

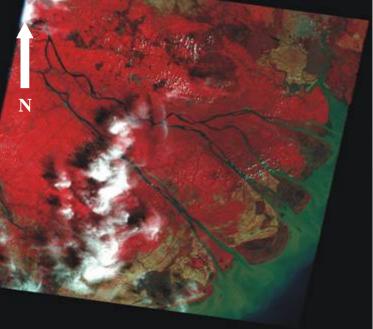
Modelling Sediment Transport and Morphological Changes: Problems and Opportunities

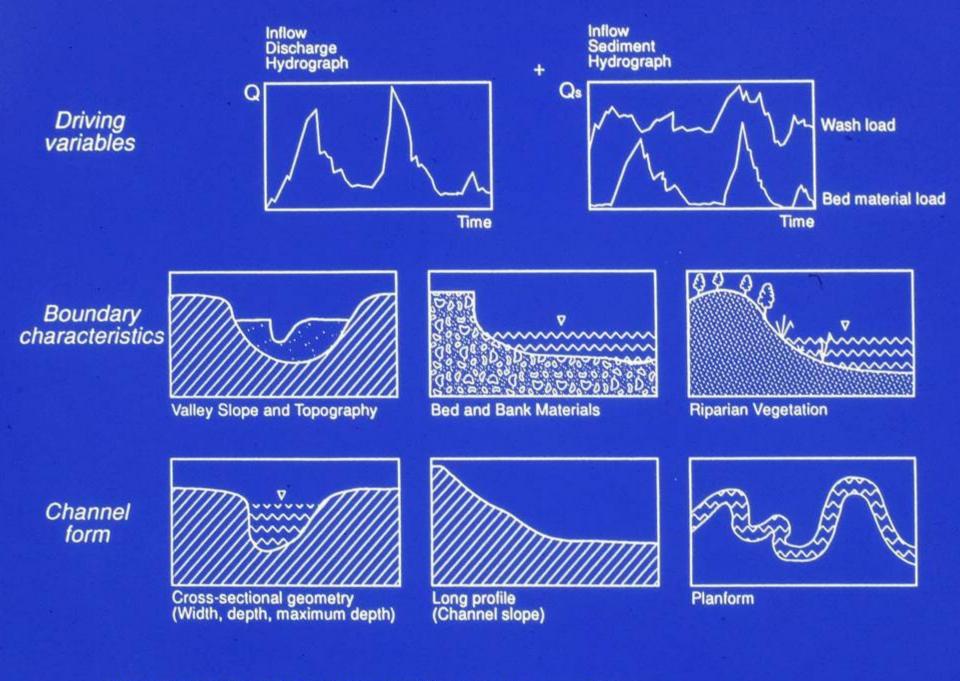
Dr Stephen Darby

S.E.Darby@soton.ac.uk

Sediments and Morphology Matter...

- Channel morphology (and associated sediments) define the river's physical habitat (e.g. deep pools)
- Sedimentation influences flow conveyance and thus flood risk




Southamp Sediments & Morphology Matter...

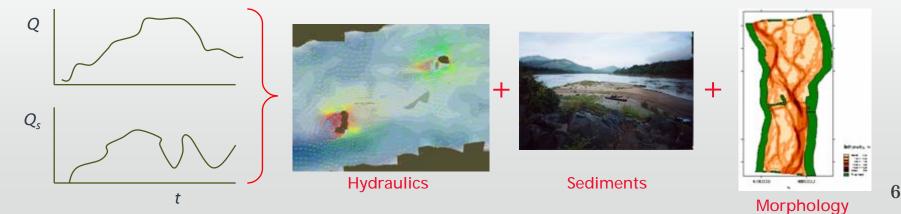
- Channel morphology (and associated sediments) define the river's physical habitat (e.g. deep pools)
- Sedimentation influences flow conveyance
- River bank erosion and planform change
- Sediment and nutrient transfers
 - Agriculture
 - Aquaculture
 - Coastal erosion

School of Geography

Independent and dependent variables describing channel process and form

The LMB is changing...

Manwan Dam, PDR China


Spur dikes, Bokeo Province, Lao PDR

The need for models

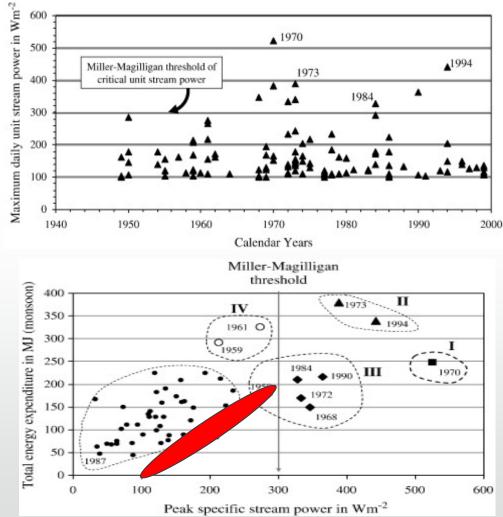
- Sustainable management requires knowledge of current <u>and</u> <u>future</u> (50-100 yrs) trajectories of change and associated system responses
- **<u>Predictive</u>** approaches are needed
- Predictive morphological models must address the catchment-scale drivers while identifying local responses

Approach

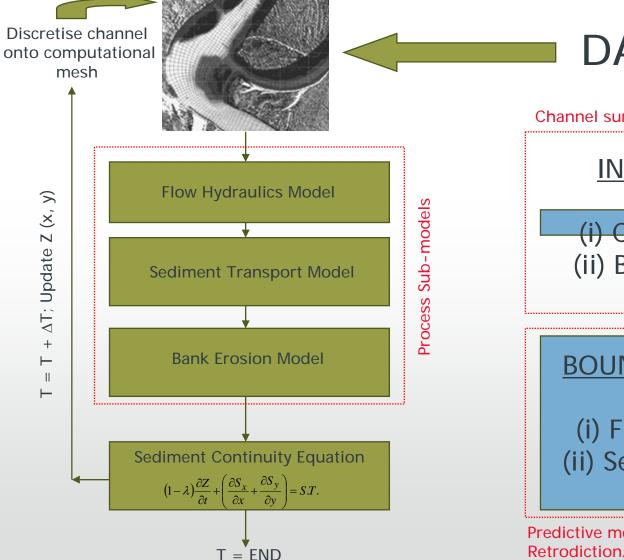
- Nested modelling to offer strategic, basin-wide, overview of morphological processes and response
 - Empirical/conceptual analyses
 - Numerical morphological models
 - 1D modelling for broad-scale system overview
 - 2/3D modelling in 'critical'/sensitive reaches
 - Interfacing with **scenario design**, and hydrological and sediment **modelling** and **monitoring** to address changing Q(t), $Q_s(t)$ into the future

Empirical Approaches

- High quality bedload and suspended load data is vital to inform future management
- Acquisition of this data will take at least 5-10 years can we afford to wait?
- Retrodiction of channel changes for predictive purposes
 - Analyse existing bedload (Conlan) and suspended sediment (e.g. Walling, 2008) data to retrodict channel behaviour in the recent past (last few decades) at the scale of the LMB



- Use hydrological records (Q) at gauging stations to calculate stream power (Ω) time series (backwards modelling)
- Determine key thresholds of morphological change
 - e.g. LMB bank erosion thresholds
 - Miller-Magilligan threshold of catastrophic change
 - Brookes 35 W/m² threshold of change
- Analyse historical (stream power) data in terms of threshold exceedances
 - Ascertains channel response from theory and historical observation
- Select future *Q* and *Q_s* scenarios: Simulate future stream power time series (**forwards modelling**)


Example: Narmada River, India

- Kale (2008, Catena, 75, 154-163)
- Historic stream power time series isolates historic flood maxima that were 'significant'
- Identify years with similar peak power and total energy expenditures. Clustering of floods can be interpreted in terms of channel behavioural response
- Future flow scenarios (regulated/climate change) can then be added as a means of estimating the impact on channel stability

Morphodynamic modelling

DATA INPUTS

Channel surveys

INITIAL CONDITIONS

(i) Channel morphology (ii) Bed & bank materials

BOUNDARY CONDITIONS

(i) Flow Discharge; Q(t) (ii) Sediment inflow; $Q_s(t)$

Predictive mode: Basin-scale modelling Retrodiction/validation mode: Monitoring

Morphodynamic Models

- A wide range of software packages are available
- These software tools differ primarily in their
 - Scale: The spatial extent over which they can be applied and the spatial resolution of their outputs (e.g. 1D versus 2D models)
 - **Scope:** The range of relevant process sub-models included
 - **Science:** The specific 'laws' used in the process sub-models
- I am not reviewing the process 'laws' here, as (i) most software tools offer a menu of choices and (ii) errors are in any case usually minimised by **calibration**
 - This again highlights the need for **high quality data**

Features of Reviewed Models

Model	Category	Commercial?	Planform
FLUVIAL-12	1D	\odot	Single-Thread
HEC-6	1D	☺ (freeware)	Single-Thread
CONCEPTS	1D	☺ (freeware)	Single-Thread
ISIS	1-2D	\odot	Any
Darby-Thorne	1D	Research	Straight
RIPA	2D	Research	Single-Thread
MRIPA	2D	Research	Single-Thread
DELFT3d	2-3D	\odot	Any
MIKE 21C	3D	\odot	Any

Flow Process Representation

School of Geography

Model	Unsteady Flow	Secondary Flow	Friction Factor
FLUVIAL-12	Yes	Yes	Time-space variable
HEC-6	Yes (SH)	No	Time-space variable
CONCEPTS	Yes (SH)	No	Time-space variable
ISIS	Yes	Limited	Time-space variable
Darby-Thorne	Yes (SH)	No	Constant
RIPA	Yes (SH)	Yes (but crude)	Constant
MRIPA	Yes (SH)	Yes (but crude)	Constant
DELFT3d	Yes	Yes	Time-space variable
MIKE 21C	Yes	Yes	Time-space variable

School of Geography

Sediment Transport Models

Model Load (BL/SL) Sorting? **Bed-Material** FI UVIAI -12 BI + SIYes Any non-cohesive HEC-6 BI + SIYes Any non-cohesive **CONCEPTS** Yes **BL** only Any non-cohesive ISIS BL+ SL Yes Any non-cohesive **Darby-Thorne BL** only No Sand **RIPA BL** only No Sand or Gravel **MRIPA** BL only Sand or Gravel No DELFT3d BL + SLYes Any non-cohesive **MIKE 21C** BL + SLYes Any non-cohesive

Bank Erosion Predictors

Model	Deposition	Fluvial Erosion	Mass-Wasting
FLUVIAL-12	not applicable	not applicable	not applicable
HEC-6	No	No	No
CONCEPTS	No	Yes	Yes
ISIS	No	No	No
Darby-Thorne	No	Yes	Yes
RIPA	No	Yes	Yes
MRIPA	No	Yes	Yes
DELFT3d	Yes	In development	In development
MIKE 21C	Yes	Yes	No

Southampto School of Geography School of Morphodynamic Modelling

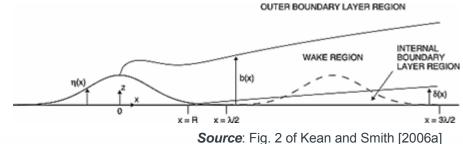
- Available modelling tools may be limited in respect of key physical processes and associated issues on the LMB
 - Flow processes
 - Multi-thread channels
 - Sediment sorting
 - Bank erosion

Simulation of Bank Erosion

• A widely accepted model of fluvial bank erosion already exists:

 $- \varepsilon = \mathbf{k} (\tau - \tau_c)$

- At Southampton, we have been focusing on the methods used to estimate τ , τ_c and k
 - Novel measurements of bank material characteristics
 - Application of new bank shear stress partitioning model
 - Utilising existing flow models and measurements to estimate necessary boundary conditions
 - Collaboration with Finns, Iwona Conlan, etc.

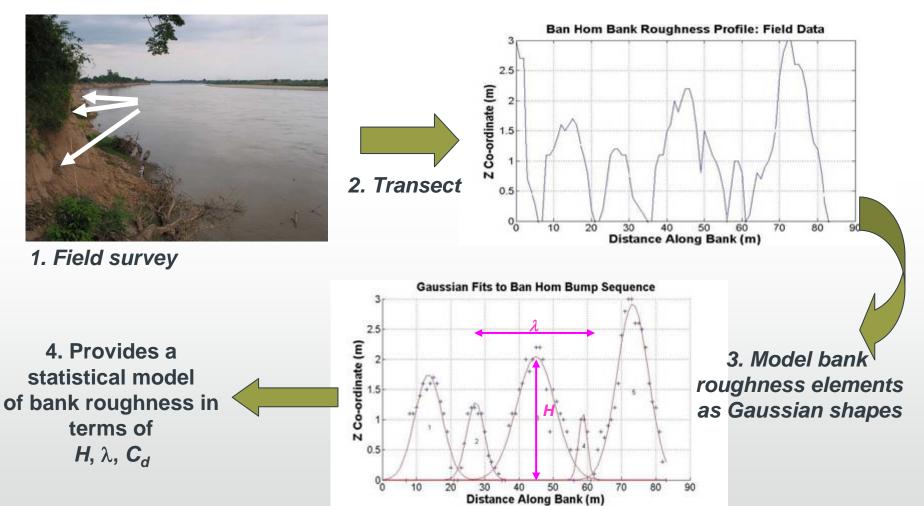

Shear Stress Partitioning

• Shear stress partitioning [Kean and Smith, 2006 a,b]:

$$\tau = \rho \langle u_{*IBL} \rangle^2 + \frac{1}{2} \rho C_D \frac{H}{\lambda} u_{ref}^2$$

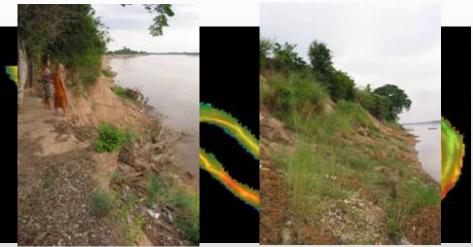
Skin drag

Form drag


- U_{ref} is controlled primarily by wakes generated by roughness elements upstream
- *H*, λ and C_d are functions of the geometry of the bank topography
 - H = protrusion height of roughness element
 - λ = spacing of roughness elements
 - $C_d = \text{drag coefficient}$
- The roughness elements are modelled as Gaussian shapes

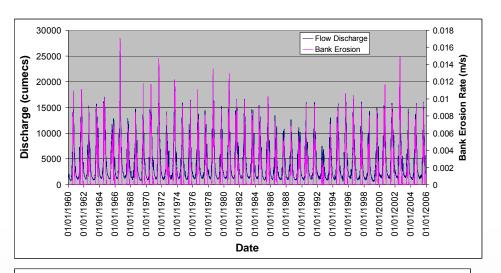
River Mekong at Ban Hom (near Vientiane), Laos; May 2007 19

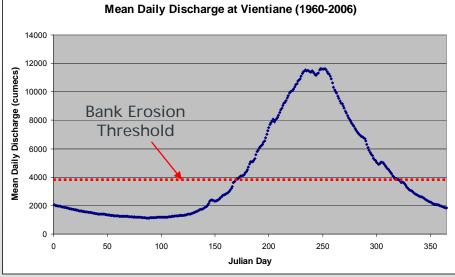
Bank Roughness Estimation



Application to the Mekong

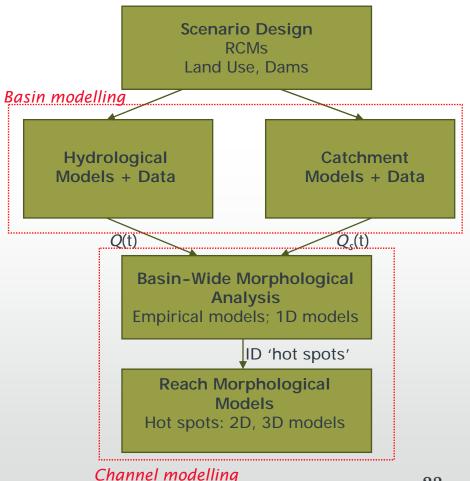
- Two sites near Vientiane, Laos
 - Ban Hom
 - Friendship Bridge
- Bank roughness and CSM survey define H, λ , C_d , τ_c , k directly
- Secondary data was used to estimate the reference flow velocity (u_{ref})
 - CFD simulations of the Vientiane reach
 - aDcp data
 - Note: any simple flow estimates are OK


Ban Hom


Friendship Bridge

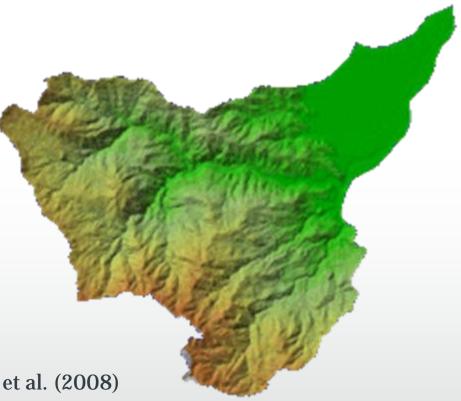
Results

- Multiple analyses were used to link τ to a range of flow discharges
- Daily flow discharge data were then used to estimate ε for 1960-2005
 - Ban Hom
 - 1960-2005 (0.5 m/yr; 0.8 ± 0.1 m/yr)
- Threshold Q for onset of bank erosion:
 - $Q_c \approx 4000 \text{ m}^3/\text{s}$



Summary: Possible Ways Forward

- Nested modelling to identify morphologic response across the LMB
 - Basin-wide empirical analyses
 - 1D modelling (linked to bank erosion prediction)
 - Detailed 2D and 3D modelling in identified 'hot spots' (again linked to bank erosion prediction)
- To be useful, modelling scenarios must be devised based on realistic future conditions that reflect changing system drivers
- Regional Climate Models (RCMs) linked to (e.g. grid-based) hydrological modelling are needed to give improved *Q*(t) scenarios
- Catchment-scale sediment models are needed to evaluate $Q_s(t)$ for a range of key grain sizes (gravel, sand, silt, clay)



Basin-Scale Modelling

- Fully process-based catchment models are available, but tend to be limited to small basins (< 2500 km²)
- Alternative approaches:
 - Landscape Evolution Models (LEMs), e.g. CAESAR
 - Linking grid-based hydrological (G2G) and surface erosion models
 - Reduced Complexity Models
 - HYDROTREND ⁻
 - Syvitski et al. (2008)

• RIVER3

