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Introduction
Bayesian Belief Networks (also knows as Belief Networks, Causal Probabilistic
Networks, Causal Nets, Graphical Probability Networks, and Probabilistic Cause-
Effect Models) are an emerging modelling approach of artificial intelligence (AI)
research that aim to provide a decision-support framework for problems involving
uncertainty, complexity and probabilistic reasoning. The approach is based on
conceptualising a model domain (or system) of interest as a graph (i.e. network) of
connected nodes and linkages. In the graph, nodes represent important domain
variables, and a link from one node to another represents a dependency relationship
between the corresponding variables. To provide quantitative description of the
dependency links, Bayesian Belief Networks (BBNs) utilise probabilistic relations,
rather than deterministic expressions.

Absolutely anything can be modelled by a BBN. The model might be of your house,
or your car, your body, your community, an ecosystem, a stock-market, etc. All the
possible states of the nodes in the network represent all the possible ‘worlds’ that can
exist, that is, all the possible ways that the parts or states can be configured. The car
engine can be running normally or giving trouble. Its tires can be inflated or flat. Your
body can be sick or healthy, and so on.

The main use of BBNs is in situations that require statistical inference – in addition to
statements about the probabilities (i.e. likelihood) of events, the user knows some
evidence, that is, some events that have actually been observed, and wishes to update
his/her belief in the likelihood of other events, which have not as yet been observed.
Given the node-link structure for the model domain, BBNs use probability calculus
and Bayes theorem to efficiently propagate the evidence throughout the network,
thereby updating the strength of belief in the occurrence of the unobserved events.
BBNs can use both ‘forward’ and ‘backward’ inference.

Although the probability and Bayesian theory that forms the basis of BBNs has been
around for a long time, it is only in the last few years that efficient algorithms and
software tools to implement them, have been developed to enable evidence
propagation in networks with a reasonable number of variables. The recent explosion
of interest in BBNs is due to these developments, since for the first time they can be
used to solve realistic size problems.

Why the method is useful
The best way to understand Bayesian Belief Networks is to imagine trying to model a
situation in which dependency between variables is known to play a role but where
our understanding of what is going on (or has gone on) is incomplete, so we need to
describe things probabilistically. The probabilities aim to reflect the fact that some
states in our model domain will tend to occur more frequently when other states are
also present (i.e. conditional probabilities). For example, if you are sick, the chances
of a runny nose are higher. If it is cloudy, the chances of rain are higher, and so on.
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Figure 1 is a simple BBN that illustrates these concepts. In this simple world, let us
say the weather can have three states: sunny, cloudy, or rainy, also that the lawn can
be wet or dry, and that the sprinkler can be on or off. Now there are some dependence
(causal) links in this world. If it is rainy, then it will make the lawn wet directly. But if
it is sunny for a long time, that too can make the lawn wet, indirectly, by causing us to
turn on the sprinkler.

When actual probabilities are entered into this BBN that reflect the reality of real
weather, lawn, and sprinkler-use-behaviour, such a net can be made to answer a
number of useful questions, like, "if the lawn is wet, what are the chances it was
caused by rain or by the sprinkler", and "if the chance of rain increases, how does that
affect me having to budget time for watering the lawn".

BBNs are particularly useful for making probabilistic inference about model domains
that are characterised by inherent complexity and uncertainty. This uncertainty may
be due to imperfect understanding of the domain, incomplete knowledge of the state
of the domain at the time where a given task is to be performed, randomness in the
mechanisms governing the behaviour of the domain, or a combination of these. Once
developed and parameterised, BBNs provide a rational framework to infer for a
modelled domain “whether information on some event should influence our belief in
other events”.

In addition to being able to deal with problems whose complexity cannot be feasibly
modelled by other approaches, BBNs offer many advantages over other methods for
dealing with uncertainty, and limited data.

Merging different types of information: Due to their Bayesian Probability formalism,
BBNs provide a rational technique to combine both subjective (e.g. expert opinion)
and quantitative (e.g. monitoring data, modelling results etc) information. The flexible
nature of BBNs also means that new information can easily be incorporated as it
becomes available. Only the conditional probabilities of the affected variables require
re-determination.

 

Lawn
wet/dry

Sprinkler
on/off

Weather
sunny/cloudy/rainy

Figure 0. Simple BBN to describe weather, lawn, and sprinkler-use-behaviour
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Formal structuring of our understanding: BBNs are helpful for challenging experts to
articulate what they know about the model domain, and to knit those influences into
dependency networks. The graphical (visual) nature of BBNs therefore facilitates the
easy transfer of understanding about key linkages. In addition, because subjective
expert opinions (hypotheses) are made explicit in the formal structure of the network,
they can be challenged and revised, and can also be directly evaluated (potentially
with process-based models) to determine whether results are robust.

Modular design: Given their network structuring, BBNs successfully capture the
notion of modularity i.e. a complex system is built by combining simpler parts. You
can start them off small, with limited knowledge about a domain, and grow them (add
additional variables) as you acquire new knowledge.

Informed decision-making before scientific knowledge is complete: Formalization of a
model domain through the use of a BBN means that you don't need complete
knowledge about the instance of the world you are applying it to. Because uncertainty
in particular linkages can be acknowledged in the probabilistic dependency
relationships, the models are not necessarily limited by the mechanistic detail of
existing information or understanding. As such BBNs can facilitate informed
decision-making before scientific understanding is complete.

Predictions are amenable to risk analysis: BBNs express predicted outcomes as
likelihood’s, which can form the basis for risk analysis. Such risk estimates provide a
sound basis for adopting rational decisions based on a precautionary (risk-averse)
attitude.

Future scenario testing: BBNs provide an ideal framework to test the most ‘likely’
consequence of future events or scenarios. This contributes to ‘future memory’, and
understanding of what will happen when …….. The ability of BBNs to perform bi-
directional reasoning also provides an excellent diagnostic tool for troubleshooting the
most likely causes of system failures.

The theory behind the technique
BBNs are a modern inclusion to a family of techniques known as expert systems.  A
common definition of an expert system is a software system that emulates the
problem solving behaviour of a human expert over some restricted domain. Other
popular examples of expert systems include rule-based systems, fuzzy logic
algorithms, and neural networks.

Early expert systems (known as Rule-based systems) where based on deterministic
rules of the form: "IF X1 & … & Xn THEN Y" where X1,…,Xn are conditions, and Y
is some evaluation or action that can be inferred if X1,…,Xn are true. For instance
Fig.2 provides a set of rules for classifying tree types. A rule-based system consists of
a library of such rules. These rules reflect essential relationships within the domain, or
rather: they reflect ways to reason about the domain.
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A major problem with rule-based systems is that often the connections reflected by
the rules are not absolutely certain (i.e. deterministic), and similarly the gathered
information is often subject to uncertainty. To overcome this problem, a certainty
measure can be added to the premises as well as the conclusions in the rules of the
system. In such a system the local rule becomes a function that describes how much a
change in the certainty of the premise will change the certainty of the conclusion. In
its simplest form, this looks like: “If A (with certainty x) then B (with certainty f(x))”.
Although the individual (i.e. local) production rules are relatively simple and self
documented, for complex model domains their interactions within the larger set of
rules can often lead to erroneous inference. This is because the combination of
uncertainty is not a local phenomenon, but it is strongly dependent on the entire
situation (in principle a global matter).

It was during the 1960s that it became apparent that to effectively deal with the global
implications of local uncertainties in complex model domains, it was necessary to
calculate the probabilities correctly (correctly regarding the axioms of the classical
probability theory). For a specific model domain of interest, this meant representing
what is called the "joint probability distribution". This is a table of all the probabilities
of all the possible combinations of states in that model domain. For modelling
domains with more than just a few variables and states, these distributions can
become very large, as every possible state combination over every variable must be
represented. For example, assuming binary (two-state) variables, a system with 10
variables would require 210 =1024 individual probabilities. This number increases
dramatically if the variables can take on more states (which they frequently do)

It was not until the mid 1980s that Pearl (1986) introduced BBNs as a method for
making calculations of this type more tractable. Pearl was able to demonstrate that by
defining the behaviour of a system in terms of a series of local conditional
probabilities, BBNs were able to provide the correct global framework to propagate
local information and associated uncertainties. Importantly, by using the concept of
conditional independence (see Section 4), BBNs were also able to derive the
information needed from the joint probability distribution using a much smaller
number of conditional probabilities.

To understand this computational saving, it helps to understand how BBNs provide a
link between probability theory and graph theory. In essence, BBNs use a graphical
representation to represent probabilistic structure i.e. there is a direct relationship

 

If Stem is Woody,
Position is Upright,
There is one Main Trunk,
Leaves are Not Broad and Flat,
Leaf Shape is Scale-like

Then Plant is of type: tree
Class: gymnosperm
Family: cypress

If Stem is Woody,
Position is Upright,
There is one Main Trunk,
Leaves are Not Broad and Flat,
Leaf Shape is Scale-like
Leaf Pattern is Needlelike

Then Plant is of type: tree
Class: gymnosperm
Family: pine

Figure 0. A rule-based expert system for classifying tree types
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between a graphical model and a particular form of joint probability distribution.
Crucially, this joint probability distribution is far simpler to compute when there are
conditionally independent nodes (i.e. nodes that are not connected by links).
Suppose, for example, that we have a network consisting of five variables (nodes)
A,B,C,D,E. If we do not specify the dependencies explicitly then we are essentially
assuming that all the variables are dependent on (i.e. influence) each other. The chain
rule  from probability theory enables us to calculate the joint distribution
p(A,B,C,D,E) as:
p(A,B,C,D,E) = p(A|B,C,D,E)*p(B|C,D,E)*p(C|D,E)*p(D|E)*p(E) 1.
However, suppose that the dependencies are explicitly modelled as for the BBN in
Fig. 3:

Then the joint probability distribution p(A,B,C,D,E) is much simplified:

p(A,B,C,D,E) = p(A|B)*p(B|C,E)*p(C|D)*p(D)*p(E) 2.

We can now consider the general case of a joint probability distribution in a BBN.
Suppose the set of variables in a BBN is {A1 ,A2 ,…,An} and that parents(Ai ) denotes
the set of parents of the node Ai in the BBN. Then the joint probability distribution for
{A1 ,A2 ,…,An} is:

))(|(),........(
1
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Now it is possible to understand what the links in a BBN mean, and hence what we
need to specify to turn the graphical dependence structure of a BBN into a probability
distribution. For each node we need the conditional probability of that node taking a
certain value given the values of its parents. For discrete networks (nodes taking a
fixed number of classes) this amounts to defining a conditional probability table
(CPT).

As an example consider node B in Fig. 2. It would require a CPT specifying the
conditional distribution p(B|C,E). Similarly, the CPTs for nodes A  and C  would
specify p(A|B) and p(C|D) respectively. The nodes D and E have no parents, so only
require prior probability distributions p(D ) and p(E). If we assume that all the

Figure 0. Node-link structure of a hypothetical BBN
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variables in Fig. 2 are binary, and can take on the states true, false, then the CPT for
the node B would be as shown in Table 1. Note that in a real CPT, the p(……)
probability expressions are replaced by probability values between 0 and 1 consistent
with the standard axioms of probability theory.

Table 1. CPT for Node B in Fig. 2

B

C E true false

true true p(B=true | C=true, E=true) p(B=false | C = true, E=true)

true false p(B=true | C=true, E=false) p(B=false | C=true, E=false)

false true p(B=true | C=false, E=true) p(B=false | C=false, E=true)

false false p(B=true | C=false, E= false) p(B= false | C=false, E= false)

Comparing Neural Networks and BBNs: It is useful to highlight the key differences
between expert systems that are based on BBNs and those based on neural networks.
As illustrated in Fig. 4, a neural network consists of several layers of nodes: On top
there is a layer of input-nodes, on the bottom a layer of output-nodes and in between
these, normally 1-2 hidden layers. All nodes in a layer are in principle connected to all
nodes in the layer just below. A node along with the in-going edges belonging to it is
called a perceptrone. The fundamental difference between the two types of networks
is that a perceptrone in the hidden layers of a neural network does not in itself have an
interpretation in the domain of the system, whereas all the nodes of a BBN represent
concepts that are well defined with respect to the domain.

In a BBN the meaning of a node and its CPT can be the subject of an external
discussion, regardless of their function in the network. This does not make any sense
when speaking of neural networks. Perceptrones in the hidden layers only have a
meaning in the context of the functionality of the network. As a consequence, in the
construction of a neural network the route of inference is fixed. It is decided in
advance, about which relations information is gathered, and which relations the
system is expected to calculate. BBN are much more flexible in that respect, since
they attempt to model actual domain dependencies.
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Assumptions required
An important concept for the building (as well as the transmission of evidence) in a
BBN is the notion of conditional independence. Two sets of variables, A and B, are
said to be (conditionally) independent given a third set C of variables if when the
values of the variables C are known, knowledge about the values of the variables B
provides no further information about the values of the variables A. Using
probabilistic notation this can be expressed as p(A | B, C) = p (A | C).

To understand the concept of conditional independence, consider the following three
events, for which p(A | B, C) = p(A | C));

Event A = I take a Panadol tablet;

Event B = I kiss my girlfriend who has the flu;

Event C = I have a fever.

Now notice that me taking a Panadol, and me kissing my sick girlfriend are not
independent events. However, the event of me taking a Panadol tablet is conditionally
independent of me kissing my sick girlfriend given that I have fever. Once I have a
fever, knowing whether I participated in a high risk activity doesn’t change the
likelihood of me taking a Panadol. Thus if we were to construct a network model of
this space, we could reduce the number of parent nodes from two to one.

As demonstrated in Section 3, the conditional independence assumptions expressed
by the graph (i.e. lack of a dependency link) mean that fewer parameters need to be
estimated because the probability distribution for each variable depends only on the
node’s parents. This independence allows us to factorise the network, considering
each node and its parents in isolation from the rest of the model.

At this point, it is worth making a distinction between the causal and dependence
view of BBNs. There are a number of ways that the causal view is problematic. The
first is that there are many ways of representing a probability distribution as a BBN,
and many of those will not relate to causal structures. Further, marginalisation over

Figure 1. Node-link structure in a typical neural network. Note that the nodes and links
in the ‘hidden layer’ have no physical interpretation in terms of domain variables
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(that is factoring out the effect of) a variable which two other variables causally
depend on will create a dependence between those other variables. However neither
one can really be considered to be causally dependent on the other. At best then a
causal view of belief network construction is anaemic. The causal view becomes
fundamentally wrong when the process is inverted and causal relationships are
inferred from a BBN. This is one of the most serious flaws which can be made in
statistics. Probabilistic dependence-type relationships do not imply causality, even if
the BBN was constructed using prior causal information. To deal with causality is
significantly more complicated and involves the consideration, among other things, of
counterfactuals. This is well beyond the scope of this tutorial, but readers interested in
dealing with causality in this sort of framework should refer to Pearl (2000).

Mathematic calculations involved
The key mathematical calculations undertaken in a BBN application are associated
with probabilistic inference. This means computing the conditional probability for
some variables given information (evidence) on other variables.

Consider the BBN in Fig. 5, which describes the separate likelihood of two different
students (Student_A and Student_B) being late (true/false) to school given knowledge
about the existence of a train strike (true/false). From Fig. 5 it can be seen that the
hypothesis variables for the BBN are associated with our belief in Student_A or
Student_B being late; these beliefs are constrained to exist between the two discrete
states, true or false. The information variable on which our hypothesis variables have
some level of dependence (the strength of which is described by their individual
CPTs) is the Train Strike variable. In this case, before receiving any additional
information, there is a 10% chance of a train strike on any given day.

The key feature of BBNs is that they enable us to model and reason about uncertainty.
As described by the CPT for Student_A, the existence of a train strike does not imply
with certainty that he will be late (he might get a lift in a friends car), but there is an
increased probability that he will be late. Informally, the particular values in this table
tell us that: Student_A is very unlikely to be late normally (that is, the probability
Student_A is late when there is no train strike is 0.1), but if there is a train strike he is
very likely to be late (the probability is 0.8). Conversely, the CPT for Student_B
reflects the fact that he is normally dropped off at school in a car. A train strike can
still cause Student_B to be late because traffic is heavier in that case. However, the
probability table for Student_B is very different in content to that of Student_A.
Informally, Student_B is often late, but a train strike only increases the likelihood of
his lateness by a small amount. In the event of a train strike Student_B is less likely to
be late than Student_A.
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Analysing a BBN: entering evidence and propagation

With the dependence structure and associated CPTs identified we can now use
Bayesian probability to do various types of analysis. For example, we might want to
calculate the (unconditional) probability that Student_A is late:

p(Student_A late) =  p(Student_A late | Train strike) * p(Train strike)

+  p(Student_A late | no Train strike) *p(no Train strike) 4.

= (0.8 * 0.1) + (0.1 * 0.9) = 0.17

This is called the marginal probability. Similarly, we can calculate the marginal
probability that Student_B is late to be 0.51.

However, the most important use of BBNs is in revising probabilities in the light of
actual observations of events. Suppose, for example, that we know there is a train
strike. In this case we can enter the evidence (called instantiation) that train strike =
‘true’. The conditional probability tables already tell us the revised probabilities for
Student_A being late (0.8) and Student_B being late (0.6). Suppose, however, that we
do not know if there is a train strike but do know that Student_A is late. Then we can
instantiate 'Student_A late' = true and we can use this observation to determine:

a) the (revised) probability that there is a train strike; and

b) the (revised) probability that Student_B will be late.

To calculate a) we use a basic law of probability known as Bayes rule. For any two
events, A and B, Bayes rule can be written as:

p(A|B) = p(B|A) x p(A) / p(B) 5.

 

Student_A late
true/false

Student_B late
true/false

Train Strike
true/false

Train Strike

Student_A
late

true

false

true false

0.8 0.1

0.2 0.9

Train Strike

Student_B
late

true

false

true false

0.6 0.5

0.4 0.5

Train Strike

true

false

0.1

0.9

Information Variable …….

Hypothesis Variables …..

Figure 1. BBN detailing the likely implications of a train strike on the arrival time of two
different students (Student_A and Student_B)



Prepared for CSIRO Centre for Complex Systems Science

CSIRO 2003

11

Bayes’ rule addresses the question, “Given our previous beliefs about an event, how
should we revise the probability assigned to the event in light of the new evidence at
hand?” The general idea is that, if we had a high degree of belief in the likelihood of
Event A based on past experience (i.e. p(A)), and we now observe data (Event B) that
would be likely to occur if Event A occurs (i.e. p(B|A)), then our after the evidence
confidence (i.e. p(A|B)) in Event A should be strengthened.

For our train strike example:

p(Train strike | Student_A late)

=  p(Student_A late | Train strike)*p(Train strike) / p(Student_A late) 6.

=  (0.8*0.1)/0.17

= 0.47

Thus, the observation that Student_A is late significantly increases the probability that
there is a train strike (up from 0.1 to 0.47). Moreover, we can use this revised
probability to calculate b):

p(Student_B late) =  p(Student_B late | Train strike) * p(Train strike)

 + p(Student_B | no Train strike) *p(no Train strike) 7.

= (0.6 * 0.47) + (0.5 * 0.53) = 0.55

Thus, the observation that Student_A is late has slightly increased the probability that
Student_B is late (from 0.5 to 0.55). When we enter evidence and use it to update the
probabilities in this way we call it propagation.

Although the calculation of the prior probabilities and the after-the-evidence revised
probabilities is relatively straightforward for our simple example, imagine a larger net
with many dependencies and nodes that can take on more than two values. Doing the
propagation in such cases is generally very difficult. In fact, there are no universally
efficient algorithms for doing these computations (the problem is NP-hard). This
observation, until relatively recently, meant that BBNs could not be used to solve
realistic problems. However, in the 1980s researchers discovered propagation
algorithms that make it possible to break the overall graph down into smaller sub-sets
within which information flows are largely self-contained. This approach allows the
propagation of information to proceed much more efficiently. More details of this
topic can be found in Lauritzen and Spiegelhalter (1988). With the introduction of
software tools that implement these algorithms (as well as providing a graphical
interface to draw the graphs and fill in the probability tables) it is now possible to use
BBNs to solve complex problems without doing any of the Bayesian calculations by
hand. This is the reason why the popularity of BBNs has mushroomed in recent years.
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Data and data relationships
A BBN requires data in three distinct categories:

Evidence to parameterise CPTs. Quantitative information is required to
‘parameterise’ the CPTs of a BBN (i.e. define the conditional probabilities linking
parent and child nodes combinations). One of the major benefits of BBNs stems from
the fact that this quantitative information can come from both subjective judgements
(elicited from domain experts) or probabilities based on objective data (i.e. the
frequency with which each configuration of variables is found in the data). When data
is limited, it is a common approach to use subjective judgements to initially supply
probability distributions and then update this to encapsulate the information contained
in the data. This is commonly achieved with an Expectation Maximisation algorithm
(see for example, Chickering and Heckerman, 1996).

The flexible nature of BBNs also makes possible the parameterization of local
conditional probability relationships using existing models – say for example, a linear
regression model, or output from a simulation model.
Two interesting points to remember about the elicitation of the CPTs for BBNs are;

1. The conditional probabilities need not be exact to be useful. Some people have
shied away from using BBNs because they imagine they will only work well, if
the probabilities upon which they are based are exact. For many applications, this
is not true. It turns out very often that approximate probabilities, even subjective
ones that are guessed at, give very good results. BBNs are generally quite robust
to imperfect knowledge. Often the combination of several strands of imperfect
knowledge can allow us to make surprisingly strong conclusions.

2. Causal conditional probabilities are easier to estimate than the reverse. Studies
have shown people are better at estimating probabilities “in the forward
direction”. For example, doctors are quite good at giving the probability estimates
for “if the patient has lung cancer, what are the chances their X-ray will be
abnormal?", rather than the reverse, "if the X-ray is abnormal, what are the
chances of lung cancer being the cause?"

Evidence to set the prior probability distribution of hypothesis variables. Information
is needed to assign the appropriate prior probability distributions of all hypothesis
variables such that they are consistent with the prevailing situation.  Because of the
dependence structure of the network, such evidence travels along the links of the
network to set the prior probabilities of all other variables.

The problem of converting a state of knowledge to a probability assignment is the
problem that lies at the heart of Bayesian probability theory. As with CPTs elicitation,
where historical records exists the relative frequency of observing a hypothesis
variable in a particular state can be used to guide probability assignments, else expert
opinion can also be elicited. For situations in which little is known, it is common
practice to assume a uniform prior distribution across all the states of a hypothesis
variable (i.e. an ‘uninformative’ prior).

Evidence describing the state of information variables. Evidence pertaining to
information variables is essential for belief updating of the hypothesis variables, with
the new evidence travelling against the links to update the prior probabilities to
posterior (i.e. after-the-evidence) probabilities according to Bayes rule. Information
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variables are typically chosen to represent elements of a system for which observable
data is available (e.g. from sensors).

Key outputs and interpretation
Once fully parameterised, there are several ways in which a BBN can be used to make
inference about the domain being modelled. Consider the hypothetical BBN in Fig. 6,
which enables inference about the likely cause of a cough.

Three potential types of inference exist:

Diagnostic Inference. With diagnostic inference, we use evidence of an effect to infer
the most likely cause. This is often referred to as “bottom-up” reasoning, since it goes
from effects to causes; it is a common task in expert systems. For example, in the
model domain described by Fig. 6, if we instantiate cough = ‘true’ (see Fig. 7) we find
that p(pneumonia | cough) = 0.366 (up from 0.1 in the unconditional case).

Diagnostic inference is typical in medical and industrial applications. For example,
many industrial applications of BBNs are for determining the chance of component
failure. Diagnostic inference also encompasses the class of problems known as sensor
fusion, where data from various sources must be integrated to arrive at an
interpretation of a situation.

smoking

yes 0.2

no 0.8

pneumonia

true 0.1

false 0.9

pneumonia

temperature

yes no

yes 0.9 0.1

cough

true falsepneumonia

pneumonia

true
false

10.0
90.0

temperature

yes
no

17.0
83.0

cough

true
false

22.7
77.3

smoking

yes
no

20.0
80.0

no 0.2 0.8

yes

no

true 0.95 0.05

true 0.8 0.2

yesfalse 0.6 0.4

nofalse 0.05 0.95

smoking

Figure 1. BBN model to enable inference about the likely cause of a cough. Note that for
the case displayed, no evidence has been instantiated, therefore the displayed
probabilities of a node being in a particular state (e.g. true or false) simply refer to the m
distribution across all nodes
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Causal Inference. With casual inference, or “top-down” reasoning, we endeavour to
identify the most likely cause of and effect. For example, in the model domain
described by Fig. 6, if we instantiate pneumonia = ‘true’ (see Fig. 8) we find that
p(cough | pneumonia) = 0.83 (up from 0.227 in the unconditional case).

Such causal inference often finds application in weather forecasting, stock market
prediction, ecological modelling, etc., where you can supply evidence of past events,
and then run the BBN to see what the most likely future outcomes will be.

Inter-causal inference. With inter-causal inference, we attempt to “explain away”
potentially competing causes of a shared effect. For example, in the model domain
described by Fig. 6, the observation of smoking (see Fig. 9) would partially “explain
away” pneumonia as the likely cause of a cough (i.e. p( pneumonia | cough and
smoking) = 0.15 compared to the p(pneumonia | cough) = 0.366.)

It should be remembered that whatever the form of inference utilised, the output for
the hypothesis (i.e. query) variable is a probability distribution (representing the
degrees-of-belief in each state) rather than a simple scalar or vector.

 

pneumonia
true
false

36.6
63.4

temperature
yes
no

35.6
64.4

cough
true
false

 100
   0

smoking
yes
no

55.9
44.1

Figure 1. Instantiation of cough = ‘true’ allowing for diagnostic inference of

p(pneumonia | cough) = 0.366

 

pneumonia
true
false

 100
   0

temperature
yes
no

80.0
20.0

cough
true
false

83.0
17.0

smoking
yes
no

20.0
80.0

Figure 1. Instantiation of pneumonia = ‘true’ allowing causal inference of
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Limitations of the method or reservations about the method
In spite of their remarkable power, there are a number of potential limitations that
require consideration:

Potential to over-emphasize expert opinion. In some cases where objective (i.e.
empirical) data are lacking, a BBN is no better than a simpler statement of an
educated guess, and in such situations can easily reflect personal bias. Even in such a
situation however, a BBN may prove valuable for organizing thinking and posing
testable hypotheses. When only subjective (expert) judgment is available, it is
advantageous to rely on multiple experts and average their estimated probabilities to
reflect the relative uncertainty in collective beliefs. Any disagreement among the
experts would then produce a more uniform distribution of probabilities across states
reflecting greater uncertainty in the conditional dependencies.

Large BBNs can become unmanageable. Along with significant computational
overheads, BBNs become difficult to apply to large problems because the number of
conditional probabilities that must be specified can quickly become extremely large as
the conceptual scope of a problem increases. In such situations, model design not only
becomes difficult to manage but many probabilities will not be well characterized and
will therefore need to be supplied directly by expert judgment.

BBNs behave rigidly to unforeseen events. BBNs prove to be most useful for
developing a consistent and transparent interpretation of ‘likely’ system responses
when some knowledge of the dependency (causal) structure is known. They provide
little insight however regarding unknown dependencies.  Another important
consequence of the rigid structure is that it is difficult to capture relationships between
variables which have a temporal element (i.e. change over time).
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Figure 1. Instantiation of cough = ‘true’ and smoking = ‘true’ allowing inter-causal
inference of p( pneumonia | cough and smoking) = 0.15 to partially “explain away”
pneumonia as the likely cause of a cough
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How could the method be enhanced ?
BBNs are an active area of research, especially in the artificial intelligence
community. Two areas where we can expect to see advances in the next few years are:

Learning the Graphical Structure from data. The dependency (causal) structure of a
BBN can be crafted after an expert’s mental map of how a system operates. For
situations in which the current level of system understanding does not permit the
informed development of the structure, the potential exists to try and learn the BBN
from available data sets.

In recent years, learning the structure of belief networks has become a very active
research topic and many algorithms have been developed for it. For an introductory
paper on belief network learning, interested readers are referred to Buntine (1996). By
far the most common methods are based on dependency analysis algorithms which
attempt to discover dependencies from the data (based on conditional independence
tests), and then use these dependencies to infer the structure. To increase efficiency
and robustness, such algorithm’s also usually attempt to incorporate “expert” domain
knowledge where possible, such as the partial ordering of nodes.

Temporal Reasoning. A problem with the standard theory of belief networks is that
there is no natural mechanism for representing time. For example, it is difficult to
represent a situation such as the variability of when an employee arrives at work and
the causal relationships between the time of arrival and later events.

One approach to the temporal problem has been to develop BBNs that are made up of
interconnected time slices of smaller (usually structurally identical) static belief
networks (Kjaerulff, 1995). The evidence and inferred beliefs of previous time slices
are used to estimate beliefs in the current and future (or prediction) time slices. This
approach however results in large and complex networks, requiring considerable
computational time and resources. Current research is focussed on providing more
efficient methods to provide temporal reasoning.

Judging the success of the method
A robust evaluation of a BBN should include three basic elements:

Model walk-through:  Given the importance of the dependency (causal) structure,
once constructed it is beneficial to present the model (or particular submodel
components) to “fresh” experts for peer review. The consistency of the model in
delivering the intuition of domain experts should be confirmed.

Sensitivity Analysis: Like all models, BBNs can be overfit. To avoid over-fitting, it is
common practice to use sensitivity tests to measure the effect of one variable on
another. Variables for which the model output is particularly insensitive should be
removed in order to produce the most parsimonious model description.

Case-based evaluation: Perhaps the most rigorous form of testing is to use a set of
real cases to test how well the predictions or diagnosis match the actual cases. This
could involve testing local model fragments (component testing) or global model
behaviour (whole model testing). Typical performance measures might involve
calculating a confusion matrix, error rate, calibration table, quadratic (Brier) score,
logarithmic loss score etc.
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Tools for operationalising the method
Several research and commercially developed products exist that contain both an
editor (for creating the graphical BBN structure) and a runtime module which takes
care of evidence propagation. A very useful website containing an up-to-date listing
of the available packages can be found at:

(http://www.cs.berkeley.edu/~murphyk/Bayes/bnsoft.html)

By far the two most popular commercial products are:
1. Netica (http://www.norsys.com), and
2. HUGIN (http:// www.hugin.com).

Note: Netica provides a free demo version of their product (full functionality), but
which is limited to models with less than 15 nodes.

Another useful commercial software package for transforming a database into a
network of dependencies is Bayesware Discover (http://bayesware.com/). It is an
automated modelling tool that searches for the most probable BBN responsible for the
observed data.

Applications
Given the remarkable flexibility of BBNs, it is possible to implement them for most
model domains. However, BBNs are most suited for situations;

1. Where some underlying understanding exists of the model domain, and we are
interested in knowing whether observed information on some event should
influence our belief in other events.

2. Where the model domain can be conceptually represented by a flow diagram of
nodes and linkages, and where the nature of these linkages (even if uncertain) is
reasonably stable through time.

3. Where it is beneficial to have a highly visual and transparent model structure
(e.g. to engage stakeholders groups more effectively in resource management
decisions).

4. Where we would like to implement a formal decision support framework, but
where the majority of the understanding about the model domain is derived from
the cognitive experience of human ‘experts’, as opposed to empirical
observations.

5. Where our understanding of the behaviour for the model domain is derived
from a variety of disparate information sources (e.g. empirical data, other models,
expert opinion), and we are interested in providing a fusion-type ‘meta’
framework for developing weight-of-evidence decision support.



Prepared for CSIRO Centre for Complex Systems Science

CSIRO 2003

18

Example 1: Microsoft Office Assistant

One of the most celebrated users of BBN technology is the Decision Theory &
A d a p t i v e  S y s t e m s  G r o u p  ( D T A S )  a t  M i c r o s o f t
(http://research.microsoft.com/research/dtg/). The aim of their research is to create
software which can automatically and intelligently interact with the users, anticipating
the goals and needs of these users. One of the more obvious products can be seen as
"Office Assistant" (Fig. 10) implemented in the Microsoft Office suite of productivity
applications.

User Assistance ?

Figure 1. A portion of a BBN user model for inferring the likelihood that a user needs
assistance, considering profile limitation as well as observations of recent activity
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Example 2: Modelling forestry effects on stream ecosystems

Managing impacts of logging activities on stream ecosystems requires an
understanding of the complex processes involved. Researchers at the National
Institute of Water & Atmospheric Research, New Zealand have been investigating the
dual potential of BBNs to deal with this complexity, whilst at the same time being
able to provide a management tool that can be understood and implemented by
resource managers and forest harvest planners.

The developed BBN as shown in Fig. 11 provides a model of how forestry
management practices can affect stream health. The model was developed from a
combination of survey data, literature information, and field experience. As
knowledge about a site (e.g., riparian management, channel width) is entered into the
model it updates the probabilities associated with states of each related node. The
model can be used either to predict forest management effects on stream health or to
diagnose the causes of observed impacts. For further details, contact John Quinn at
NIWA Hamilton, j.quinn@niwa.co.nz

Figure 1. BBN developed to provide a model of how forestry management practices can
affect stream health
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Example 3: Bayesian Network Models for Search and rescue

SARBayes is a project of the Reasoning Under Uncertainty Group (a part of the
Monash Data Mining Centre), with the cooperation of Victorian Police Search &
Rescue and VicWalk's Bushwalkers' Search & Rescue. The project has delivered a
decision support tool to aid in the optimal allocation of resources in a lost-person
search and rescue. The unifying theme of SARBayes is that search and rescue is a
classic case of Reasoning Under Uncertainty and the core of the problem is generating
and maintaining a probability map for the current location of the lost person (e.g. see
Fig. 12).

The general methodology involves:

1. Developing BBN models to predict lost-person behaviour based on a historical
data-base of lost person incidents,

2. Generating probability maps of ‘likely’ search areas, by merging the behaviour
BBN models with physical details of the current search environment,

3. Designing efficient search strategies by linking the probability maps with Optimal
Resource Allocation algorithms.

More details on the project can be found at (http://sarbayes.org/index.html).

Figure 1. An example of a BBN generated probability map, demonstrating ‘likely’ search
areas for a lost person incident
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Sources of more information

Key publications

Charniak, E., 1991. Bayesian Networks without Tears. AI magazine (Winter), 50-63.
Heckerman, D., 1995. A tutorial on learning Bayesian networks. Technical Report
MSR-TR-95-06, Microsoft Research.

Jensen, F.V., 2001. Bayesian Networks and Decision Graphs, Springer. 2001

Special Issue on Bayesian Networks: Communications of the ACM., March, 1995,
vol 38, no. 3.

Useful websites

Kevin Murphy (Berkley University) maintains a website that provides an excellent
introduction to BBNs. The site also contains links to relevant web literature on BBNs.

http://www.ai.mit.edu/~murphyk/Bayes/bnintro.html

Norman Fenton (London University) has developed a very helpful online tutorial on
the theory and development of BBNs.

http://www.dcs.qmul.ac.uk/~norman/BBNs/BBNs.htm

Russell Greiner (University of Alberta) maintains a website that provides links to
numerous articles, research groups, software, and applications associated with BBNs.

http://www.cs.ualberta.ca/~greiner/bn.html
Amos Storkey (University of Edinburgh) also maintains a useful website on BBNs

http://www.anc.ed.ac.uk/~amos/belief.html

Key contacts

Name Organisation Email/web address

Scott Wooldridge Australian Institute
of Marine Science

s.wooldridge@aims.gov.au

Bruce Marcot USDA Forest
Service

http://www.spiritone.com/~brucem/bbns.htm

Kevin Korb School of
Computer Science,
Monash University

http://www.csse.monash.edu.au/~korb/

Ann Nicholson School of
Computer Science,
Monash University

http://www.csse.monash.edu.au/~annn/
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