tan Chao)

Findings from site visits

Site Visits

August – October, 2008

12 mainstream stations visited

+

Tributary stations in Thailand, Laos and Cambodia

Key issues for discharge measurements

Several boats and engines are not in working order or too small for wet season conditions

Equipment needs repair & maintenance

- Winches
- Current meter countersDepth sounders

Current meters need to be calibrated

Issues with discharge measurement by ADCP

Issues with discharge measurement by ADCP

- ADCP is used at Nong Khai, all Cambodian stations, 4 stations in Vietnam (5 instruments in total)
- Moving bed conditions are causing discharge measurements to be biased low (underestimated) ~ 5 – 25 %
- This has huge consequences for flood forecasting, flood frequency and magnitude calculations, modelling, assessing historical flow trends etc.

Moving bed effects -need for Differential GPS

Mekong River @ Kampong Cham – 17/9/08

Issues with ADCP cont...

- Instruments are 6-8 years old
 - Need calibration & maintenance
 - Several have faulty cables or problems with the ADCP itself
 - Need repair or replacement
- Need for refresher training on ADCP
 - Operation
 - Simple maintenance & trouble shooting
 - Data quality checking

Existing suspended sediment monitoring stations

Thailand – continuously since 1999

Vietnam – started in 2008

Wet season – weekly

Dry season -

2-3 times /month

Issues with sediment sampling

- Existing US D-49 samplers are not suitable for depths > 4.5m (Mekong stations ~ 15m deep)
- Hand-made samplers at some stations are not isokinetic

Why isokinetic?

Sample transfer

Draft monitoring plan

(Your comments are welcome)

Phase 1 - 2009

 Sediment data sharing agreements established with countries

- Suspended sediment sampling equipment purchased and sampling established at all existing stations
- Training provided on sediment sampling techniques
- Pilot bed load measurements made at 2-3 stations
- Selected SS samples are sent off for grain-size analysis
- Winches purchased for stations without one (Cambodia)
- Sediment labs established in Lao PDR
- Training is provided to lab staff on standard analysis technique for SSC

Phase 1 continued...

- Essential repairs to boats & engines are made
- Essential repairs to current meters, depth sounders, ADCPs
- Address moving bed issue for stations where ADCP is being used
 - Purchase Differential GPS
 - Provide training on Loop Correction Method
- Cross-section profiles and surveys of velocity and flow patterns made near planned mainstream dam sites

Where?

 Existing mainstream gauging stations

- 2. Important tributary stations (e.g. Laos & Cambodia)
- 3. Near planned mainstream dams

Outputs of Phase 1

- Sediment monitoring network is established
- The most urgent data quality issues are addressed
- Initial training is provided
- Essential data for urgent modelling is acquired
 - Existing sediment data
 - Bed load data
 - Suspended sediment grain-size data
 - Channel cross-sections

Phase 2: 2010

- All stations upgrade to use ADCP for discharge measurements
- Differential GPS system set up near each station
- Comprehensive training on ADCP operation, maintenance & data quality checks
- All boats and engines are fully refurbished
- Bed load measurements extended to more stations

Key technical questions for next session

- What type of suspended sediment samplers are most appropriate?
 - Depth-integrated
 - Point-integrated
- Do we need surrogate measurements of suspended sediment ?
- What is the best method of measuring bed load?
 - Dune tracking studies
 - ADCP bottom-tracking