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The short document summarises recent research by the Water Studies Centre and partners in the
application of ecological risk assessment techniques and Bayesian modelling to the management of
natural resources.
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Ecological Risk Assessment
Why needed?
The objective of Ecological Risk Assessment
(ERA) is to provide a robust process that
incorporates a transparent, scientific,
precautionary and ecologically sustainable
approach to the management of environmental
risks.
The Water Studies Centre and partners have
developed an ERA Framework that is catchment-
based and focuses on the difficult task of
assessing the risks to multiple ecological assets
from multiple hazards (Hart et al., 2005)2. The
framework synthesises the methods required to
achieve successful adaptive management of
natural resources.
This framework is primarily focused on the risks
to aquatic ecosystems (e.g. rivers, wetlands,
estuaries), but is robust enough to be used to
assess the ecological risks to other natural
resource assets in catchments (e.g. land, soil,
vegetation, biodiversity), as is illustrated in the
Case Study section below.

What is involved?
The ecological risk assessment framework
involves a number of key steps (Figure 1),
including:
• Defining the problem – this involves careful

scoping of the problem, agreement on how it
is to be assessed, and how the acceptability
of actions will be judged.

• Deciding on the important ecological assets,
and identifying hazards to these assets -
hazards are prioritised by evaluating their
effects on valued elements of ecosystems
and ecosystem services.

• Analysing the risks to the ecological values –
the analysis process used needs to be
appropriate for the situation in order to
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provide adequate information for decision-
making.  Guidance is provided on both
qualitative and quantitative methods.

• Characterising the risks - the technical
details of risk analyses needs to be made
accessible to decision-makers and broader
stakeholders.  In particular, the uncertainties
and assumptions associated with analyses
require  careful  and t ransparent
documentation.

• Making decisions – selection of the best
management option or strategy will be the
one that results in the effective minimisation
of the ecological risks, while also being cost-
effective and acceptable to the stakeholders.
Guidance is provided on a number of multi-
criteria methods for assisting this process.

• Managing the risks – a risk management
plan provides recommendations on
managing or mitigating all high or
unacceptable risks. The risk management
plan should include a robust program to
monitor progress to ensure the strategies are
working, and a review and feedback process
for making changes if needed.

Benefits
ERA is a robust process for:
• Clearly defining the environmental assets

that need to be protected, managed or
rehabilitated,

• Identifying the threats and hazards to the
assets,

• Defining the linkages and relationships
between the threats and values, normally
starting with the development of conceptual
models,

• Prioritising the risks (consequences x
likelihood) to these assets,

• Identifying existing knowledge and major
knowledge gaps.
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Figure 1:  Overall risk assessment and
management framework (Hart et al. 2005)

Bayesian modelling
Why use them?
A major difficulty faced by many (most)
managers of aquatic and terrestrial resources is
the need to make decisions for situations where
there is considerable uncertainty in
understanding how the system works and how
particular management actions will influence the
system.  It is rare to have well understood cause-
effect relationships between the threats and the
ecosystem.
For these reasons Bayesian models are
increasingly being used as decision support tools
to aid in the management of ecological systems,
and particularly in those situations where the
risks are such that quantitative methods are
warranted.
A particular advantage of Bayesian decision
network (BDN) models is that they can
incorporate both quantitative information
(obtained from existing models, monitoring and
from site-specific investigations) and qualitative
information (obtained mostly from expert
opinion), and can be updated as new information
or data becomes available.

What are they?
Bayesian decision networks are graphical
models used to establish the causal relationships
between key factors and final outcomes (cause-
effect relationships).  They can readily
incorporate uncertain information, with
uncertainties being reflected in model outputs.
They are particularly useful in modelling
ecological processes because Bayesian inference
provides a probability-based approach that can
update scientific knowledge when new
information becomes available.

How do they work?
A Bayesian decision network is made up of a
collection of nodes that represent important
environmental variables.  Arrows represent the
causal relationships between the nodes
(variables).  Bayesian networks use the network
structure to calculate the probability certain
events will occur, and how these probabilities
will change given subsequent observations or a
set of external (management) interventions.  A
prior probability represents the likelihood that
an input parameter will be in a particular state.
The conditional probability calculates the
likelihood of the state of a variable given the
states of input variables affecting it.  And the
posterior probability is the likelihood that a
variable will be in a particular state, given the
input variables, the conditional probabilities, and
the rules governing how the probabilities
combine.
A number of commercially available modelling
shells are now available (e.g. Netica -
www.norsys.com).

What is involved in building a Bayesian
network model?
Model structure
The first step in constructing a Bayesian
decision network is to develop a causal structure
(often based on a conceptual model), with
relevant variables (nodes) and dependencies.
Important criteria for inclusion of variables in
Bayesian networks are that the variable is either:
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(a) manageable, (b) predictable, or (c)
observable at the scale of the management
problem. Any processes or factors not included
become part of the uncertainty of the network,
forming the predictive uncertainty described in
probability distributions.

Figure 2: Simplified version of an algal
network

One of the strengths of Bayesian decision
networks is their ability to integrate existing
models or processes and to integrate existing
datasets.  Figure 3 shows the conceptual
structure of a model for predicting the impact of
riverbed aggradation and water quality,
particularly increased Cu concentrations
produced by acid rock drainage (ARD), on fish
abundance and contamination.  The Bayesian
model integrated information from two sub-
models (HEC-6 and OkARD/OkChem) into a
single predictive framework.

Figure 3: Schematic of a fish BDN model
developed for OkTedi Mining Limited

Building a model
1. Structure of a Bayesian network
As discussed earlier, developing a causal
structure, with relevant variables and
dependencies, is the first step in constructing a
Bayesian network.
2. Discretisation of nodes (assigning states)
States or condition of the variables can be
categorical, continuous or discrete. In order to
represent continuous relationships in a Bayesian
network, a continuous variable must be divided
or discretised into states. The states of a variable
can be numerical ranges (≤ 3, >3) or expressions
(that can also represent data if appropriate, e.g.
acceptable ≤ 3, unacceptable >3). If relevant,
these states can represent targets, guidelines,
existing classifications or percentiles of data.
3. Specification of prior probabilities
After defining node states, the linkages between
nodes need to be described. Parent nodes lead
into child nodes, the outcome of child nodes are
conditional on how the parent variables
combine. This is relationship is defined using
conditional probability tables (CPTs).
In the networks, sub-networks describe physical
or chemical processes relevant to the spatial
scale specified. The impacts of these on the final
outcome node, which often represent a
biological/ecological process, are combined in
the CPTs. For this reason, Bayesian networks
are often described as being integrative models.
CPTs can be derived via one or a combination of
methods:
• Direct elicitation of scenarios from expert;
• Parameterisation from datasets;
• Equations that describe relationships

between variables.
It should be noted that for Bayesian networks,
the more complex the interactions the more
conditional probabilities there are to specify.
4. Calculating posterior probabilities
Data or new knowledge can be incorporated into
BNs and used to calculate posterior
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probabilities. Data sources can be entered into
the network as a series of ‘cases’. Cases can
represent data collected during a monitoring
exercise, undertaken as part of a research study,
and so on.
5. Model evaluation
A range of validation tools can be used for BNs.
Evaluation can involve data or technical experts,
or both. Quantitative evaluation with data is
preferable. Such measures include predictive
accuracy and sensitivity analyses.
Predictive accuracy tests are used to determine
model error rates, which are quantified using
data (although not the same data used for model
parameterisation). This method measures the
frequency with which the predicted node state
(that with the highest probability) is observed,
relative to the actual value. Outcomes can be
used to identify weaknesses in the model, and
where more effort can be targeted in order to
improve model accuracy.
Sensitivity analysis is used to identify the key
drivers in the model and major knowledge gaps
in our understanding.  Sensitivity analysis of
mathematical models can be used to investigate
the uncertainties and inaccuracies in model
structure, relationships and outputs, and
subsequently identify where priority knowledge
and data gaps exist. Thus, based on these results,
recommendations for targeted monitoring and
research studies can be made.
Sensitivity analyses provide a ranking of
importance of variables, relative to the variable
of interest (usually the endpoint). These
variables indicate where better quantification in
the network should be investigated and identify
the most influential variables on model
endpoints. Subsequently, these are the variables
that should be given greater attention. In a
management context, it is these variables that
may represent key management actions or
knowledge gaps.  As sensitivity findings can
differ for different spatial areas of interest or
scenarios tested, key knowledge gaps and
priority risks can also differ.

6. Knowledge gaps and priority risks
Having established the structure of the model,
and the relationships used to drive the model, the
key knowledge gaps in our understanding and
priority risks can be identified. To do this,
sensitivity analysis is used.
Testing management scenarios
Management scenarios can be tested by entering
new information into the network as evidence,
directly changing the distribution of probabilities
on the node itself.
How can Bayesian network models help?
• Make predictions (probabilistic output),
• Test management options,
• Identify data/knowledge gaps and prioritise

needs.

Case studies
A summary of the following case studies will be
provided.  The WSC has been involved in
developing Bayesian network models to assist
decision-making in all these cases.
• Risks from mine-derived contaminants (Ok

Tedi and Fly Rivers, PNG)
• Irrigation ERA framework
• Black Box (Eucalyptus largiflorens) wetlands

(Murray-Darling Basin)
• Condition of Eucalyptus camphora wetlands

(Worri Yallock creek catchment)
• Native fish communities (Goulburn R)
• Environmental flows (Wimmera R)
• River health – macroinvertebrates (Loddon

R)
• Lyngbya research (Morton Bay, Qld)
• Seagrass health (Great Barrier Reef)
Some reports are available at:
www.sci.monash.edu.au/wsc

Contacts:
barry.hart@sci.monash.edu.au
carmel.pollino@sci.monash.edu.au


