Why and How to flush a reservoir without environmental impacts

FRUCHART Francis

Regional Workshop on Discharge and Sediment Monitoring and Geomorphological Tools for the Lower-Mekong Basin Vientiane, Lao PDR, 21-22 October 2008

Why allow sediment to pass dams?

Effect of sedimentation - upstream of the dam (reservoir) - downstream of the dam

Is it better to let sediment stay in the reservoir?

'Hard Flushing' or 'Environmentally Friendly' flushing ?

How to flush the sediment while minimizing environmental impacts?

Is there an incentive for hydropower plant owners to flush ?

Material transportation in rivers

coarse materials

Sedimentation in a reservoir

Bottom gate flushing

Maintain bottom gate use Necessary for security Uncontrolled concentration downstream Best practice: operation during a flood

Bottom gate

Hard flushing

Bottom gate

Hard Flushing:

High and uncontrolled concentration downstream

Destruction of the biodiversity downstream

Best practice : no flushing ?

NO flushing

No Flushing :

- No more storage capacity
- Fine sediment reaches the turbine
- Pipes and turbine damages by erosion

Flushing the coarse materials ?

Bottom gate

Flush the coarse materials = bed load

- Flush the fine materials First
- Flood is needed
- Appropriate bottom gate

Miwa dam Japan

- Construction completed in 1959 Reservoir 37 million m³
- In 1972 Sedimentation reached 10 million m³ in 1982: + 4 million m³
- objective: preserve the volume of the reservoir no regard to environment

Miwa dam Japan – bypass tunnel

Genissiat dam Rhone river France

Environmentally Friendly Flushing ©

to send downstream only the concentration of sediment that the environment can withstand

Hard flushing: to send as much sediment as possible downstream

© WWF Marc Goichot

CNR developments along the Rhone river France

- 1 dam
- 17 run of the river developments

Run of the river development scheme

Upper Rhone river France - Switzerland

Geneva lake Switzerland

Seujet barrage

Verbois dam Switzerland

Chancy Pougny dam Switzerland – France border

Genissiat dam France

Upper Rhone river France - Switzerland

Flushing Verbois-Chancy-Genissiat dams organized every 3 years since 1970 duration 1 week

Rhone river - Genissiat dam

- Head 67 m
- 6 turbines 66 MW 125 m³/s
- Total volume 52 millions m³
- Used volume 12 millions m³
- 1 bottom gate
- 1 mid depth gate
- 1 spillway
- Longitudinal narrow reservoir Steep cliffs

General purpose

Prolong the life time of the Genissiat reservoir Transit of the sediments sent by Swiss dams

3 main issues of the flush

- 1. Guarantee acceptable concentrations downstream
- 2. Guarantee the biodiversity of the old Rhone river Chautagne, Belley, Bregnier-Cordon run of the river developments downstream
- 3. Guarantee 125 m³/s for cooling the Bugey nuclear power station downstream

Downstream concentration limits to be respected:

- 5 g / l average
- 10 g /1 6 hours max
- 15 g /l 30 minutes max

Monitoring in real time

- •Water levels
- Suspension concentration
- •Water quality, oxygen, Water Temperature, Bacteriology (bath areas), Toxicology (sediments)
- Clogging of spawning area
 - + Before and after the flush : Electrical fishing

gradient of concentration in the reservoir

Suspension concentration measurement - γ ray device

Continuous measurement: Gamma ray densimetry - Bottom gate - Mid depth gate - 6 km downstream by authorized

specialists

+ ponctual measurements: picnometer (density measurement) - pancake (quick drying)

Run of the river development management downstream

2003 Genissiat reservoir flushing assessment

- no damage to the environment
- Heavy organization
 - 2 country close cooperation
 - 80 people involved during 1 week
 - lot of monitoring over 150 km
 - 30 year experience
- Efficient
 - output ≈1 600 000 tons > input
 - Cost 1.5 M€ -loss for energy- staff
 - Dredging cost effectiveness very good ≈1 € /ton

Flushing a cascade of dams

Need of appropriate structures for each dam

Appropriate bottom gate and at least mid depth gate for the downstream dam

Impact of dams downstream

Downstream effect of dams on river morphology

Viet Tri

Thao River

Image © 2005 DigitalGlobe

Hydraulics

Decrease of the floods downstream (morphogenic discharge)

Material transportation

Siltation in the reservoir

Bed aggradation

(sedimentation) downstream of the dam

despite embankments

CNR study for CPO MARD Vietnam

Hoa Binh dam - capacity 5 Billion m³

Da

River

Dams should be transparent:

- to sediment transport (suspension and bed load)
- to morphogenic floods (average floods)

River downstream

embankments

Liberty space area

Material transport capacity of the river downstream ?

Material transport from the tributaries?

Sea shore stability problems ?

Drome River - Rhone river tributary - France

Conclusion

•Flushing a reservoir is complicated

Appropriate structures to be included in the design Take into account:

- effect of the reservoir on flood mitigation
- existing morphology and environment downstream

Comprehensive morphological view needed - upstream - downstream

• **'Environmentally friendly flushing'©** Important organization with real time monitoring Advantages: Maintain the storage capacity of the reservoir Cost effective alternative to dredging Respects environment and morphological equilibrium of the river

For the Mekong river Thanks Xiexie nimen Xin cam on Kop Khun kha Khob jai Tjé zu bé Or kun Merci