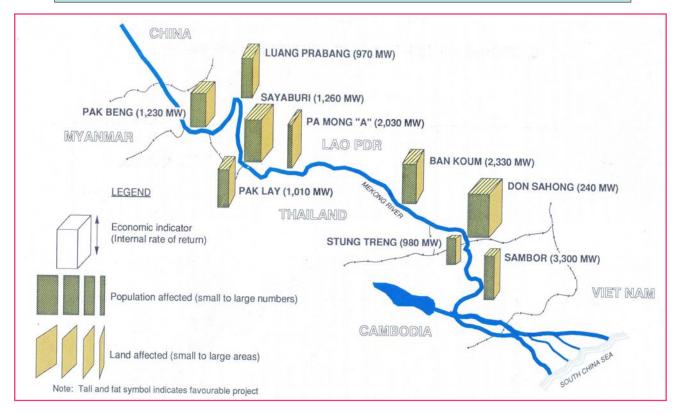
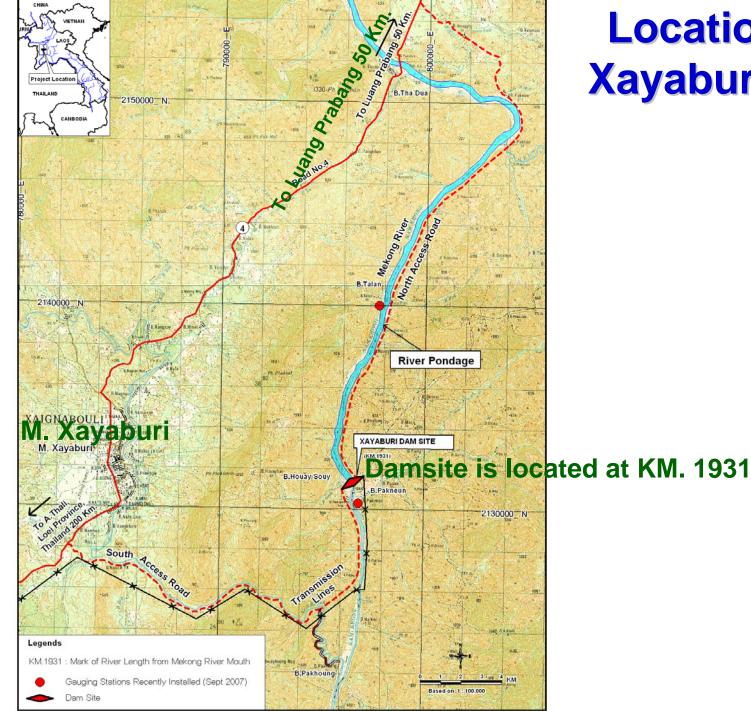
The MRC Regional Workshop


on Discharge and Sediment Monitoring and Geomorphological Tool for the Lower-Mekong Basin, 21-22 October 2008

Xayaburi Hydroelectric Power Project

BACKGROUND

MEKONG HYDROPOWER CASCADE

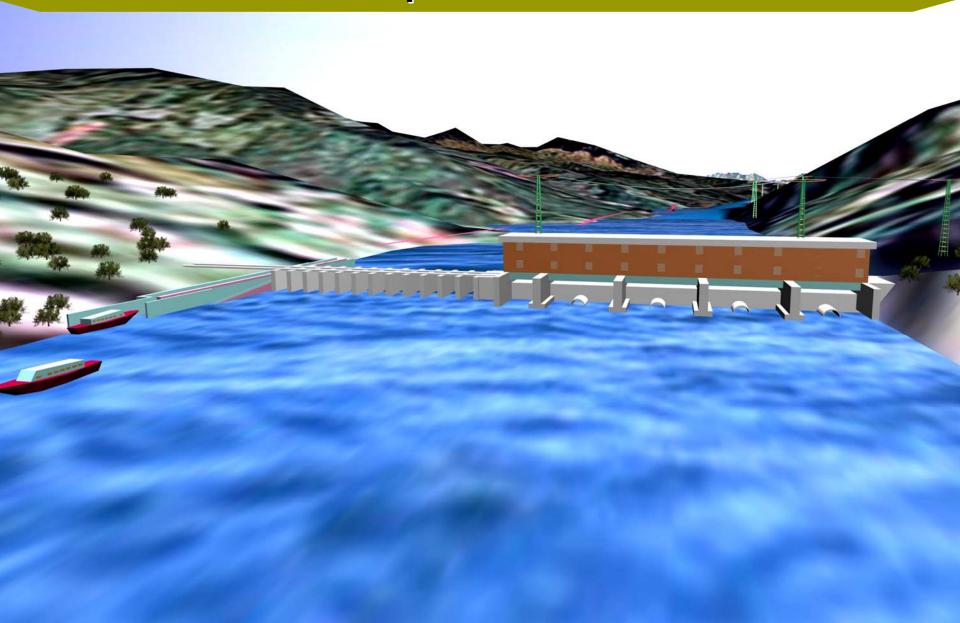

- Lower Mekong Basin has high potential for Water Resources and Hydropower Development
- MRC Study on the Mekong Mainstream Run-of-River Hydropower in 1994
- 12 Projects from Chiang Saen to Tonle Sap
- 9 Sites are found promising, Xayaburi is one of them

CK and Lao PDR signed MOU on 4 May 2007

Feasibility Study Completed on June 2008

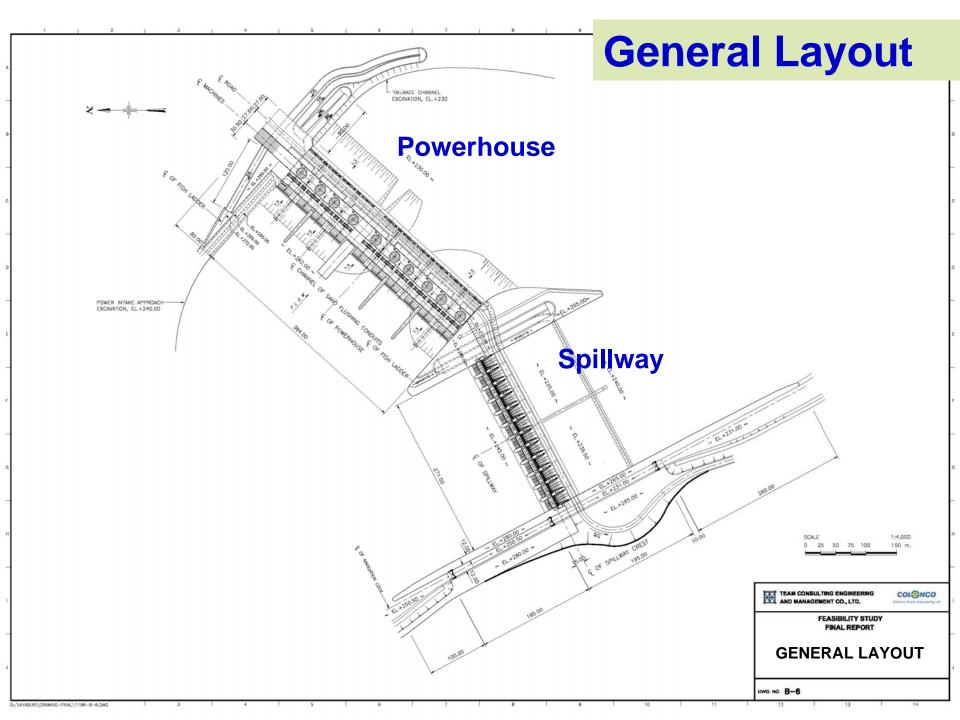
Preparing for Tender Design in 2009

Description 2		Year																														
)07		200)8	20	009)	201	10	20	011	2	2012	2	20	13	2	014	ŀ	20	15	2	016	5	20	17	2	201	8-2	203	9
1 st Period : Preconstruction		_	I																													
1. MOU for Project Development																																
2. Feasibility Study				╞│																												
3. Environmental + Social Impact Assessment (FIA+SIA)		• •	•																													
4. Definite Design and Tender Document Preparation							>																									
5. Concession Agreement (CA)																																
6. Power Purchase Agreement (PPA)																														\square		
7. Credit Facility Agreement (CFA)																														\square		T
8. Technical Studies and Clarifications on Selected Issues						•																						Π			\square	
9. Tendering and Contracting																																
10. Environmental Management Plan (EMP)		Π										П	П	П				П	П		Π		Π			Π		Π	Π	Π	Π	
11. Resettlement Action Plan (RAP)																					Π					Π			Π	i T		
2 nd Period : Construction and Supervision																																
12. Resettlement Works																																
13. Environmental Management								• •	• •	•	• • •		• • •	•	• •	•		Þ •	• •			•	• •	• • •		• • •	•	• •	• • •		• •	•
14. Construction :		П					Π		П				П					П			Π					Π			Π	Π	Π	
- Preparation Works		П											П					П			Π					Π			Π	Π	Π	
- Cofferdam		П					Π											Π	П		Π					Π		Π	Π	Π	Π	
- Spillwat+Navigation							\square													-	П		П			Π		Π	Π	Π	Π	
- Powerhouse							\square																						Π	\square	Π	
- Transmission Line							Π											Π			Π					Π		Π	Π	Π	Π	
3rd Period : Operation and Maintenance							-						Т						- - -									Ē		_		_
15. Commissioning and Commercial Operation (COD)	Π	Π		Π			Π		Π	Τ	Т	Т	Π			П	Т	T	П		Ц	T	<u>L</u>				T	Π	Π		Π	T
16. Operation and Maintenance		Ħ		Ħ			Ħ		Ħ									Ħ					╞┇	• •							ţ,	•

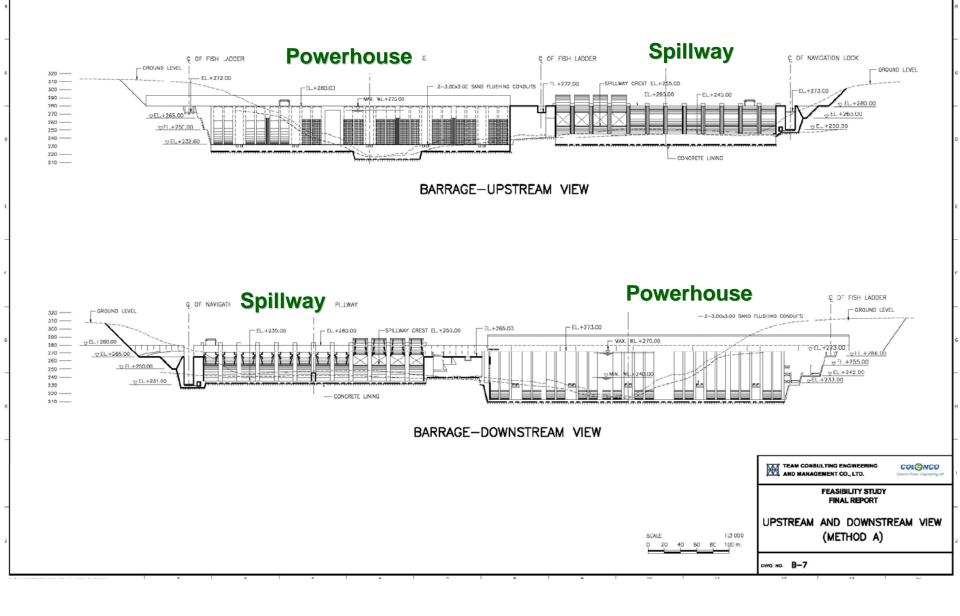


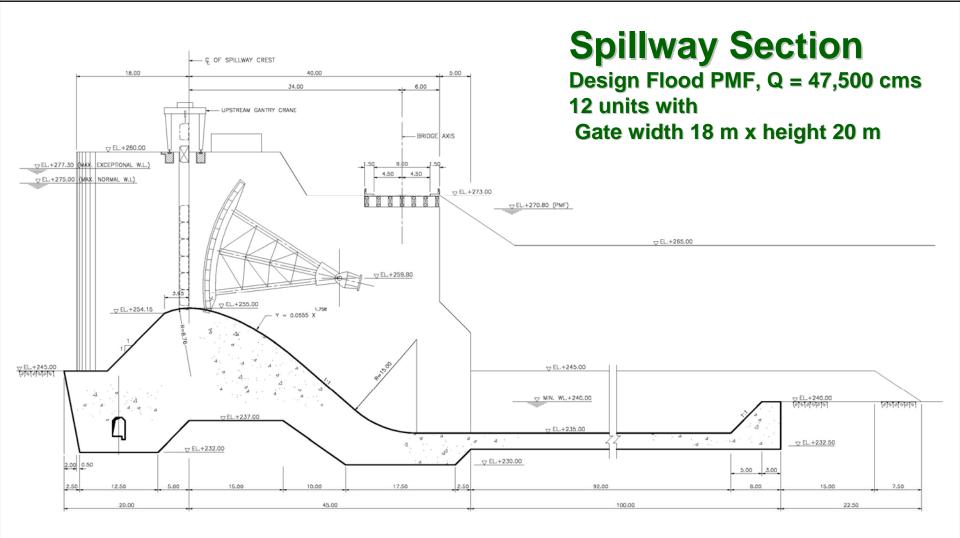
Location of Xayaburi HPP

Main Features of Xayaburi Project

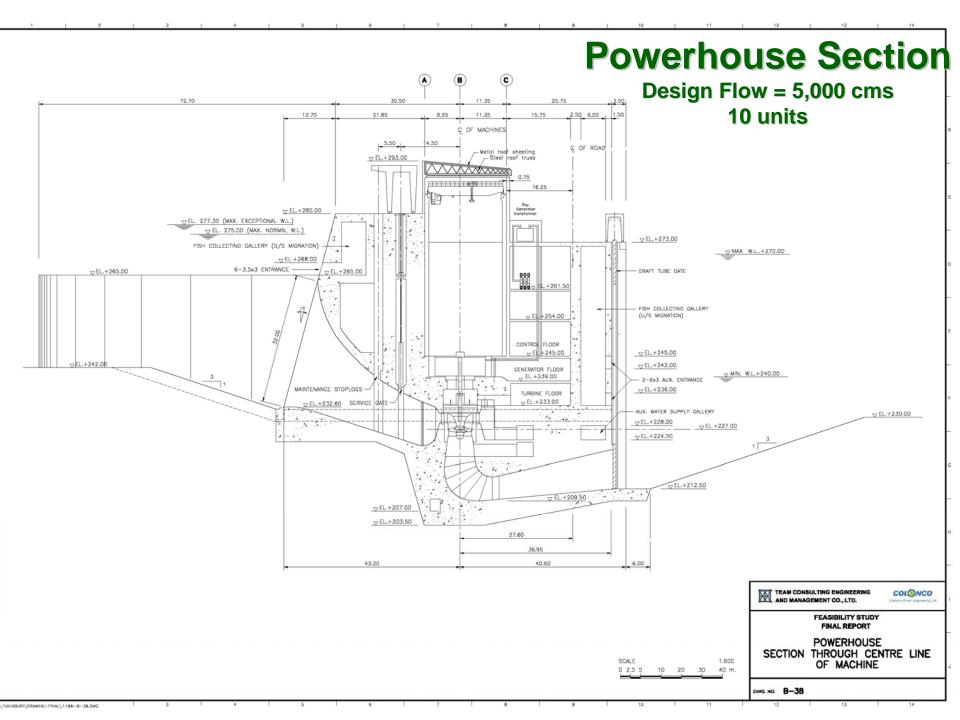

Catchment area (sq. km):	272,000			
Average inflow (m3/sec):	3,980			
Normal operating water level (NWL above MSL):	275			
Pond area (sq. km):	49			
Total barrage length (m):	About 810			
Navigation System: 2-step navigation locks, upstream a approach channels for accommodating boats up to 500				
Spillway: gated spillway with downstream stilling basir	1			
•Design flood - PMF (m3/sec)	47,500			
 Crest elevation (m MSL) 	255.0			
12 Radial gates width and height (m)	18 x 20			
 Total length (m) 	271			
Intake – powerhouse: 10 Kaplan units				
•Total installed capacity (MW):	1,260			
•Design flow through turbines (m ³ /sec):	5,000			
•Maximum head (m):	32.6			
 Total length, including unloading – erection area (m) 	About 470 m			
Fish passing facilities				

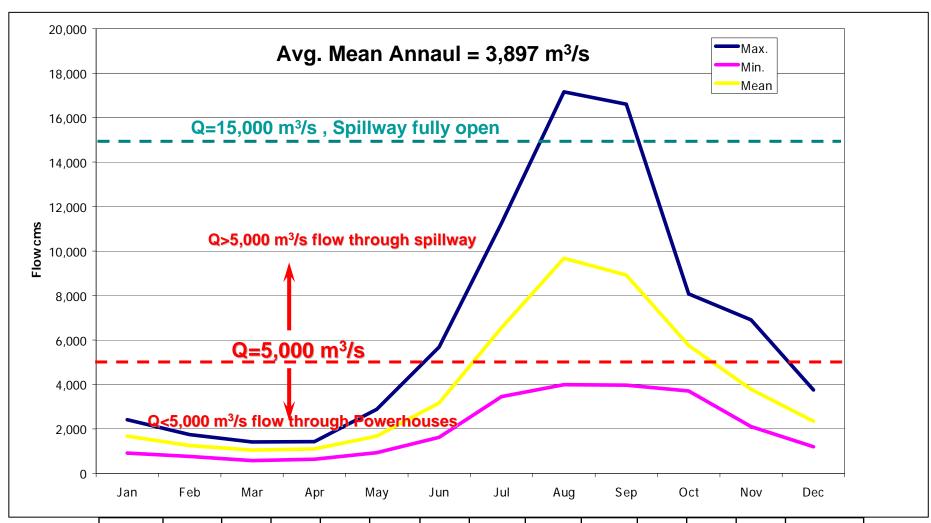
PROJECT LAYOUT Perspective View




Concept of Project Planning

- Maintain flow regime by operating in such a way that outflow equals to inflow and power generation is obtained without peaking operation to avoid water fluctuations upstream and downstream and prevent consequent serious bank erosions;
- Maintain freedom of navigation in providing a two-step navigation lock at the barrage for passage of boats up to 500 tons in future, as defined in the agreement for river improvement by the government of China, Myanmar, Lao PDR and Thailand. It is noted that at present boats up to 30-50 tons can travel during dry season and 100-150 tons during wet season;
- Maintain fish passage through the barrage by providing suitable fish passing facilities for migration in both upstream and downstream directions;
- Maintain sediment passage by installing sluices for sediment flushing, protecting the turbines, avoiding deposits upstream of the barrage, as well as not reducing sediment inflow downstream, which may cause subsequent bank erosions and less protein for fish consumption and less nutrient in water for agriculture.


Barrage Upstream and Downstream View



			TEAM CONSULTING ENGINEERING COLONCO AND MANAGEMENT CO., LTD.
			FEASIBILITY STUDY FINAL REPORT
		1:800	SPILLWAY GATE TYPE G1 (WITHOUT FLAP)
B	12	16 m.	
			DWG. NO. B-27

SCALE

Estimated Flows at Xayaburi

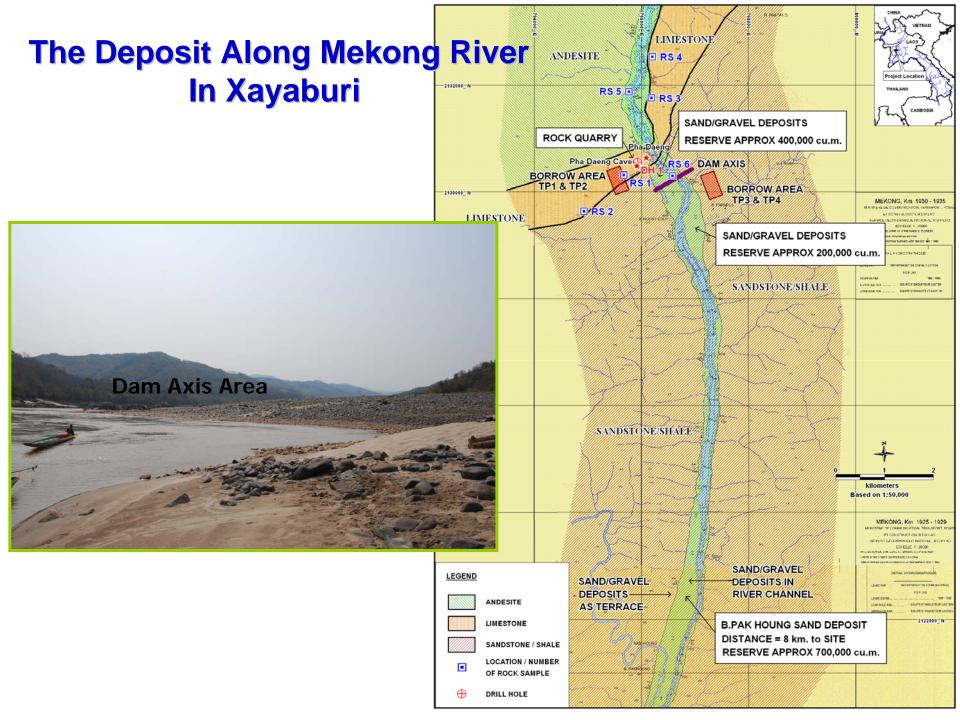
	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
Max.	2,414	1,742	1,415	1,425	2,883	5,684	11,256	17,159	16,604	8,073	6,901	3,753	5,559
Min.	911	764	575	634	935	1,621	3,456	3,992	3,969	3,704	2,103	1,200	2,455
Mean	1,676	1,251	1,047	1,100	1,677	3,169	6,555	9,675	8,917	5,756	3,777	2,347	3,897

Results of Water Quality Analysis from The Mekong River (November 24, 2007)

Properities	Parameter	UNIT	W1	W2	W3	W4	W5	W6	Standard*
1. Physical	1.1 Current Velocity ^{1/}	m/s	0.25	0.50	0.33	0.50	0.50	0.50	-
	1.2 Conductivity ^{1/}	µS/cm	231	232	233	223	230	232	-
2. Chemical	2.1 pH ^{1/}	-	7.70	7.90	7.16	7.74	7.86	7.06	5.0-9.0
	2.2 Total Suspended Solids ^{1/}	mg/l	133.68	152.08	149.78	140.11	156.38	138.54	-
	2.3 Dissolved Oxygen ^{1/}	mg/l	7.60	7.90	7.26	7.32	7.62	7.52	6.0

Remark : W1 Mekong River downstream from proposed dam site 2 km. W4 Mekong River upstream from proposed dam site 12 km.

- W2 Mekong River at proposed dam site
- W3 Mekong River upstream from proposed dam site 8 km.

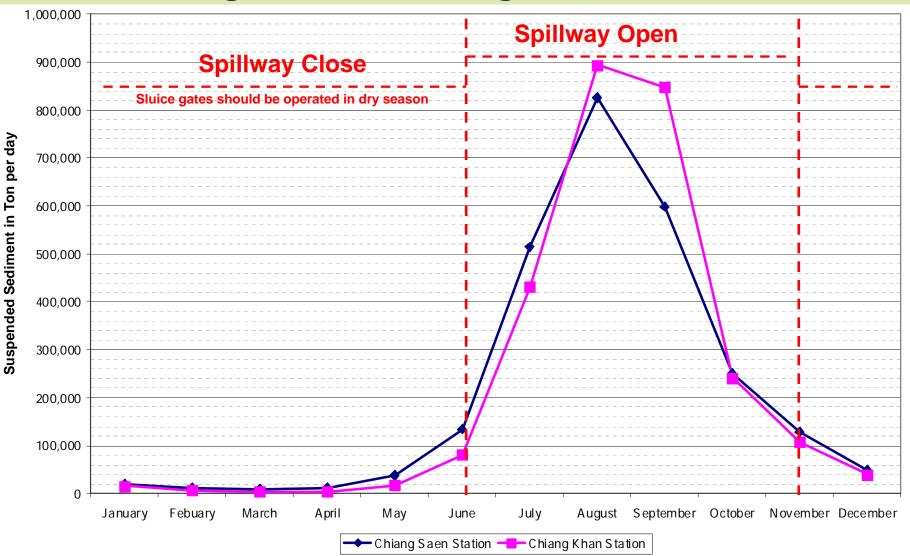

W4 Mekong River upstream from proposed dam site 12 km.W5 Mekong River upstream from proposed dam site 16 km.W6 Mekong River upstream from proposed dam site 20 km.

Results of Water Quality Analysis from The Mekong River (March 10-11, 2008)

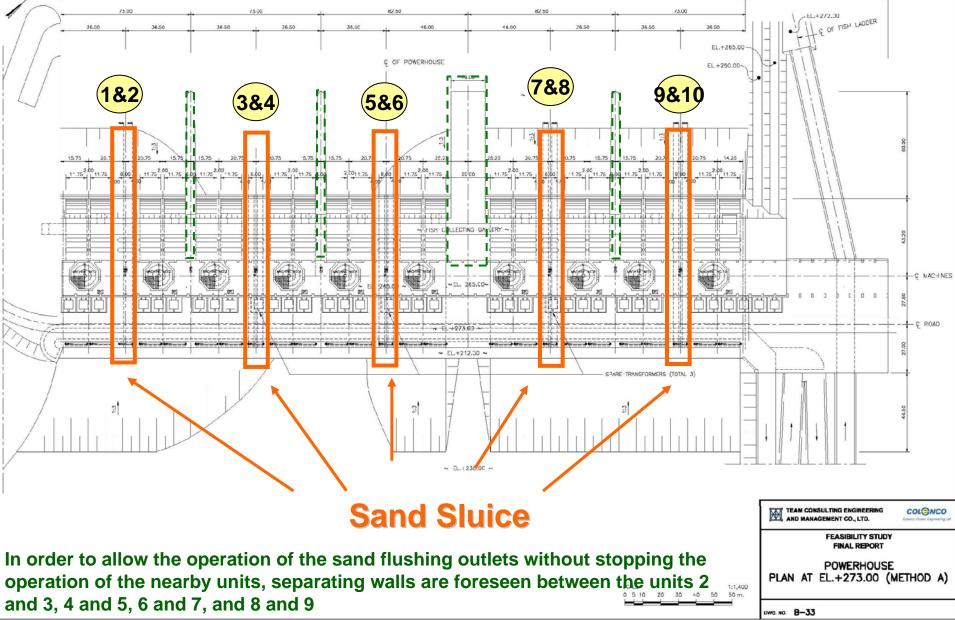
Properities	Parameter	UNIT	W1	W2	W3	W4	W5	W6	Standard [*]
1. Physical	1.1 Current Velocity ^{1/}	m/s	0.6	0.5	0.4	0.4	0.5	0.5	-
	1.2 Conductivity ^{1/}	µS/cm	287	283	283	283	285	311	-
2. Chemical	2.1 pH ^{1/}	-	8.06	8.25	8.25	8.29	7.29	7.85	5.0-9.0
	2.2 Total Suspended Solids ^{1/}	mg/l	40.60	37.11	38.40	39.10	43.86	46.20	-
	2.3 Dissolved Oxygen ^{1/}	mg/l	6.66	6.72	6.23	6.16	6.20	6.49	↓ 6.0

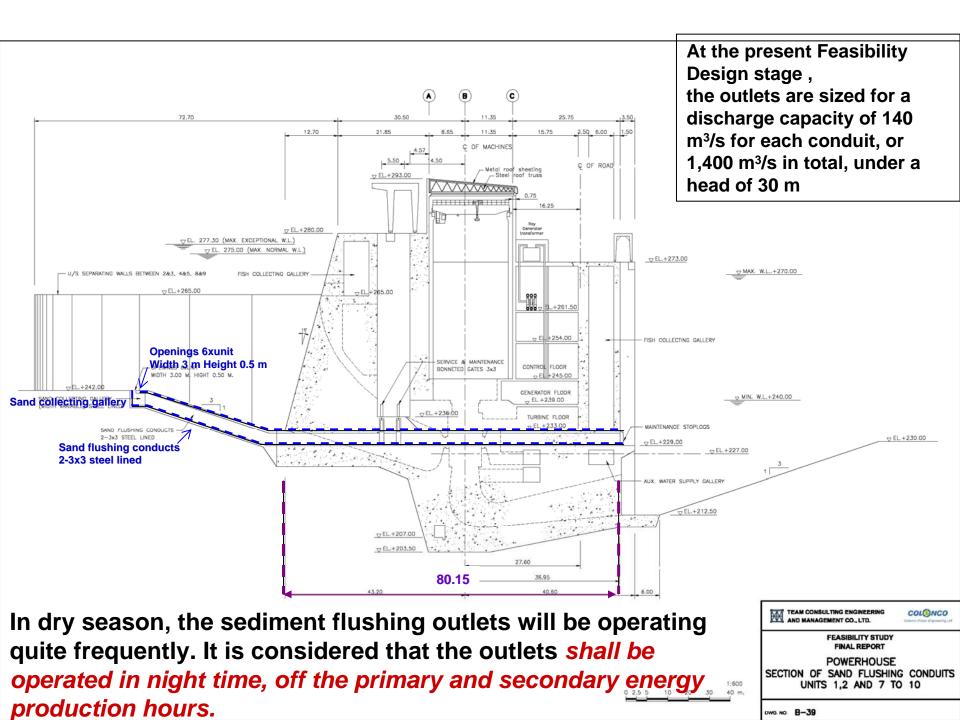
Remark : W1 Mekong River downstream from proposed dam site 2 km. W4 Mekong River upstream from proposed dam site 12 km. W2 Mekong River at proposed dam site W3 Mekong River upstream from proposed dam site 8 km.

W5 Mekong River upstream from proposed dam site 16 km. W6 Mekong River upstream from proposed dam site 20 km.



Sand and Silt deposit along Mekong River at Damsite





Suspended Sediment Discharge in Ton, Chiang Saen & Chiang Khan Station

Sand sluice located every two units (between the units 1 and 2, 3 and 4, 5 and 6, 7 and 8, and between the units 9 and 10) and controlled by service and maintenance bonneted gates

The overall concept and the hydraulic design of the sand flushing outlets shall be detailed and checked by hydraulic model in a more advanced design stage.

Thank You for Your Attentions

