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Sediments and Morphology Matter…
• Channel morphology (and 

associated sediments) define the 
river’s physical habitat (e.g. deep 
pools)

• Sedimentation influences flow 
conveyance and thus flood risk

© Reuters

© Reuters; August 2008



3

Sediments & Morphology Matter…

• Channel morphology (and 
associated sediments) define the 
river’s physical habitat (e.g. deep 
pools)

• Sedimentation influences flow 
conveyance

• River bank erosion and planform 
change

• Sediment and nutrient transfers

– Agriculture

– Aquaculture

– Coastal erosion

© ReutersN
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The LMB is changing…

Spur dikes, Bokeo Province, Lao PDR

Manwan Dam, PDR ChinaDeforestation: MODIS image, 2002
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The need for models

• Sustainable management requires knowledge of current and 
future (50-100 yrs) trajectories of change and associated 
system responses 

• Predictive approaches are needed

• Predictive morphological models must address the 
catchment-scale drivers while identifying local responses
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Approach

• Nested modelling to offer strategic, basin-wide, overview of 
morphological processes and response

– Empirical/conceptual analyses

– Numerical morphological models

• 1D modelling for broad-scale system overview
• 2/3D modelling in ‘critical’/sensitive reaches

– Interfacing with scenario design, and hydrological 
and sediment modelling and monitoring to address 
changing Q(t), Qs (t) into the future
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Empirical Approaches

• High quality bedload and suspended load data is vital to 
inform future management

• Acquisition of this data will take at least 5-10 years – can we 
afford to wait?

• Retrodiction of channel changes for predictive 
purposes

– Analyse existing bedload (Conlan) and suspended 
sediment (e.g. Walling, 2008) data to retrodict channel 
behaviour in the recent past (last few decades) at the 
scale of the LMB
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Retrodiction for Prediction: Method

• Use hydrological records (Q) at gauging stations to calculate stream 
power (Ω) time series (backwards modelling)

• Determine key thresholds of morphological change

– e.g. LMB bank erosion thresholds

– Miller-Magilligan threshold of catastrophic change

– Brookes 35 W/m2 threshold of change

• Analyse historical (stream power) data in terms of threshold 
exceedances

–

 

Ascertains channel response from theory and historical observation

• Select future Q and Qs scenarios: Simulate future stream power time 
series (forwards modelling)
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Example: Narmada River, India 
• Kale (2008, Catena, 75, 154- 

163)

• Historic stream power time 
series isolates historic flood 
maxima that were 
‘significant’

• Identify years with similar 
peak power and total energy 
expenditures. Clustering of 
floods can be interpreted in 
terms of channel behavioural 
response

• Future flow scenarios 
(regulated/climate change) 
can then be added as a means 
of estimating the impact on 
channel stability
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Morphodynamic modelling

Flow Hydraulics Model

Sediment Transport Model

Bank Erosion Model

Sediment Continuity Equation
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DATA INPUTS

INITIAL CONDITIONS

(i) Channel morphology
(ii) Bed & bank materials

BOUNDARY CONDITIONS

(i) Flow Discharge; Q(t)
(ii) Sediment inflow; Qs

 

(t)

Predictive mode: Basin-scale modelling
Retrodiction/validation mode: Monitoring

Channel surveys
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Morphodynamic Models

• A wide range of software packages are available 

• These software tools differ primarily in their

– Scale: The spatial extent over which they can be applied and the 
spatial resolution of their outputs (e.g. 1D versus 2D models)

– Scope: The range of relevant process sub-models included

– Science: The specific ‘laws’ used in the process sub-models

• I am not reviewing the process ‘laws’ here, as (i) most software tools 
offer a menu of choices and (ii) errors are in any case usually minimised 
by calibration

– This again highlights the need for high quality data
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Features of Reviewed Models
Model Category Commercial? Planform

FLUVIAL-12 1D ☺ Single-Thread

HEC-6 1D ☺(freeware) Single-Thread

CONCEPTS 1D ☺(freeware) Single-Thread

ISIS 1-2D ☺ Any

Darby-Thorne 1D Research Straight

RIPA 2D Research Single-Thread

MRIPA 2D Research Single-Thread

DELFT3d 2-3D ☺ Any

MIKE 21C 3D ☺ Any
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Model Unsteady 
Flow

Secondary Flow Friction Factor

FLUVIAL-12 Yes Yes Time-space variable

HEC-6 Yes (SH) No Time-space variable

CONCEPTS Yes (SH) No Time-space variable

ISIS Yes Limited Time-space variable

Darby-Thorne Yes (SH) No Constant

RIPA Yes (SH) Yes (but crude) Constant

MRIPA Yes (SH) Yes (but crude) Constant

DELFT3d Yes Yes Time-space variable

MIKE 21C Yes Yes Time-space variable

Flow Process Representation
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Model Load (BL/SL) Sorting? Bed-Material

FLUVIAL-12 BL + SL Yes Any non-cohesive

HEC-6 BL + SL Yes Any non-cohesive

CONCEPTS BL only Yes Any non-cohesive

ISIS BL+ SL Yes Any non-cohesive

Darby-Thorne BL only No Sand

RIPA BL only No Sand or Gravel

MRIPA BL only No Sand or Gravel

DELFT3d BL + SL Yes Any non-cohesive

MIKE 21C BL + SL Yes Any non-cohesive

Sediment Transport Models
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Model Deposition Fluvial Erosion Mass-Wasting

FLUVIAL-12 not applicable not applicable not applicable

HEC-6 No No No

CONCEPTS No Yes Yes

ISIS No No No

Darby-Thorne No Yes Yes

RIPA No Yes Yes

MRIPA No Yes Yes

DELFT3d Yes In development In development

MIKE 21C Yes Yes No

Bank Erosion Predictors
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Scope of Morphodynamic Modelling

• Available modelling tools may be limited in respect of key 
physical processes and associated issues on the LMB

– Flow processes

– Multi-thread channels

– Sediment sorting

– Bank erosion
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Simulation of Bank Erosion
• A widely accepted model of fluvial bank 

erosion already exists:

– ε = k (τ – τc )

• At Southampton, we have been focusing 
on the methods used to estimate τ, τc and 
k

– Novel measurements of bank 
material characteristics

– Application of new bank shear 
stress partitioning model

– Utilising existing flow models 
and measurements to estimate 
necessary boundary conditions

• Collaboration with Finns, 
Iwona Conlan, etc.

Mekong near Pakse; October 2006
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Shear Stress Partitioning
• Shear stress partitioning [Kean and Smith, 2006 a,b]:

• Uref is controlled primarily by wakes generated by roughness 
elements upstream

• H, λ and Cd are functions of the geometry of the bank topography

– H = protrusion height of roughness element

– λ = spacing of roughness elements

– Cd = drag coefficient

• The roughness elements are modelled as Gaussian shapes

22
* 2

1
refDIBL uHCu

λ
ρρτ +=

Skin drag Form drag

A
Source: Fig. 2 of Kean and Smith [2006a]

Gaussian waveform

River Mekong at Ban Hom (near Vientiane), Laos; May 2007
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Bank Roughness Estimation

1. Field survey

2. Transect

3. Model bank 
roughness elements
as Gaussian shapes

4. Provides a 
statistical model

of bank roughness in 
terms of
H, λ, Cd

H

λ
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Application to the Mekong

• Two sites near Vientiane, Laos

– Ban Hom

– Friendship Bridge

• Bank roughness and CSM survey define 
H, λ, Cd , τc , k directly

• Secondary data was used to estimate 
the reference flow velocity (uref )

– CFD simulations of the Vientiane 
reach

– aDcp data

– Note: any simple flow estimates are 
OK

Ban Hom Friendship Bridge

15 km

Ban Hom

Friendship Bridge

Flow
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Mean Daily Discharge at Vientiane (1960-2006)
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Results

• Multiple analyses were used to link τ

 
to a range of flow discharges

• Daily flow discharge data were then 
used to estimate ε for 1960-2005

– Ban Hom

• 1960-2005 (0.5 m/yr; 0.8 ±

 
0.1 m/yr)

• Threshold Q for onset of bank 
erosion:

– Qc ≈

 

4000 m3/s

0

5000

10000

15000

20000

25000

30000

01
/0

1/
19

60

01
/0

1/
19

62

01
/0

1/
19

64

01
/0

1/
19

66

01
/0

1/
19

68

01
/0

1/
19

70

01
/0

1/
19

72

01
/0

1/
19

74

01
/0

1/
19

76

01
/0

1/
19

78

01
/0

1/
19

80

01
/0

1/
19

82

01
/0

1/
19

84

01
/0

1/
19

86

01
/0

1/
19

88

01
/0

1/
19

90

01
/0

1/
19

92

01
/0

1/
19

94

01
/0

1/
19

96

01
/0

1/
19

98

01
/0

1/
20

00

01
/0

1/
20

02

01
/0

1/
20

04

01
/0

1/
20

06

Date

D
is

ch
ar

ge
 (c

um
ec

s)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

B
an

k 
Er

os
io

n 
R

at
e 

(m
/s

)

Flow Discharge
Bank Erosion

Bank Erosion
Threshold



23

Summary: Possible Ways Forward
• Nested modelling to identify 

morphologic response across the LMB

– Basin-wide empirical analyses

– 1D modelling (linked to bank 
erosion prediction)

– Detailed 2D and 3D modelling in 
identified ‘hot spots’ (again linked 
to bank erosion prediction)

• To be useful, modelling scenarios must 
be devised based on realistic future 
conditions that reflect changing system 
drivers

• Regional Climate Models (RCMs) linked 
to (e.g. grid-based) hydrological 
modelling are needed to give improved 
Q(t) scenarios

• Catchment-scale sediment models are 
needed to evaluate Qs (t) for a range of 
key grain sizes (gravel, sand, silt, clay)

Scenario Design
RCMs

Land Use, Dams

Q(t) Qs

 

(t)

Hydrological
Models + Data

Catchment
Models + Data

Basin-Wide Morphological
Analysis

Empirical models; 1D models

Reach Morphological
Models

Hot spots: 2D, 3D models

Channel modelling

ID ‘hot spots’

Basin modelling
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Basin-Scale Modelling
• Fully process-based catchment 

models are available, but tend to be 
limited to small basins (< 2500 km2)

• Alternative approaches:

– Landscape Evolution Models 
(LEMs), e.g. CAESAR 

– Linking grid-based hydrological 
(G2G) and surface erosion 
models

– Reduced Complexity Models

• HYDROTREND
• RIVER3

Syvitski et al. (2008)
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