

UNEP/GEF Project Russian Federation – Support to the National Programme of Action for the Protection of the Arctic Marine Environment

Barents Hot Spots Facility

Pilot Project:

IMPROVEMENT OF THE EMERGENCY OIL SPILL RESPONSE SYSTEM UNDER THE ARCTIC CONDITIONS FOR PROTECTION OF SENSITIVE COASTAL AREAS (CASE STUDY: THE BARENTS AND THE WHITE SEAS)

Water surface modeling of basic oil types transported in the Barents and White seas in various hydro-meteorological conditions. Volume II.

Murmansk, 2010

CONTENTS

1 OIL TRAJECTORY MODELLING IN THE BARENTS SEA	4
1.1 Approved oil trajectory modelling conditions in the Barents Sea	4
1.1.1 The area and point of modelling	4
1.1.2 Types of oil	5
1.1.3 Volume of oil	6
1.1.4 Hydro-meteorological conditions of modelling	7
1.1.5 Oil and oil product spill scenarios in the Barents Sea	7
1.2 OIL SPILL BEHAVIOUR MODELLING IN THE BARENTS SEA UNDER THE AUTUMN SOUTHWARD WI	ND.
1.2.1 Oil slick behaviour modelling as per the scenario $COV-Aut-S-1$	9 9
1.2.7 Oil slick behaviour modelling as per the scenario BO-Aut-S-1	15
1.2.3 Oil slick behaviour modelling as per the scenario GC-Aut-S-1	20
1.2.4 Oil slick behaviour modelling as per the scenario Na-Aut-S-1	. 26
1.2.5 The process dynamics typical for oil spill behaviour in the Barents Sea unc	ler
the autumn southward wind (Aut-S-1)	. 32
1.3 OIL SLICK BEHAVIOUR MODELLING IN THE BARENTS SEA UNDER THE AUTUMN SOUTH-WESTW	ARD
WIND	. 34
1.3.1 Oil slick behaviour modelling as per the scenario COV-Aut-SW-1	. 34
1.3.2 Oil slick behaviour modelling as per the scenario BO-Aut-SW-1	. 40
1.3.3 Oil slick behaviour modelling as per the scenario GC-Aut-SW-1	. 46
1.3.4 Oil slick behaviour modelling as per the scenario Na-Aut-SW-1	. 52
1.3.5 The process dynamics typical for oil spill behaviour in the Barents Sea unc	ler
the autumn south-westward wind (Aut-SW-1)	. 58
1.4 OIL SPILL BEHAVIOUR MODELLING IN THE BARENTS SEA UNDER THE SPRING NORTHWARD WI	ND
	. 60
1.4.1 Oil slick behaviour modelling as per the scenario COV-Spr-N-1	. 60
1.4.2 Oil slick behaviour modelling as per the scenario BO-Spr-N-1	. 66
1.4.3 OII slick behaviour modelling as per the scenario GC-Spr-N-1	. 72
1.4.4 Oil slick behaviour modelling as per the scenario Na-Spr-N-1	. 78
1.4.5 The process dynamics typical for oil spill benaviour in the Barents Sea und	ier
the spring northward wind (Spr-N-T)	. 84
1.5 OIL SPILL BEHAVIOUR MODELLING IN THE BARENTS SEA UNDER THE SPRING NORTH-WESTWA	ARD OZ
WIND	. 80
1.5.1 Oil Slick behaviour modelling as per the scenario PO Spr NW 1	. 00 02
1.5.2 Oil slick behaviour modelling as per the scenario CC Spr NW 1	. 72 09
1.5.5 Oil slick holewight modelling as per the scenario Na, Spr NW 1 1.5.4 Oil slick behaviour modelling as per the scenario Na, Spr NW 1	. 70 101
1.5.5 The process dynamics typical for oil snill behaviour in the Barents Sea up	lor
the spring north-westward wind (Spr-NW-1)	110

INTRODUCTION

The present volume sets out results of potential oil and oil product spill modelling, as well as gas condensate spill modelling in the analyzed water areas within the framework of the pilot project "Improvement of the Emergency Oil Spill Response System under the Arctic Conditions for Protection of Sensitive Coastal Areas (Case Study: the Barents and the White Seas)"

Oil spill behaviour modelling is implemented with the help of the computer-based simulation system TRANZAS. The simulator for emergency action exercises (PICSES-II) is a unit of the Emergency Action Operation Control System manufactured by TRANZAS and is successfully applied for desktop and field-based exercises of the personnel and command staff of the interacting service teams in the modelled emergencies: oil spillage, failures at high potential risk facilities, maritime and aviation accident salvage and rescue operations, as well as for mathematical trajectory modelling, evaporation, shoreline impact and high risk potential impact of oil or chemical spill offshore.

The programme PICSES-II meets the requirements of MARPOL 73/78, OPR-90, OPA-90, as well as the Rules of the Measures for Prevention and Elimination of oil spills in the territory of the Russian Federation. The programme is adapted in compliance with the requirements of the EMERCOM of Russia.

In compliance with the percentage ratio of the shipped oil and oil product volumes and based on their physical-chemical properties four substances have been selected for modelling purposes:

- 1. Crude Oil
- 2. Black Oil;
- 3. Gas Condensate;
- 4. Naphtha stable natural gasoline.

The term " oil" in the present report pertains to crude oil, refined oil products and gas condensate.

The term " oil slick" pertains to any crude oil slick, refined product slick or gas condensate slick spreading on the water surface.

The abbreviation «OS» pertains to any oil spill, refined products spill or gas condensate spill.

"4+..." in figures means time after start of oil spill (in hours).

1 OIL TRAJECTORY MODELLING IN THE BARENTS SEA

1.1 Approved oil trajectory modelling conditions in the Barents Sea

1.1.1 The area and point of modelling

Based on the analysis of provisions of the Mode of Navigation in the Barents and White Seas (Summary Description..., 2007) and the Pilot of the Barents Sea (Pilot of the Barents Sea, 1995) the shipping route area with the highest navigation risk has been selected in the Barents Sea. The area is bounded by lines connecting points with the coordinates as follows:

Area 1. The Barents Sea:

1)	69°17,94′N,	33 32,62'E;
2)	69 19,00	33 30,15
3)	69 20,67	33 31,90
4)	69 23,63	33 31,90
5)	69 23,00	33 37,10
6)	69 22,02	33 45,40

Resulting from the analysis of the set shipping routes in the selected area of the Barents Sea, the point of intersection of basic shipping routes by tankers/carbon carriers with the coordinates as follows (figure 1):

Point OS-1. The Barents Sea: 69°22,00'N, 33°37,00'E; (figure 1)

Figure. 1 The Modelling Point OS-1

1.1.2 Types of oil

Based on the analysis of types of oil shipped across the Barents Sea the following types have been accepted for modelling: crude oil (Varandey oil grade), black oil of M-100 grade, stable gas condensate (SGC), naphtha (stable natural gasoline).

Tables 1.1.2.1 - 1.1.2.4. present the basic physical-chemical properties of crude oil types applied for computer-based modelling.

No	GOST P 51858-2002 Index Name	Value
1.	Density at 20°C, kg/m ³	901
2.	Water content, %	0,5
3.	Mass fraction of solids %	0,05
4.	Mass fraction of sulphur, %	1,98
5.	Saturated vapour pressure, kPa, (mm Hg)	26,7 (200)
6	Fractions yield, % at temperature:	22.4
0.	300 °C	36,0
7.	Mass fraction of paraffin, %	0,5
Table 1.	1.2.2. Physical-chemical properties of black oil, grade M-100	type VI
No	GOST 10585–99 Index Name	Value
1.	Viscosity at T not exceeding 80°C: kinematic, m ² /s (cSt)	66, 9,0

Table 1.1.2.1. Physical-chemical properties of the crude oil (Varandey oil grade)

	funnel, degrees FV	
2.	Ash content, mass fraction %	0,037
3.	Mass fraction of solids %	0,034
4.	Mass fraction of water %	0,24
5.	Content of water-soluble acids and alkalis	absence
6.	Flashpoint COC, ⁰ C	136
7.	Mass fraction of sulphur %	2,68
8.	Congelation point, ^o C	21
9.	Combustion heat, kJ/kg	43825
10.	Hydrogen sulfide and volatile mercaptans	absence
11.	Density at 20°C, kg/m ³	975,2

Table 1.1.2.3. Physical-chemical properties of SGC

No	OST 51.65-80 Index Name	Value
1.	Density at 20°C, kg/m ³	739,5
2.	Kinematic viscosity at 20°C, m ² /c (cSt)	1,058
3.	Saturated vapour pressure, kPa, (mm Hg)	56,6 (425,3)
4.	Mass fraction of solids %	absence
5.	Mass fraction of water %	absence
6.	Mass fraction of chloride salts, mg/l	0,7
7.	Mass fraction of the total sulphur, % of mass	Less than 0,01
8.	Fractions yield	
	Start of boiling, °C	39,0
	10% (vol.)	67,0
	50% (vol.)	139,0
	90% (vol.)	295,0
	End of boiling, °C	312,0
	Yield, % (vol.)	94,0
	Residue, % (vol.)	2,5
	Loss, % (vol.)	3,5

Tahlo 1 1 2 A	Physical-chemical	nronerties of na	nhtha(stahle natural	asoline arade Ri	г)
10010 1.1.2.4.	rnysicai-chennicai	ו ומא המינים <i>בוו</i> רים המינים המינים היום היו		yasuine, yraue Di	/

No	STO 11605031-019-2007 Index Name	Value
1.	Fractional composition:	
	Initial boiling point, ⁰ C, not below	31
	End of boiling, ^o C, not higher	150
2.	Density at 15 °C, kg/m ³	714
3.	Mass fraction of sulphur, %	0,005
4.	Concentration of actual gum, mg per 100 sm ³ of naphtha	absence
5.	Mass fraction of paraffin, %	68,1
6.	Mass fraction of aromatic hydrocarbons, %	6,7
7.	Mass fraction of naphthenic hydrocarbons %	25,2
8.	Water and solids	absence
9.	Saturated vapour pressure, kPa, not exceeding	71,5

1.1.3 Volume of oil

Based on the cargo characteristics of the tankers shipping oil in the Barents Sea waters and the legal requirements to determination of maximum volume of oil spill occurred from tankers, i.e. the volume of two adjacent tanks, the following parameters have been accepted for modelling:

a) Crude oil spill volume – 20 000 m³

- b) Black oil spill volume 12 000 m³
- c) SGC spill volume $-20\ 000\ \text{m}^3$
- d) Naphtha spill volume 10 000 m³

1.1.4 Hydro-meteorological conditions of modelling

The basic parameters of the hydro-meteorological conditions accepted for oil and oil product spill behaviour modelling in case of oil spill in the White Sea are shown in table 1.1.4.1.

Table 1.1.4.1: Hydro-meteorological conditions of modelling in the Barents Sea

No	Parameter	Indi	ices
1.	Season	Autumn	Spring
2.	Average air T, ^o C	-3	-2
3.	Average water T, ^o C	+3	+3
4.	Density of surface water, kg/m ³	1023	1023
5.	Prevailing wind	S, SW	N, NW
6.	Average monthly wind speed, m/s	12	2
7.	Heaving, m	2	2
8.	Current velocity, km/h	1	1
9.	Cloud conditions	9	9

1.1.5 Oil and oil product spill scenarios in the Barents Sea

16 the scenarios have been determined for the purpose of oil spill behaviour modelling in the point OS-1 for all the four types of oil and oil products. The scenario codes, oil spill volumes and explanation are shown in table 1.1.5.1.

No	The scenario Code	OS Volume, m ³	Explanation
1.	COV-Aut-S-1	20 000	COV – crude oil (Varandey grade); Aut – autumn; S – south wind; 1 – modelling point OS-1
2.	BO-Aut-S-1	12 000	BO – black oil; Aut – autumn; S – south wind; 1 – modelling point OS-1
3.	GC-Aut-S-1	20 000	GC – gas condensate; Aut – autumn; S – south wind; 1 – modelling point OS-1
4.	Na-Aut-S-1	10 000	Na – naphtha; Aut – autumn; S – south wind; 1 – modelling point OS-1
5.	COV-Aut-SW-1	20 000	COV – crude oil (Varandey grade); Aut – autumn; SW – south-west wind; 1 – modelling point OS-1
6.	BO-Aut-SW-1	12 000	BO – black oil; Aut – autumn; SW – south-west wind; 1 – modelling point OS-1
7.	GC-Aut-SW-1	20 000	GC – gas condensate; Aut – autumn; SW – south- west wind; 1 – modelling point OS-1
8.	Na-Aut-SW-1	10 000	Na – naphtha; Aut – autumn; SW – south-west wind; 1 – modelling point OS-1
9.	COV-Spr-N-1	20 000	COV – crude oil (Varandey grade); Spr – spring; N – north wind; 1 – modelling point OS-1
10.	BO-Spr-N-1	12 000	BO – black oil; Spr – spring; N – north wind ; 1 – modelling point OS-1
11.	GC-Spr-N-1	20 000	GC – gas condensate; Spr – spring; N – north wind; 1 – modelling point OS-1
12.	Na-Spr-N-1	10 000	Na – naphtha; Spr – spring; N – north wind; 1 – modelling point OS-1

Table 1.1.5.1.: OS modelling scenarios in the Barents Sea.

13.	COV-Spr-NW-1	20 000	COV – crude oil (Varandey grade»); Spr – spring; NW – north-west wind; 1 – modelling point OS-1
14.	BO-Spr-NW-1	12 000	BO – black oil; Spr – spring; NW – north-west wind; 1 – modelling point OS-1
15.	GC-Spr-NW-1	20 000	GC – gas condensate; Spr – spring; NW – north- west wind; 1 – modelling point OS-1
16.	Na-Spr-NW-1	10 000	Na – naphtha; Spr – spring; NW – north-west wind; 1 – modelling point OS-1

1.2 Oil spill behaviour modelling in the Barents Sea under the autumn southward wind

1.2.1 Oil slick behaviour modellir	g as per the scenario COV-Aut-S-1
------------------------------------	-----------------------------------

Modelling interval	Oil spill volume		Oil volur afloat	ne	Evapora volume	ted oil	Disperse volume	d oil	Oil volur ashore	ne	Oil/water mixture volume afloat	Average slick thickness	Oil slick area	Viscosity
Unit	m ³	%	m ³	%	m ³	%	m ³	%	m ³	%	m ³	mm	m ²	cSt
H+01:00	5528	100	5503	99,5	14,93	0,27	10,19	0,18	0	0	6443	24,33	264848	98,1
H +02:00	11459	100	11379	99,3	51,57	0,45	31,18	0,27	0	0	13358	25,61	521593	139
H +03:00	16076	100	15912	99,0	110,9	0,69	53,05	0,33	0	0	23032	26,73	861814	180
H +04:00	20000	100	19725	98,6	184,3	0,92	78,54	0,39	0	0	30751	28,22	1089537	225
H +05:00	20000	100	19649	98,2	252,2	1,26	103,4	0,50	0	0	33815	30,67	1102559	305
H +05:38 Landfall	20000	100	19595	98,0	294,9	1,47	110,9	0,55	0	0	35039	30,59	1145339	345
H +06:00	20000	100	19562	97,8	316,4	1,58	116,2	0,58	6,6	0,03	35539	31,52	1127628	365
H +09:00	20000	100	19319	96,6	485,0	2,40	168,5	0,84	34,1	0,17	36907	30,35	1216039	454
H +12:00	20000	100	19116	95,6	628,7	3,14	224,9	1,12	34,1	0,17	36734	25,51	1440129	496
H +15:00	20000	100	18911	94,6	769,9	3,85	284,3	1,42	34,1	0,17	36365	18,88	1925931	533
H +18:00	20000	100	18730	93,7	888,7	4,44	350,2	1,75	34,1	0,17	36019	20,40	1765315	564
H +24:00	20000	100	18407	92,0	1078	5,39	482,9	2,41	34,1	0,17	35397	20,01	1768658	619
H +36:00	20000	100	17648	88,2	1446	7,23	852,7	4,26	34,1	0,17	33919	11,83	2867202	760
H +48:00	20000	100	17251	86,3	1676	8,38	1039	5,19	34,1	0,17	33176	7,74	4287296	831

Table 1.2.1.1: Oil slick spreading parameters as per the scenario COV-Aut-S-1

Within the first 4 hours as of the OS start the oil slick spreads westward of the modelling point OS-1 under the action of the wind and current. After 4 hours as of the start of OS the slick semi-perimeter makes 1842 m, the volume of the evaporated oil -0,92%, the volume of the dispersed oil -0,39%. Further the slick drifts northward and in 5 hours 38 minutes reaches the coastline in the area of the Cape Set-Navolok in the point with coordinates $69^{0}22,5N$; $33^{0}28E$. Further the oil slick moves along the Cape Set-Navolok polluting the coastline at the length of 2,94 km. After 9 hours as of the OS start the slick commences drifting from the Cape Set-Navolok towards the open sea. After 9 hours as of the OS start the slick semi-perimeter makes 1954 m, the volume of the evaporated oil -2,4%, the volume of the dispersed oil -0,84%. Further the slick moves north-eastward blocking commercial marine traffic along the set shipping routes inbound and outbound of the Kolskiy Gulf. After 24 hours as of the OS start the slick semi-perimeter makes 2357 m, the volume of the evaporated oil -5,39%, the volume of the dispersed oil -2,41%. The volume of the oil/water mixture has increased compared to the OS volume with 78%. To the moment of the modelling completion (48 hours), the oil slick centre is located in the point with coordinates $69^{0}35N$; $33^{0}45E$, the average oil slick thickness makes 7,7 mm. The graphic display of the oil slick spreading as per the scenario COV-Aut-S-1 is shown on figure 3 - 16.

Figure. 3. H+01:00. Oil slick spreading as per the scenario COV-Aut-S-1.

Figure. 5. H+03:00. Oil slick spreading as per the scenario COV-Aut-S-1.

Figure. 4. H+02:00. Oil slick spreading as per the scenario COV-Aut-S-1.

Figure. 6. H+04:00. Oil slick spreading as per the scenario COV-Aut-S-1.

Figure. 10. H +09:00. Oil slick spreading as per the scenario COV-Aut-S-1.

Figure 14. H +24:00. Oil slick spreading as per the scenario COV-Aut-S-1.

Figure. 15. H +36:00. Oil slick spreading as per the scenario COV-Aut-S-1.

Figure. 16. H +48:. Oil slick spreading as per the scenario COV-Aut-S-1.

Figure 17. The chart of processes as per the scenario COV-Aut-S-1.

Figure 18. Oil slick area change dynamics as per the scenario COV-Aut-S-1.

Figure 19. Oil slick thickness change dynamics as per the scenario COV-Aut-S-1.

1.2.2 Oil slick behaviour modelling as per the scenario BO-Aut-S-1

Table 1.2.2.1	: Oil slick spreadil	ng parameters as	per the scenario BO-Aut-S-1	

Modelling interval	Oil s volu	pill me	Oil vol aflo	lume at	Evapora volu	ated oil Ime	Disper volu	sed oil Ime	Oil volume ashore		Oil/water Oil volume ashore afloat		Oil/water mixture volume afloat	Average oil slick thickness	Oil slick area	Viscosity
Units	m ³	%	m ³	%	M ³	%	m ³	%	m ³	%	m³	mm	m²	cSt		
H+01:00	3059	100	3059	100	0	0	0	0	0	0	3059	32,30	94717	15541		
H+02:00	6142	100	6142	100	0	0	0	0	0	0	6142	27,94	219812	15541		
H+03:00	9071	100	9071	100	0	0	0	0	0	0	9071	26,34	344381	15541		
H+04:00	12000	100	12000	100	0	0	0	0	0	0	12000	24,71	485262	15541		
H+05:00	12000	100	12000	100	0	0	0	0	0	0	12000	28,37	422982	15541		
H+05:56 Landfall	12000	100	11999	100	0	0	0	0	1,8	0,02	11999	30,03	399580	15541		
H+07:00	12000	100	11985	99,9	0	0	0	0	16,3	0,14	11985	30,05	398779	15541		
H+09:00	12000	100	11985	99,9	0	0	0	0	16,3	0,14	11985	31,31	382745	15541		
H+12:00	12000	100	11985	99,9	0	0	0	0	16,3	0,14	11985	32,12	373164	15541		
H+15:00	12000	100	11985	99,9	0	0	0	0	16,3	0,14	11985	32,93	363954	15541		
H+18:00	12000	100	11985	99,9	0	0	0	0	16,3	0,14	11985	33,48	357979	15541		
H+24:00	12000	100	11985	99,9	0	0	0	0	16,3	0,14	11985	36,65	327016	15541		
H+36:00	12000	100	11985	99,8	0	0	0	0	16,3	0,14	11985	48,04	249478	15541		
H+48:00	12000	100	11985	99,8	0	0	0	0	16,3	0,14	11985	30,76	389686	15541		

Within the first 4 hours the oil slick under the action of the wind and current spreads westward of the modelling point OS-1. After 4 hours as of the start of OS the slick semi-perimeter makes 1234 m, the evaporation and dispersion processes are not detected by the programme. Further the oil slick drifts northward and after 5 hours and 56 minutes reaches the coastline in the area of the cape Set-Navolok in the point with coordinates 69°22,5N; 33°28E. Further the oil slick moves along the Cape Set-Navolok polluting the coastline at the length of 1,73 km. After 9 hours as of the OS start the slick commences drifting from the Cape Set-Navolok towards the open sea, the oil slick break-up process is observed After 9 hours the semi-perimeter of the oil slick based on the total area makes 1096 m, the evaporation and dispersion processes are not detected by the programme. Further the oil slick moves north-eastward comprised of several separate oil slicks, blocking commercial marine traffic along the recommended shipping routes inbound/outbound of the Kolskiy Gulf. The total oil slick area after 24 hours makes 327016 m², the volume of the oil/water mixture compared to the OS volume does not increase. At the moment of the modelling completion (48 hours), the oil slick moves along the parallel 69°35N. The average oil slick thickness makes 30,76 mm, the slick is broken up in several separate slicks. The graphic display of the oil slick spreading as per the scenario BO-Aut-S-1 is shown on figure 20 - 33.

The charts of the processes typical for black oil behaviour on water are shown in figures 34-36.

687.30

Figure 22. H +03:00. Oil slick spreading as per the scenario BO-Aut-S-1.

Figure 23. H +04:00. Oil slick spreading as per the scenario BO-Aut-S-1.

Figure 26. H +07:00. Oil slick spreading as per the scenario BO-Aut-S-1.

Figure 27. H +09:00. Oil slick spreading as per the scenario BO-Aut-S-1.

Figure 30. H +18:00. Oil slick spreading as per the scenario BO-Aut-S-1.

Figure 31. H +24:00. Oil slick spreading as per the scenario BO-Aut-S-1.

Figure 35. Oil slick area change dynamics as per the scenario BO-Aut-S-1.

Figure. 34. The chart of processes as per the scenario BO-Aut-S-1.

RAMBOLL

Figure. 36. Oil slick thickness change dynamics as per the scenario BO-Aut-S-1.

1.2.3 Oil slick behaviour modelling as per the scenario GC-Aut-S-1

Table 1.2.3.1: Oil slick spreading parameters as per the scenario GC-Aut-S-1

Modelling interval	Oil s volu	pill me	Oil vol aflo	lume at	Evapor volu	ated oil ume	Disper volu	sed oil ume	Oil volume ashore		Oil/water mixture volume afloat	Average oil slick thickness	Oil slick area	Viscosity
Units	m ³	%	m ³	%	M ³	%	m ³	%	m ³	%	m ³	mm	m²	cSt
H+01:00	5384	100	4924	91,5	292,9	5,44	167	3,10	0	0	5750	15,91	361504	3,9
H +02:00	10557	100	9206	87,2	811,9	8,82	366,4	3,98	0	0	12196	16,14	755659	8,6
H +03:00	15729	100	13036	82,9	1912	12,2	777	4,94	0	0	18822	16,37	1149813	13,2
H +04:00	20000	100	15856	79,3	3065	15,3	1078	5,39	0	0	24625	16,64	1480249	21,9
H+05:32 Landfall	20000	100	14188	70,9	4477	22,4	1332	6,66	2,3	0,01	25758	15,64	1647314	67,1
H +06:00	20000	100	13811	69,1	4804	24,0	1375	6,88	9,2	0,05	25723	16,09	1598655	84,4
H +08:00	20000	100	12529	62,6	5920	29,6	1508	7,54	42,9	0,21	24616	14,54	1692751	169
H +10:00	20000	100	11603	58,0	6750	33,8	1605	8,03	42,9	0,21	23106	10,08	2292442	263
H +12:00	20000	100	10729	53,6	7538	37,7	1690	8,45	42,9	0,21	21439	7,49	2860531	391
H +15:00	20000	100	9794	49,0	8382	41,9	1782	8,91	42,9	0,21	19585	5,97	3282256	592
H +18:00	20000	100	9182	45,9	8914	44,6	1861	9,31	42,9	0,21	18363	6,01	3055558	769
H +24:00	20000	100	8116	40,6	9842	49,2	2000	10,0	42,9	0,21	16232	4,82	3368684	1213
H +36:00	20000	100	6372	31,7	11380	56,9	2220	11,1	42,9	0,21	13441	2,23	6037363	2355
H +48:00	20000	100	4976	24,9	12604	63,0	2377	11,9	42,9	0,21	9953	1,35	7363979	4709

Within the first 4 hours as of the OS start the oil slick spreads westward of the OS point under the action of the wind and current. After 4 hours the semi-perimeter makes 2156 m, the volume of evaporated oil makes 15,3%, the volume of the dispersed oil - 5,4%. Further the oil slick drifts northward and in 5 hours and 32 minutes SGC reaches the coastline in the area of the Cape Set-Navolok in the point with coordinates $69^{0}22,5$ N; $33^{0}28$ E. Further the oil slick moves along the cape Set-Navolok polluting the coastline at the length of 4,27 km. After 10 hours as of the OS start the oil slick commences drifting from the Cape Set-Navolok to the open sea. After 10 hours the semi-perimeter of the oil slick makes 2683 m, the volume of the evaporated oil - 33,8%, the volume of the dispersed oil - 8%. Further the oil slick moves north-eastward blocking commercial marine traffic along the set shipping routes inbound/outbound of the Kolskiy Gulf. After 24 hours the semi-perimeter of the oil slick makes 3252 m, the volume of the evaporated oil - 49,2%, the volume of the dispersed oil - 10%. The volume of the oil/water mixture has decreased compared to the OS volume with 18,8%. At the moment of modelling completion (48 hours) about 24,9% of the hazardous substance remain afloat, the oil slick centre is located in the point with coordinates $69^{0}37N$; $33^{0}50E$, the average oil slick thickness makes 1,35 mm.

The graphic display of the oil slick spreading as per the scenario GC-Aut-S-1 is shown on figure 37 - 50. The charts of the processes typical for SGC behaviour on water are shown in figures 41-53.

Figure 37. H+01:00. Oil slick spreading as per the scenario GC-Aut-S-1.

Figure 38. H +02:00. Oil slick spreading as per the scenario GC-Aut-S-1.

Figure 42. H+06:00. Oil slick spreading as per the scenario GC-Aut-S-1.

Figure 46. H +15:00. Oil slick spreading as per the scenario GC-Aut-S-1.

Figure 49. H + 36:00. Oil slick spreading as per the scenario GC-Aut-S-1.

Figure 50. H +48:00. Oil slick spreading as per the scenario GC-Aut-S-1.

Figure 51. The chart of processes as per the scenario GC-Aut-S-1.

Figure 52. Oil slick area change dynamics as per the scenario GC-Aut-S-1.

Figure 53. Oil slick thickness change dynamics as per the scenario GC-Aut-S-1.

1.2.4	Oil slick behaviour	modelling as	per the scenario	Na-Aut-S-1
-------	---------------------	--------------	------------------	------------

Modelling interval	Oil s volu	pill me	Oil vo aflo	lume at	Evapora volu	ated oil Ime	Disper volu	sed oil Ime	Oil volume ashore		Oil volume ashore		Oil volume ashore		Oil/water mixture volume afloat	Average oil slick thickness	Oil slick area	Viscosity
Units	m ³	%	m ³	%	m ³	%	m ³	%	m ³	%	m³	mm	m ²	cSt				
H+01:00	2846	100	2493	87,6	331	11,6	22	0,77	0	0	2842	9,24	307665	3,5				
H +02:00	5715	100	4542	79,5	1113	19,5	60,5	1,06	0	0	5556	8,04	690638	9,2				
H +03:00	8135	100	5864	72,1	2171	26,7	100	1,23	0	0	7527	6,89	1092263	21,2				
H +04:00	10000	100	6530	65,3	3339	33,4	132	1,32	0	0	8696	5,54	1570627	44,3				
H +05:00	10000	100	5575	55,8	4278	42,8	148	1,48	0	0	7831	4,37	1790416	128				
H+05:34 Landfall	10000	100	5202	52,0	4644	46,4	152	1,52	2,2	0,02	7395	4,01	1843960	189				
H +07:00	10000	100	4532	45,3	5278	52,8	158	1,58	32,6	0,33	6506	3,53	1841116	361				
H +08:00	10000	100	4203	42,0	5599	56,0	161	1,61	37,2	0,37	6043	3,57	1695082	497				
H +09:00	10000	100	3967	39,7	5833	58,3	164	1,64	37,2	0,37	5706	3,41	1672016	627				
H +12:00	10000	100	3357	33,6	6437	64,4	170	1,70	42,6	0,43	4829	2,22	2174096	1136				
H +15:00	10000	100	2809	28,1	6981	69,8	174	1,74	37,2	0,37	4041	1,44	2805002	1940				
H +18:00	10000	100	2460	24,6	7327	73,3	177	1,77	37,2	0,37	3538	1,46	2423796	2729				
H +24:00	10000	100	1791	17,9	7990	79,9	182	1,82	37,2	0,37	2577	0,84	3057320	5253				
H +36:00	10000	100	598	5,98	9180	91,8	187	1,87	37,2	0,37	859	0,51	1698028	17005				
H +48:00	10000	100	150	1,50	9626	96,3	188	1,88	37,2	0,37	216	0,14	1490359	26401				
H +54:00	10000	100	26,0	0,26	9750	97,5	188	1,88	37,2	0,37	37,1	0,06	618885	29877				

Table 1.2.4.1: Oil slick spreading parameters as per the scenario Na-Aut-S-1

Within the first 4 hours as of the moment of OS start the oil slick spreads westward of the OS point under the action of the wind and current. After 4 hours the oil slick semi-perimeter makes 2221 m, the volume of the evaporated oil makes 33,4%, the volume of the dispersed oil - 1,32%. Further the oil slick drifts northward and after 5 hours and 34 minutes the naphtha reaches the coastline in the area of the Cape Set-Navolok in the point with coordinates $69^{\circ}22,5$ N; $33^{\circ}28$ E. Further the oil slick moves along the Cape Set-Navolok polluting the coastline at the length of 4,27 km. After 9 hours as of the OS start the oil slick commences drifting from the cape Set-Navolok to the open sea. After 9 hours the oil slick semi-perimeter makes 2291 m, the volume of the evaporated oil - 58%, the volume of the dispersed oil - 1,6%. Further the oil slick moves north-eastward blocking the commercial marine traffic along the set shipping routes inbound/outbound of the Kolskiy Gulf. After 24 hours the volume of the evaporated oil makes 80% of the OS initial volume. The oil slick semi-perimeter makes 3092 m, the average oil slick thickness 0,84 mm. To the moment of the modelling completion (54 hours), the oil slick with the average thickness of 0,06 mm remains afloat, the oil slick centre is located in the point with coordinates $69^{\circ}37N$; $33^{\circ}52E$.

The graphic display of the oil slick spreading as per the scenario Na-Aut-S-1 is shown in figures 54 – 69.

The charts of processes typical for naphtha behaviour on water are shown in figures 70-72.

Improvement of the Emergency Oil Spill Response System under the Arctic Conditions for Protection of Sensitive Coastal Areas (Case Study: the Barents and the White Seas) 27

160

Figure 61. H +08:00. Oil slick spreading as per the scenario Na-Aut-S-1.

Figure 65. H +18:00. Oil slick spreading as per the scenario Na-Aut-S-1.

e.

-21

W 33

68.25

1.0

.

Figure 69. H +54:00. Oil slick spreading as per the scenario Na-Aut-S-1.

Figure 70. The chart of processes as per the scenario Na-Aut-S-1.

Figure 71. Oil slick area change dynamics as per the scenario Na-Aut-S-1.

Figure 72. Oil slick thickness change dynamics as per the scenario Na-Aut-S-1.

1.2.5 The process dynamics typical for oil spill behaviour in the Barents Sea under the autumn southward wind (Aut-S-1) Figures 73-77 display dynamics of processes typical for oil spill behaviour in the Barents Sea as per the scenarios Aut-S-1.

Figure 73. The chart of the evaporation process as per the scenarios Aut-S-1.

Figure 75. Oil/water mixture volume change dynamics as per the scenarios Aut-S-1.

Figure 74. The chart of the dispersion process as per the scenarios Aut-S-1.

Figure 76. Oil slick thickness change dynamics as per the scenarios Aut-S-1.

Figure 77. Change dynamics of the spreading area per 1 M³ of different types of oil as per the scenarios Aut-S-1.

1.3 Oil slick behaviour modelling in the Barents Sea under the autumn south-westward wind

1.3.1 Oil slick behaviour modelling as per the scenario COV-Aut-SW-1

Modelling interval	Oil s volu	pill me	Oil vo aflo	lume bat	Evapor volu	ated oil Jme	Disper volu	sed oil ume	Oil volume ashore		Oil volume ashore		Oil volume ashore		Oil/water mixture volume afloat	Average oil slick thickness	Oil slick area	Viscosity
Units	m ³	%	m ³	%	m ³	%	m ³	%	m ³	%	m ³	mm	m ²	cSt				
H+01:00	5507	100	5483	99,6	13,8	0,25	9,7	0,18	0	0	6416	31,2	205901	97,8				
H +02:00	10785	100	10708	99,3	46,8	0,43	29,5	0,27	0	0	14173	28,1	505136	138				
H +03:00	15781	100	15628	99,0	99,7	0,63	52,9	0,34	0	0	22592	28,7	785827	178				
H +04:00	19973	100	19731	98,8	164	0,82	78,3	0,39	0	0	30614	33,7	908702	220				
H +05:00	20000	100	19678	98,4	221	1,11	100	0,50	0	0	33737	37,3	904448	297				
H +06:00	20000	100	19608	98,0	274	1,37	118	0,59	0	0	35561	38,6	921948	356				
H +07:00	20000	100	19541	97,7	323	1,62	135	0,68	0	0	36504	39,7	919253	395				
H +08:00	20000	100	19475	97,4	372	1,86	153	0,77	0	0	36926	36,6	1010211	422				
H +09:00	20000	100	19415	97,1	414	2,07	171	0,86	0	0	37082	43,8	847015	439				
H +12:00	20000	100	19249	96,2	521	2,61	231	1,16	0	0	36989	37,6	983807	471				
H +15:00	20000	100	19083	95,4	621	3,11	296	1,48	0	0	36695	38,0	966608	495				
H +18:00	20000	100	18938	94,7	638	3,19	364	1,82	0	0	36420	37,8	964304	514				
H +24:00	20000	100	18653	93,3	840	4,20	507	2,54	0	0	35870	28,5	1256966	522				
H +36:00	20000	100	18101	90,5	1093	5,47	806	4,03	0	0	34810	35,9	969647	625				

Table 1.3.1.1: Oil slick spreading parameters as per the scenario COV-Aut-SW-1

Within the first 4 hours as of the OS start the oil slick spreads westward of the OS point under the action of the wind and current. After 4 hours as of the OS start the oil slick semi-perimeter makes 1689 m, the volume of the evaporated oil – 0,82%, the volume of the dispersed oil – 0,39%. Further the oil drifts northward to the open sea. After 9 hours from the OS start the oil slick semi-perimeter makes 1630 m, the volume of the evaporated oil – 2,07%, the volume of the dispersed oil – 0,86%. After 9 hours as of the OS start the oil slick commences drifting north-eastward blocking the commercial marine traffic along the set shipping routes inbound/outbound of the Kolskiy Gulf. After 24 hours as of the OS start the oil slick semi-perimeter makes 1987 m, the volume of the evaporated oil – 4,20%, the volume of the dispersed oil – 2,54%. The oil/water mixture has increased compared to the OS volume with 79,4%. To the moment of modelling completion (36 hours), the oil slick centre is located in the point with coordinates 69^025N ; 33^045E , the average oil slick thickness makes 35,9 mm.

The graphic display of the oil slick spreading as per the scenario COV-Aut-SW-1 is shown in figures 78 – 91.

The charts of processes typical for oil behaviour on water are shown in figures 92-94.

Figure 78. H+01:00. Oil slick spreading as per the scenario COV-Aut-SW-1.

Figure 80. H +03:00. Oil slick spreading as per the scenario COV-Aut-SW-1.

Figure 79. H +02:00. Oil slick spreading as per the scenario COV-Aut-SW-.

Figure. H +04:00. Oil slick spreading as per the scenario COV-Aut-SW-1.

Figure 84. H +07:00. Oil slick spreading as per the scenario COV-Aut-SW-1.

Figure 85. H +08:00. Oil slick spreading as per the scenario COV-Aut-SW-1.

Figure 88. H +15:00. Oil slick spreading as per the scenario COV-Aut-SW-1.

Figure.89. H +18:00. Oil slick spreading as per the scenario COV-Aut-SW-1.

Figure 90. H +24:00. Oil slick spreading as per the scenario COV-Aut-SW-1.

Figure 91. H + 36:00. Oil slick spreading as per the scenario COV-Aut-SW-1.

Figure 92. The chart of processes as per the scenario COV-Aut-SW-1.

Figure 93. Oil slick area change dynamics as per the scenario COV-Aut-SW-1.

1.3.2 Oil slick behaviour modelling as per the scenario BO-Aut-SW-1

Tuble 1.5.2.1. On shek spicading parameters as per the section be not over
--

Modelling interval	Oil s volu	pill me	Oil vol aflo	ume at	Evapor volu	ated oil Jme	Disper volu	sed oil ume	Oil vo ash	olume lore	Oil/water mixture volume afloat	Average oil slick thickness	Oil slick area	Viscosity
Units	m ³	%	m ³	%	m ³	%	m ³	%	m ³	%	m ³	mm	m²	cSt
H+01:00	3046	100	3046	100	0	0	0	0	0	0	3046	42,6	71459	15541
H +02:00	6117	100	6117	100	0	0	0	0	0	0	6117	33,5	182831	15541
H +03:00	9187	100	9187	100	0	0	0	0	0	0	9187	30,2	303880	15541
H +04:00	12000	100	11991	100	0	0	0	0	0	0	11991	30,5	392542	15541
H +05:00	12000	100	12000	100	0	0	0	0	0	0	12000	33,8	355094	15541
H +06:00	12000	100	12000	100	0	0	0	0	0	0	12000	35,3	339970	15541
H +07:00	12000	100	12000	100	0	0	0	0	0	0	12000	37,0	324077	15541
H +08:00	12000	100	12000	100	0	0	0	0	0	0	12000	37,1	323027	15541
H +09:00	12000	100	12000	100	0	0	0	0	0	0	12000	44,4	270335	15541
H +12:00	12000	100	12000	100	0	0	0	0	0	0	12000	41,8	286943	15541
H +15:00	12000	100	12000	100	0	0	0	0	0	0	12000	47,0	255216	15541
H +18:00	12000	100	12000	100	0	0	0	0	0	0	12000	52,0	230946	15541
H +24:00	12000	100	12000	100	0	0	0	0	0	0	12000	45,6	263110	15541
H +36:00	12000	100	12000	100	0	0	0	0	0	0	12000	42,6	161507	15541

Within the first 4 hours the oil slick spreads westward of the OS point under the action of the wind and current. After 4 hours as of the OS start the oil slick semi-perimeter makes 1110 M, the evaporation and dispersion processes are not detected by the programme. Further the oil slick drifts northward to the open sea. After 9 hours as of the OS start the oil slick semi-perimeter makes 921 m, the evaporation and dispersion processes are not detected by the programme. Further the oil slick moves north-eastward blocking the commercial marine traffic along the set shipping routes inbound/outbound of the Kolskiy Gulf. After 24 hours the oil slick semi-perimeter makes 909 m, the oil/water mixture volume compared to the OS volume does not increase. To the moment of the modelling completion (36 hours), the oil spill centre is located in the point with coordinates 69^o29N; 34^o09E, the average oil slick thickness makes 42,6 mm.

The graphic display of the oil slick spreading as per the scenario BO-Aut-SW-1 is shown in figures 95 – 108.

The charts of processes typical for black oil behaviour on water are shown in figures 109-111.

Figure. 97. H +03:00. Oil slick spreading as per the scenario BO-Aut-SW-1.

Figure 98. H +04:00.Oil slick spreading as per the scenario BO-Aut-SW-1.

Figure 101. H +07:00. Oil slick spreading as per the scenario BO-Aut-SW-1.

Figure 102. H +08:00. Oil slick spreading as per the scenario BO-Aut-SW-1.

Figure 105. H +15:00. Oil slick spreading as per the scenario BO-Aut-SW-1.

Figure 106. H +18:00. Oil slick spreading as per the scenario BO-Aut-SW-1.

205

171

106 120

98

113

110 115

109 131 13

100 101

113

108 105

102 104

99

9 69 250

84

44 3

62030

***156** 210

191

Figure 107. H +24:00. Oil slick spreading as per the scenario BO-Aut-SW-1.

Figure 108. H+36:. Oil slick spreading as per the scenario BO-Aut-SW-1.

Figure 109. The chart of processes as per the scenario BO-Aut-SW-1.

Figure 110. Oil slick area change dynamics as per the scenario BO-Aut-SW-1.

Figure 111. Oil slick thickness change dynamics as per the scenario BO-Aut-SW-1

1.3.3 Oil slick behaviour modelling as per the scenario GC-Aut-SW-1

	Table 1.3.3.1:	Oil slick spreading	parameters as per	the scenario	GC-Aut-SW-1
--	----------------	---------------------	-------------------	--------------	-------------

Modelling interval	Oil s volu	pill me	Oil vo aflo	lume bat	Evapor volu	ated oil Ime	Disper volu	sed oil Ime	Oil vo ash	olume lore	Oil/water mixture volume afloat	Average oil slick thickness	Oil slick area	Viscosity
Units	m ³	%	m ³	%	m ³	%	m ³	%	m ³	%	m³	mm	m²	cSt
H+01:00	5362	100	4916	91,7	277	5,17	169	3,15	0	0	5739	19,82	289550	3,8
H +02:00	10767	100	9415	87,4	885	8,22	467	4,34	0	0	12370	17,43	709839	6,9
H +03:00	15707	100	13122	83,5	1786	11,4	799	5,09	0	0	18942	17,37	1090807	12,2
H +04:00	19967	100	16002	80,1	2850	14,3	1115	5,58	0	0	24832	18,96	1309543	19,7
H +05:00	20000	100	14936	74,7	3733	18,7	1330	6,65	0	0	26025	18,62	1397559	41,6
H +06:00	20000	100	14093	70,5	4454	22,3	1452	7,26	0	0	26237	17,68	1484328	71,1
H +07:00	20000	100	13418	67,1	5040	25,2	1541	7,71	0	0	25882	16,98	1524645	104
H +08:00	20000	100	12831	64,2	5555	27,8	1614	8,07	0	0	25203	15,81	1594467	141
H +09:00	20000	100	12385	61,9	5936	29,7	1678	8,39	0	0	24551	18,07	1358351	174
H +12:00	20000	100	11315	56,6	6846	34,2	1839	9,20	0	0	22606	12,04	1876806	278
H +15:00	20000	100	10386	51,9	7649	38,2	1965	9,83	0	0	20770	10,53	1972723	413
H +18:00	20000	100	9705	48,5	8224	41,1	2070	10,4	0	0	19410	8,88	2186199	548
H +24:00	20000	100	8543	42,7	9214	46,1	2243	11,2	0	0	17087	5,82	2938180	890
H +36:00	20000	100	6884	34,4	10618	53,1	2498	12,5	0	0	13767	5,30	2603203	1773

Within the first 4 hours as of the OS start the oil slick spreads westward of the OS point under the action of the wind and current. After 4 hours the oil slick semi-perimeter makes 2028 m, the volume of the evaporated oil makes 14,3%, the volume of the dispersed oil 5,6%. Further the oil slick drifts northward to the open sea. After 9 hours as of the OS start the oil slick semi-perimeter makes 2069 m, the volume of the evaporated oil – 29,7%, the volume of the dispersed oil – 8,4%. After 9 hours as of the OS start the oil slick commences drifting north-eastward blocking the commercial marine traffic along the set shipping routes inbound/outbound of the Kolskiy Gulf. After 24 hours as of the OS start the oil slick semi-perimeter makes 3037 m, the volume of the evaporated oil – 46,1%, the volume of the dispersed oil – 11,2%. The volume of the oil/water mixture has decreased compared to the OS volume with 14,6%. To the moment of modelling completion (36 hours), 34,4% of the hazardous substance remain afloat, the oil slick centre is located in the point with coordinates $69^{0}29N$; $34^{0}10E$, the average oil slick thickness makes 12,5 mm.

The graphic display of the oil slick spreading as per the scenario GC-Aut-SW-1 is shown in figures 112 - 125.

The charts of processes typical for SGC behaviour on water are shown in figures 126-128.

Figure 112. H+01:00. Oil slick spreading as per the scenario GC-Aut-SW-1.

Figure 114. H+03:00. Oil slick spreading as per the scenario GC-Aut-SW-1.

Figure 113. H+02:00. Oil slick spreading as per the scenario GC-Aut-SW-1.

Figure 115. H+04:00. Oil slick spreading as per the scenario GC-Aut-SW-1.

Figure 116. H+05:00. Oil slick spreading as per the scenario GC-Aut-SW-1.

Figure 118. H+07:00. Oil slick spreading as per the scenario GC-Aut-SW-1.

Figure 117. H+06:00. Oil slick spreading as per the scenario GC-Aut-SW-1.

Figure 119. H+08:00. Oil slick spreading as per the scenario GC-Aut-SW-1.

Figure 122. H+15:00. Oil slick spreading as per the scenario GC-Aut-SW-1.

Figure 123. H+18:00. Oil slick spreading as per the scenario GC-Aut-SW-1.

Figure 124. H+24:00. Oil slick spreading as per the scenario GC-Aut-SW-1.

Figure 125. H+36:. Oil slick spreading as per the scenario Gc-Aut-SW-1.

Figure 127. Oil slick area change dynamics as per the scenario GC-Aut-SW-1.

osity

1.3.4 Oil slick behaviour modelling as per the scenario Na-Aut-SW-1

Modelling interval	Oil s volu	pill me	Oil vo aflo	lume bat	Evapor volu	ated oil ume	Disper volu	sed oil Jme	Oil vo ash	olume Iore	Oil/water mixture volume afloat	Average oil slick thickness	Oil slick area	Viscosit
Units	m ³	%	m ³	%	m ³	%	m ³	%	m ³	%	m ³	mm	m ²	cSt
H+01:00	2764	100	2421	87,6	307	11,1	35,3	1,28	0	0	2762	11,4	242239	3,4
H+02:00	5408	100	4302	79,5	998	18,5	108	2,00	0	0	5276	8,44	625025	8,4
H+03:00	7909	100	5699	72,1	2014	25,5	196	2,48	0	0	7277	6,97	1044060	18,6
H+04:00	10000	100	6559	65,6	3153	31,5	288	2,88	0	0	8617	6,63	1300327	37
H+05:00	10000	100	5576	55,8	4052	40,5	372	3,72	0	0	7756	4,70	1651259	101
H+06:00	10000	100	4877	48,8	4677	46,8	446	4,46	0	0	6912	3,88	1781506	196
H+07:00	10000	100	4366	43,7	5119	51,2	516	5,16	0	0	6223	3,32	1875262	307
H+08:00	10000	100	3945	39,5	5472	54,7	583	5,83	0	0	5632	3,02	1862421	435
H+09:00	10000	100	3636	36,4	5715	57,2	649	6,49	0	0	5193	3,20	1621178	553
H+12:00	10000	100	2871	28,7	6287	62,9	842	8,42	0	0	4101	1,77	2314923	971
H+15:00	10000	100	2180	21,8	6795	68,0	1027	10,3	0	0	3113	1,31	2379972	1597
H+18:00	10000	100	1663	16,6	7139	71,4	1197	12,0	0	0	2376	0,98	2419979	2244
H+24:00	10000	100	985	9,85	7637	76,4	1379	13,8	0	0	1407	0,73	1932014	3656
H+32:00	10000	100	452	4.52	8070	80.7	1479	14.8	0	0	645	0.40	1607563	5574

Table 1.3.4.1: Oil slick spreading parameters as per the scenario Na-Aut-SW-1

Within the first 4 hours as of the OS start the oil slick spreads westward of the OS point under the action of the wind and current. After 4 hours the oil slick semi-perimeter makes 2020 m, the volume of the evaporated oil makes 32,5%, the volume of the dispersed oil 2,88%. Further the oils slick drifts northward to the open sea. After 9 hours as of the OS start the oil slick semi-perimeter makes 2256 m, the volume of the evaporated oil – 57,2%, the volume of the dispersed oil – 6,49%. After 9 hours as of the OS start the oil slick commences drifting north-eastward blocking commercial marine traffic along the set shipping routes inbound/outbound of the Kolskiy Gulf. After 24 hours the volume of the evaporated oil makes 76,4% of the initial OS volume. The oil slick semi-perimeter makes 2463 m, the average oil slick thickness - 0,73 mm. To the moment of modelling completion (32 hours), the oil slick with the average thickness of 0,40 mm remains afloat, the centre of the oil slick is located in the point with coordinates 69°28N; 34°00E.

The graphic display of the oil slick spreading as per the scenario Na-Aut-SW-1 is shown in figures 129 – 142.

The charts of processes typical for naphtha behaviour on water are shown in figures 143-145.

Figure 129. H+01:00. Oil slick spreading as per the scenario Na-Aut-SW-1.

Figure 131. H+03:00. Oil slick spreading as per the scenario Na-Aut-SW-1.

Figure 130. H+02:00. Oil slick spreading as per the scenario Na-Aut-SW-1.

Figure 132. H+04:00. Oil slick spreading as per the scenario Na-Aut-SW-1.

Figure 135. H+08:00. Oil slick spreading as per the scenario Na-Aut-SW-1. Figure 136.

Figure 136. H+09:00. Oil slick spreading as per the scenario Na-Aut-SW-1.

Figure 139. H+18:00. Oil slick spreading as per the scenario Na-Aut-SW-1.

Figure 140. H+24:00. Oil slick spreading as per the scenario Na-Aut-SW-1.

Figure 141. H+28:00. Oil slick spreading as per the scenario Na-Aut-SW-1.

Figure 142. H+32:. Oil slick spreading as per the scenario Na-Aut-SW-1.

Figure 143. The chart of processes as per the scenario Na-Aut-SW-1.

Figure 144. Oil slick area change dynamics as per the scenario Na-Aut-SW-1.

1.3.5 The process dynamics typical for oil spill behaviour in the Barents Sea under the autumn south-westward wind (Aut-SW-1) Figures 146-150 show dynamics of processes typical for oil behaviour in the Barents Sea as per the scenario Aut-SW-1.

Figure 146. The evaporation process chart as per the scenario Aut-SW-1.

Figure 148. Oil/water mixture volume change dynamics as epr the scenario Aut-SW-1.

Figure 149. Oil slick thickness change dynamics as per the scenario Aut-SW-1.

Figure 150. Dynamics of the spreading area change per 1 M^3 of various types of oil as per the scenario Aut-SW-1.

1.4 Oil spill behaviour modelling in the Barents Sea under the spring northward wind

1.4.1 Oil slick behaviour modelling as per the scenario COV-Spr-N-1

Modelling interval	Oil s volu	pill me	Oil vol aflo	lume at	Evapor volu	ated oil Ime	Disper volu	sed oil Ime	Oil vo ash	olume lore	Oil/water mixture volume afloat	Average oil slick thickness	Oil slick area	Viscosity
Units	m ³	%	m ³	%	m ³	%	m ³	%	m ³	%	m ³	mm	m ²	cSt
H+01:00	5507	100	5472	99,4	21,8	0,40	12,7	0,23	0	0	6949	18,3	380255	123
H+02:00	10785	100	10663	98,9	86,2	0,80	35,7	0,33	0	0	15704	16,4	955823	190
H+03:00	15781	100	15531	98,4	189	1,20	60,8	0,39	0	0	24838	17,2	1443467	248
H+04:00	19973	100	19570	98,0	316	1,58	86,8	0,43	0	0	33138	17,5	1892271	301
H+05:00	20000	100	19456	97,3	437	2,19	108	0,54	0	0	35775	17,1	2089615	400
H+06:00	20000	100	19323	96,6	552	2,76	125	0,63	0	0	36636	15,1	2419942	461
H+07:00	20000	100	19194	96,0	662	3,31	144	0,72	0	0	36754	13,5	2719214	499
H+08:00	20000	100	19068	95,3	768	3,84	164	0,82	0	0	36623	11,4	3206322	530
H+09:00 Landfall	20000	100	18938	94,7	877	4,39	185	0,93	0	0	36405	9,00	4045577	561
H+10:00	20000	100	18787	93,9	991	4,96	208	1,04	15,0	0,08	36124	7,17	5041562	594
H+12:00	20000	100	18485	92,4	1173	5,87	225	1,13	87,3	0,44	35547	8,88	4003109	649
H+15:00	20000	100	18131	90,7	1306	6,53	331	1,66	232	1,16	34867	16,0	2174910	694
H+18:00	20000	100	17969	89,8	1349	6,75	411	2,06	271	1,36	34556	58,0	595545	708
H+24:00	20000	100	17660	88,3	1415	7,08	583	2,92	342	1,71	33962	41,4	819772	731

Table 1.4.1.1: Oil slick spreading parameters as per the scenario COV-Spr-N-1

Within the first 4 hours as of the OS start the oil slick spreads south-westward of the OS point under the action of the wind and current. After 4 hours as of the OS start the oil slick semi-perimeter makes 2438 m, the volume of the evaporated oil – 1,58%, the volume of the dispersed oil – 0,43%. After 6 hours the oil slick reaches the eastern coast of the Toros island. Further the oil slick drifts south-eastward in the direction of the Cape Letinskiy. The oil slick break-up in several fields is observed. After 9 hours after the OS start the oil slick semi-perimeter based on the total area makes 3564 m, the volume of the evaporated oil – 4,39%, the volume of the dispersed oil – 0,93%. Further the oil slick is washed ashore while moving eastward. After 10 hours as of the OS start about 5 km of the coastline is polluted in the area of the Cape Letinskiy. After 12 hours as of the OS start about 5 km of the coastline is polluted in the area of the Cape Letinskiy. After 12 hours as of the OS start the oil slick semi-perimeter makes 3545 m, the volume of the evaporated oil – 5,87%, the volume of the dispersed oil – 1,13%. The volume of the dispersed compared to the OS volume with 77,8%. More than 10 km of the coastline has been polluted. To the moment of modelling completion (24 hours), the oil slick has broken up in parts and virtually total oil volume has reached the coastline of the Barents Sea. The eastern coastline from the Cape Baklaniy to the Cape Dolgy and the western coastline – the Oleniy islands, the Ekaterininskiy Island and the Cape Gavanskiy with the total length of more than 30 km have been polluted with oil. The volume of the evaporated oil – 7,08%, the volume of the dispersed oil – 2,92% the average oil slick thickness makes 41,4 mm. The graphic display of the oil slick spreading as per the scenario COV-Spr-N-1 is shown in figures 151 – 164.

The charts of processes typical for oil behaviour on water are shown in figures 165-167.

Figure 153. H+03:00. Oil slick spreading as per the scenario COV-Spr-N-1.

Figure 152. H+02:00. Oil slick spreading as per the scenario COV-Spr-N-1.

Figure 154. H+04:00. Oil slick spreading as per the scenario COV-Spr-N-1.

Figure 155. H+05:00. Oil slick spreading as per the scenario COV-Spr-N-1.

Figure 157. H+07:00. Oil slick spreading as per the scenario COV-Spr-N-1.

Figure 156. H+06:00. Oil slick spreading as per the scenario COV-Spr-N-1.

Figure 158. H+08:00. Oil slick spreading as per the scenario COV-Spr-N-1.

Figure 159. H+09:00. Oil slick spreading as per the scenario COV-Spr-N-1.

Figure 161. H+12:00. Oil slick spreading as per the scenario COV-Spr-N-1.

Figure 160. H+10:00. Oil slick spreading as per the scenario COV-Spr-N-1.

Figure 162. H+15:00. Oil slick spreading as per the scenario COV-Spr-N-1.

Figure 163. H+18:00. Oil slick spreading as per the scenario COV-Spr-N-1.

Figure 164. H+24:00. Oil slick spreading as per the scenario COV-Spr-N-1.

Figure 165. The chart of processes as per the scenario COV-Spr-N-1.

Figure 166. Oil slick area change dynamics as per the scenario COV-Spr-N-1.

Viscosity

1.4.2 Oil slick behaviour modelling as per the scenario BO-Spr-N-1

10010 11112		on opro	aanig pe	in annote	10 ao po	1 1110 000							
Modelling interval	Oil s volu	pill me	Oil vol aflo	lume at	Evapor volu	ated oil ume	Disper volu	sed oil ume	Oil vo ash	olume Iore	Oil/water mixture volume afloat	Average oil slick thickness	Oil slick area
Units	m ³	%	m ³	%	m³	%	m ³	%	m ³	%	m ³	mm	m ²
H+01:00	3046	100	3046	100	0	0	0	0	0	0	3046	20,0	152089
H+02:00	6117	100	6117	100	0	0	0	0	0	0	6117	16,1	379977
H+03:00	9187	100	9187	100	0	0	0	0	0	0	9187	14,9	616789
H+04:00	12000	100	12000	100	0	0	0	0	0	0	12000	14,5	824910
H+05:00	12000	100	12000	100	0	0	0	0	0	0	12000	14,7	815053
H+06:00	12000	100	12000	100	0	0	0	0	0	0	12000	13,8	870944
H+07:00	12000	100	12000	100	0	0	0	0	0	0	12000	13,3	905223
H+08:00	12000	100	12000	100	0	0	0	0	0	0	12000	11,6	1033160
H+09:00	12000	100	12000	100	0	0	0	0	0	0	12000	9,89	1213601
H+09:24 Landfall	12000	100	11998	100	0	0	0	0	1,6	0	11998	9,18	1306340
H+12:00	12000	100	11946	99,6	0	0	0	0	53,9	0,45	11946	10,9	1095594
H+15:00	12000	100	11798	98,3	0	0	0	0	202	1,68	11798	24,4	484161
H+18:00	12000	100	11781	98,2	0	0	0	0	119	0,99	11781	250	47117
H + 20.00	12000	100	11766	98.1	0	0	0	0	234	1 95	11766	227	51832

Table 1.4.2.1: Oil slick spreading parameters as per the scenario BO-Spr-N-1

Within the first 4 hours as of the OS start the oils slick spreads south-westward of the OS point under the action of the wind and current. After 4 hours ass of the OS start the oil slick semi-perimeter makes 1609 m, the evaporation and dispersion processes are not detected by the programme. Further the oil slick drifts south-eastward to the Cape Letinskiy. The oil slick breaks up in several fields. After 9 hours as of the OS start the slick semi-perimeter based on the total area makes 1952 m, the evaporation and dispersion processes are not detected by the programme. Further the oil slick is washed ashore while moving eastward. After 9 hours 24 minutes as of the OS start the oil slick reaches the coastline in the area of the Cape Baklaniy. The oil slick semi-perimeter makes 2025 m. After 12 hours as of the OS start about 10 km of the coastline in the area of the Capes Baklaniy and Letinskiy have been polluted. The volume of the oil/water mixture compared to the OS volume has not increased. To the moment of the modelling completion (20 hours), the oil slick has broken up in parts and virtually the total oil volume has reached the Barents Sea coastline. The eastern coastline from the Cape Baklaniy to the Cape Dolgiy with the total length of more than 25 km has been polluted with oil. The evaporation and dispersion processes are not detected by the programme, the average oil slick thickness makes 22,7 sm.

The graphic display of the oil slick spreading as per the scenario BO-Spr-N-1 is shown on figure 168 – 181. The charts of the processes typical for the oil behaviour on water are shown in figures 182-184.

Figure 170. H+03:00. Oil slick spreading as per the scenario BO-Spr-N-1. Figure 171. H+04:00. Oil slick spreading as per the scenario BO-Spr-N-1.

Figure 174. H+07:00. Oil slick spreading as per the scenario BO-Spr-N-1.

Figure 173. H+06:00. Oil slick spreading as per the scenario BO-Spr-N-1.

Figure 175. H+08:00. Oil slick spreading as per the scenario BO-Spr-N-1.

Figure 179. H+15:00. Oil slick spreading as per the scenario BO-Spr-N-1.

Figure 180. H+18:00. Oil slick spreading as per the scenario BO-Spr-N-1.

Figure 181. H+20:00. Oil slick spreading as per the scenario BO-Spr-N-1.

Figure 182. The chart of processes as per the scenario BO-Spr-N-1.

Рис. 183. Oil slick area change dynamics as per the scenario BO-Spr-N-1.

1.4.3 Oil slick behaviour modelling as per the scenario GC-Spr-N-1

Table 1.4.3.1: Oil slick spreading parameters as per the scenario GC-Spr-N-1

Within the first 4 hours as of the OS start the oil slick spreads south-westward of the OS point under the action of the wind and current. After 4 hours as of the OS start the oil slick semi-perimeter makes 2829 m, the volume of the evaporated oil – 22%, the volume of the dispersed oil – 6,2%. After 6 hours the oil slick reaches the eastern coastline of the Toros island. Further the oil slick drifts south-eastward to the Cape Letinskiy. The oil slick breaks up in several fields. After 9 hours as of the OS start the oil slick semi-perimeter based on the total area makes 4341 m, the volume of the evaporated oil – 43,2%, the volume of the dispersed oil – 8,5%. Further the oils slick is washed ashore while moving eastward. After 10 hours as of the OS start about 10 km of the coastline in the area of the Capes Baklaniy and Letinskiy has been polluted. After 12 hours the oil slick semi-perimeter makes 4247 m, the volume of the evaporated oil – 49,8%, the volume of the dispersed oil – 9,14%. The volume of the oil/water mixture has decreased compared to the OS volume with 18,9%. More than 25 km of the coastline has been polluted. To the moment of modelling completion (24 hours) the oil slick has broken in parts and virtually all oil has reached the Barents Sea coastline. The eastern coastline from the Cape Baklaniy to the Cape Dolgiy and the western coastline – the Oleniy islands, the Ekateriniskiy island and the Cape Gavanskiy with the total length of more than 35 km have been polluted with oil. The volume of the evaporated oil – 54,8%, the volume of the oil slick spreading as per the scenario GC-Spr-N-1 is shown in figures 185 – 199. The charts of processes typical for oil behaviour on water are shown in figures 200-202.

Figure 187. H+03:00. Oil slick spreading as per the scenario GC-Spr-N-1.

Figure 186. H+02:00. Oil slick spreading as per the scenario GC-Spr-N-1.

Figure 188. H+04:00. Oil slick spreading as per the scenario GC-Spr-N-1.

Figure 191. H+07:00. Oil slick spreading as per the scenario GC-Spr-N-1.

Figure 190. H+06:00. Oil slick spreading as per the scenario GC-Spr-N-1.

Figure 192. H+08:00. Oil slick spreading as per the scenario GC-Spr-N-1.

and the same and the second and and the

Figure 195. H+10:00. Oil slick spreading as per the scenario GC-Spr-N-1.

Figure 194. H+09:11. Oil slick spreading as per the scenario GC-Spr-N-1.

Figure 196. H+12:00. Oil slick spreading as per the scenario GC-Spr-N-1.

Figure 197. H+15:00. Oil slick spreading as per the scenario GC-Spr-N-1.

Figure 199. H+24:00. Oil slick spreading as per the scenario GC-Spr-N-1.

Figure 198. H+18:00. Oil slick spreading as per the scenario GC-Spr-N-1.

Figure 200. The chart of processes as per the scenario GC-Spr-N-1.

Figure 201. Oil slick area change dynamics as per the scenario GC-Spr-N-1.

1.4.4 Oil slick behaviour modelling as per the scenario Na-Spr-N-1

Within the first 4 hours as of the OS start the oil slick spreads south-westward of the OS point under the action of the wind and current. After 4 hours as of the OS start the oil slick semi-perimeter makes 2881 m, the volume of the evaporated oil - 36,1%, the volume of the dispersed oil -3,4%. After 6 hours the oil slick reaches the eastern coast of the Toros Island. Further the oil slick drifts south-eastward to the Cape Letinskiy After 9 hours as of the OS start the oil slick semi-perimeter makes 4540 m, the volume of the evaporated oil - 72,7%, the volume of the dispersed oil – 7,7%. Further the oil slick is washed ashore while moving eastward. After 10 hours as of the OS start about 4 km of the coastline in the area of the Capes Baklaniy and Letinskiy has been polluted. After 12 hours as of the OS start the volume of the evaporated oil - 80,7%, the volume of the dispersed oil - 9,9%. The volume of the oil/water mixture has decreased compared to the OS volume with 87,9%. To the moment of modelling completion (18 hours), the oil slick has spread here and there over the Barents Sea coastline from the Maly Berezov Island to the Cape Dolgiy. The volume of the evaporated oil - 83,6%, the volume of the dispersed oil - 11,3%, about 2,4% of the OS volume remains afloat, the average oil slick thickness makes 1,07 mm.

The graphic display of the oil slick spreading as per the scenario Na-Spr-N-1 is shown in figures 203 - 164.

The charts of processes typical for oil behaviour on water are shown in figures 165-167.

Figure 206. H+04:00. Oil slick spreading as per the scenario Na-Spr-N-1.

Figure 209. H+07:00. Oil slick spreading as per the scenario Na-Spr-N-1.

Figure 210. H+08:00. Oil slick spreading as per the scenario Na-Spr-N-1.

Figure 212. H+09:00. Oil slick spreading as per the scenario Na-Spr-N-1.

Figure 214. H+10:00. Oil slick spreading as per the scenario Na-Spr-N-1.

Figure 213. H+09:06. Oil slick spreading as per the scenario Na-Spr-N-1.

Figure 215. H+12:00. Oil slick spreading as per the scenario Na-Spr-N-1.

Figure 216. H+15:00. Oil slick spreading as per the scenario Na-Spr-N-1.

Figure 217. H+18:00. Oil slick spreading as per the scenario Na-Spr-N-1.

Figure 218. The chart of processes as per the scenario Na-Spr-N-1.

Figure 219. Oil slick area change dynamics as per the scenario Na-Spr-N-1.

1.4.5 The process dynamics typical for oil spill behaviour in the Barents Sea under the spring northward wind (Spr-N-1) Figures 221-232 show the dynamics of processes typical for oil behaviour in the Barents Sea as per the scenarios Spr-N-1.

Figure 223. Dynamics of the oil/water mixture volume changes as per the scenarios Spr-N-1.

Figure 224. Dynamics of the oil slick thicnkness change as per the scenarios Spr-N-1.

Figure 225. Dynamics of the spreading area change per 1 M³ of various types of oil as per the scenarios Spr-N-1.

1.5 Oil spill behaviour modelling in the Barents Sea under the spring north-westward wind

1.5.1 Oil slick behaviour modelling as per the scenario COV-Spr-NW-1

Modelling interval	Oil s volu	pill me	Oil vo aflo	lume at	Evapor volu	ated oil Ime	Disper volu	sed oil Ime	Oil vo ash	olume ore	Oil/water mixture volume afloat	Average oil slick thickness	Oil slick area	Viscosity
Units	m ³	%	m ³	%	m ³	%	m ³	%	m ³	%	m ³	mm	m ²	cSt
H+01:00	5507	100	5475	99,4	19,2	0,35	12,7	0,23	0	0	6952	26,7	259891	122
H+02:00	10785	100	10677	99,0	72,1	0,67	35,9	0,33	0	0	15726	19,9	789943	188
H+03:00	15781	100	15555	98,6	164	1,04	62,4	0,40	0	0	24879	19,3	1292322	244
H+04:00	19973	100	19607	98,2	276	1,38	89,6	0,45	0	0	33205	22,6	1467165	295
H+05:00	20000	100	19510	97,6	378	1,89	112	0,56	0	0	35877	22,7	1581116	389
H+06:00	20000	100	19391	97,0	478	2,39	131	0,66	0	0	36767	19,5	1882950	444
H+07:00	20000	100	19274	96,4	575	2,88	151	0,76	0	0	36908	16,8	2197659	479
H+07:06 Landfall	20000	100	19261	96,3	585	2,93	153	0,77	0,8	0	36901	16,7	2213141	482
H+08:00	20000	100	19146	95,7	668	3,34	172	0,86	13,7	0,07	36773	14,3	2573292	505
H+09:00	20000	100	19021	95,1	760	3,80	195	0,98	22,9	0,11	36565	12,6	2894698	530
H+10:00	20000	100	18895	94,5	848	4,24	220	1,10	37,2	0,19	36332	11,6	3126126	554
H+11:00	20000	100	18777	93,9	919	4,60	246	1,23	58,7	0,29	36109	13,5	2672376	573
H+12:00	20000	100	18664	93,3	974	4,87	272	1,36	89,2	0,45	35893	15,2	2368141	589
H+15:00	20000	100	18407	92,0	1094	5,47	357	1,79	142	0,71	35398	24,0	1473917	625
H+18:00	20000	100	18246	91,2	1151	5,76	445	2,23	158	0,79	35088	78,9	444575	643
H+20:00	20000	100	18135	90,7	1183	5,92	506	2,53	176	0,88	34874	75,0	465254	653

Table 1.5.1.1: Oil slick spreading parameters as per the scenario COV-Spr-NW-1

Within the first 7 hours as of the OS start the oil slick spreads southward of the OS point under the action of the wind and current. After 4 hours as of the OS start the oil slick semi-perimeter makes 2146 M, the volume of the evaporated oil -1,38%, the volume of the dispersed oil -0,45%. After 7 hours 06 minutes as of the OS start the oil reaches the coastline in the area of the Cape Letinskiy. Further the oil slick drifts south-eastward in the direction of the Kildin Island. The oil slick breaks up in several fields. After 9 hours as of the OS start the oil slick drifts eastward and is partially washed ashore to the Murmansk coastline of the Barents Sea. After 12 hours as of the OS start the oil slick semi-perimeter makes 2727 m, the volume of the evaporated oil -4,87%, the volume of the dispersed oil -1,36%. The volume of the oil/water mixture has increased compared to the OS volume with 79,5%. More than 10 km of the coastline has been polluted. To the moment of modelling completion (20 hours), all oil has reached the Barents Sea coastline. Strips of the Barents Sea coastline from the Cape Letinskiy to the Cape Toporkov Pakhta with the total length of more than 8 km have been polluted with oil. The volume of the evaporated oil -2,5%, the average oil slick thickness makes 75 mm. The graphic display of the oil slick spreading as per the scenario COV-Spr-NW-1 is shown in figures 226 -241

The charts of processes typical for the oil behaviour on water are shown in figures 242-244.

Figure 226. H+01:00. Oil slick spreading as per the scenario COV-Spr-NW-1.

Figure 228. H+03:00. Oil slick spreading as per the scenario COV-Spr-NW-1.

Figure 227. H+02:00. Oil slick spreading as per the scenario COV-Spr-NW-1.

Figure 229. H+04:00. Oil slick spreading as per the scenario COV-Spr-NW-1.

Figure230. H+05:00. Oil slick spreading as per the scenario COV-Spr-NW-1.

Figure 232. H+07:00. Oil slick spreading as per the scenario COV-Spr-NW-1.

Figure231. H+06:00. Oil slick spreading as per the scenario COV-Spr-NW-1.

Figure 233. H+07:06. Oil slick spreading as per the scenario COV-Spr-NW-1.

....

111

Figure 236. H+10:00. Oil slick spreading as per the scenario COV-Spr-NW-1.

Figure 237. H+11:00. Oil slick spreading as per the scenario COV-Spr-NW-1.

Figure 238. H+12:00. Oil slick spreading as per the scenario COV-Spr-NW-1.

Figure 240. H+18:00. Oil slick spreading as per the scenario COV-Spr-NW-1.

Figure 239. H+15:00. Oil slick spreading as per the scenario COV-Spr-NW-1.

Figure 241. H+20:00. Oil slick spreading as per the scenario COV-Spr-NW-1.

Figure 242. The chart of processes as per the scenario COV-Spr-NW-1.

Figure 243. Oil slick area change dynamics as per the scenario COV-Spr-NW-1.

1.5.2 Oil slick behaviour modelling as per the scenario BO-Spr-NW-1

Modelling interval	Oil s volu	pill me	Oil vol aflo	lume at	Evapor volu	ated oil ume	Disper volu	sed oil Ime	Oil vo ash	olume ore	Oil/water mixture volume afloat	Average oil slick thickness	Oil slick area	Viscosity
Units	m ³	%	m ³	%	m ³	%	m ³	%	m ³	%	m³	mm	m²	cSt
H+01:00	3046	100	3046	100	0	0	0	0	0	0	3046	30,7	99234	15541
H+02:00	6142	100	6142	100	0	0	0	0	0	0	6142	22,3	275343	15541
H+03:00	9187	100	9187	100	0	0	0	0	0	0	9187	17,5	524581	15541
H+04:00	12000	100	12000	100	0	0	0	0	0	0	12000	18,7	642501	15541
H+05:00	12000	100	12000	100	0	0	0	0	0	0	12000	19,8	607461	15541
H+06:00	12000	100	12000	100	0	0	0	0	0	0	12000	19,0	631173	15541
H+07:00	12000	100	12000	100	0	0	0	0	0	0	12000	18,7	643125	15541
H+07:44 Landfall	12000	100	11999	100	0	0	0	0	0,9	0	11999	18,3	656123	15541
H+08:00	12000	100	11997	100	0	0	0	0	2,7	0,02	11997	17,4	690034	15541
H+09:00	12000	100	11989	99,9	0	0	0	0	10,8	0,09	11989	14,9	802712	15541
H+12:00	12000	100	11940	99,5	0	0	0	0	60,4	0,50	11940	21,8	547564	15541
H+15:00	12000	100	11902	99,2	0	0	0	0	97,6	0,81	11902	35,3	337619	15541
H+18:00	12000	100	11886	99,1	0	0	0	0	114	0,95	11886	201	59187	15541
H + 20:00	12000	100	11871	98,9	0	0	0	0	129	1,08	11871	336	35379	15541

Within the first 7 hours as of the OS start the oil slick spreads southward of the OS point under the action of the wind and current. After 4 hours as of the OS start the oil slick semi-perimeter makes 1420 m, the evaporation and dispersion processes are not detected by the programme. After 7 hours and 44 minutes as of the OS start the black oil reaches the coastline in the area of the Cape Letinskiy. Further the oil slick drifts south-eastward in the direction of the Kildin Island. The oil slick breaks up in several fields. After 9 hours as of the OS start the oil slick semi-perimeter based on the total area makes 1588 m, the evaporation and dispersion processes are not detected by the programme. Further the oil slick drifts eastward and is partially washed ashore on the Murmansk coast of the Barents Sea. After 12 hours as of the OS start the oil slick semi-perimeter makes 1311 m. The volume of the oil/water mixture volume compared to the OS volume has not increased. To the moment of modelling completion (20 hours), all oil reaches the Barents Sea coastline. Strips of the Barents sea coastline from the Cape Letinskiy to the Cape Toporkov Pakhta with the total length of more than 7 km have been polluted with oil. The evaporation and dispersions processes are not detected by the programme, the average oil slick thickness makes 33,6 sm.

The graphic display of the oil slick spreading as per the scenario BO-Spr-NW-1 is shown in figures 245 – 267.

The charts of processes typical for oil behaviour on water are shown in figures 268-270.

Figure 245. H+01:00. Oil slick spreading as per the scenario BO-Spr-NW-1.

Figure 247. H+03:00. Oil slick spreading as per the scenario BO-Spr-NW-1.

Figure 246. H+02:00. Oil slick spreading as per the scenario BO-Spr-NW-1.

Figure 248. H+04:00. Oil slick spreading as per the scenario BO-Spr-NW-1.

Figure 260. H+07:00. Oil slick spreading as per the scenario BO-Spr-NW-1.

Figure 250. H+06:00. Oil slick spreading as per the scenario BO-Spr-NW-1.

Figure 261. **H+07:44.** Oil slick spreading as per the scenario BO-Spr-NW-1.

Figure 264. H+12:00. Oil slick spreading as per the scenario BO-Spr-NW-1.

Figure 265. H+15:00. Oil slick spreading as per the scenario BO-Spr-NW-1.

Figure 266. H+18:00. Oil slick spreading as per the scenario BO-Spr-NW-1.

Figure 267. H+20:00. Oil slick spreading as per the scenario BO-Spr-NW-1.

Figure 268. The chart of processes as per the scenario BO-Spr-NW-1.

Figure 269. Oil slick area change dynamics as per the scenario BO-Spr-NW-1.

Figure 270. Oil slick thickness change dynamics as per the scenario BO-Spr-NW-1.

1.5.3 Oil slick modelling behaviour as per the scenario GC-Spr-NW-1

	Table 1.5.3.1:	Oil slick spreading	parameters as per	the scenario	GC-Spr-NW-1
--	----------------	---------------------	-------------------	--------------	-------------

Modelling interval	Oil s volu	pill me	Oil vol aflo	lume at	Evapora volu	ated oil Ime	Disper volu	sed oil Ime	Oil vo ash	olume ore	Oil/water mixture volume afloat	Average oil slick thickness	Oil slick area	Viscosity
Units	m ³	%	m ³	%	m ³	%	m ³	%	m ³	%	m ³	mm	m ²	cSt
H+01:00	5362	100	4777	89,1	367	6,84	218	4,07	0	0	6046	16,9	357841	5,5
H+02:00	10767	100	8936	83,0	1260	11,7	571	5,30	0	0	13056	11,9	1093623	13,0
H+03:00	15707	100	12165	77,4	2596	16,5	946	6,02	0	0	19470	11,1	1760153	26,8
H+04:00	19967	100	14628	73,3	4040	20,2	1300	6,51	0	0	24816	12,8	1931462	45,2
H+05:00	20000	100	13330	66,7	5152	25,8	1517	7,59	0	0	25104	11,8	2122162	103
H+06:00	20000	100	12318	61,6	6045	30,2	1637	8,19	0	0	24153	9,27	2605898	179
H+06:50 Landfall	20000	100	11589	57,9	6692	33,5	1717	8,59	1,3	0	23008	7,53	3054067	254
H+08:00	20000	100	10742	53,7	7428	37,1	1809	9,05	20,6	0	21443	5,79	3704443	369
H+09:00	20000	100	10112	50,6	7975	39,9	1880	9,40	33,5	0	20211	5,01	4036383	484
H+10:00	20000	100	9550	47,8	8455	42,3	1943	9,72	52,3	0,26	19096	4,29	4450849	613
H+11:00	20000	100	9101	45,5	8815	44,1	2001	10,0	82,5	0,41	18202	4,71	3866672	732
H+12:00	20000	100	8744	43,7	9078	45,4	2054	10,3	124	0,62	17488	5,39	3244424	832
H+15:00	20000	100	7898	39,5	9712	48,6	2192	11,0	197	0,99	15797	4,95	3189364	1136
H+18:00	20000	100	7430	37,2	10029	50,1	2304	11,5	236	1,18	14861	11,9	1243804	1328
H+24:00	20000	100	6913	34,6	10269	51,3	2509	12,5	310	1,55	13826	17,1	808252	1493

Within the first 6 hours as of the OS start the oils slick spreads southward of the OS point under the action of the wind and current. After 4 hours as of the OS start the oil slick semi-perimeter makes 2463 m, the volume of the evaporated oil – 20,2%, the volume of the dispersed oil – 6,5%. After 6 hours and 50 minutes as of the OS start the oil reaches the coastline in the area of the Cape Letinskiy. Further the oil slick drifts south-eastward in the direction of the Kildin Island. After 9 hours as of the OS start the oil slick semi-perimeter makes 3560 m, the volume of the evaporated oil – 39,9%, the volume of the dispersed oil – 9,4%. Further the oil slick drifts eastward and is partially washed ashore on the Murmansk coastline of the Barents Sea. After 12 hours as of the OS start the oil slick semi-perimeter makes 3192 m, the volume of the evaporated oil – 45,4%, the volume of the dispersed oil – 10,3%. The volume of the oil/water mixture has decreased compared to the OS volume with 12,6%. To the moment of modelling completion (24 hours) all oil has reached the Barents sea coastline. Strips of the Barents Sea coastline from the Cape Letinskiy to the Cape Toporkov Pakhta with the total length of more than 25 km have been polluted with oil. The volume of the evaporated oil – 51,3%, the volume of the dispersed oil – 12,5%, 34,6% of the OS volume remains afloat. The average oil slick thickness makes 1,55 mm.

The graphic display of the oil slick spreading a per the scenario GC-Spr-NW-1 is shown in figures 271 – 284.

The charts of processes typical for the oil behaviour on water are shown in figures 285-287.

Figure 271. H+01:00. Oil slick spreading as per the scenario GC-Spr-NW-1.

Figure 273. H+03:00. Oil slick spreading as per the scenario GC-Spr-NW-1.

Figure 272. H+02:00. Oil slick spreading as per the scenario GC-Spr-NW-1.

Figure 274. H+04:00. Oil slick spreading as per the scenario GC-Spr-NW-1.

2 . .

1

Figure 278. H+08:00. Oil slick spreading as per the scenario GC-Spr-NW-1.

Figure 281. H+11:00. Oil slick spreading as per the scenario GC-Spr-NW-1.

Figure 282. H+12:00. Oil slick spreading as per the scenario GC-Spr-NW-1.

Figure 283. H+15:00. Oil slick spreading as per the scenario GC-Spr-NW-1.

Figure 284. H+24:00. Oil slick spreading as per the scenario GC-Spr-NW-1.

Figure 284. H+18:00. Oil slick spreading as per the scenario GC-Spr-NW-1.

Figure 286. Oil slick area change dynamics as per the scenario GC-Spr-NW-1.

Figure 287 Oil slick thickness change dynamics as per the scenario GC-Spr-NW-1.

1.5.4 Oil slick behaviour modelling as per the scenario Na-Spr-NW-1

Table 1.5.4.1:	Oil slick spreading	parameters as per	the scenario N	a-Spr-NW-1
		parametere de per		

Modelling interval	Oil s volu	pill me	Oil vo aflo	lume at	Evapor volu	ated oil Ime	Disper volu	sed oil Ime	Oil vo ash	olume ore	Oil/water mixture volume afloat	Average oil slick thickness	Oil slick area	Viscosity
Units	m ³	%	m ³	%	m ³	%	m ³	%	m ³	%	m³	mm	m²	cSt
H+01:00	2764	100	2313	83,7	404	14,6	47	1,70	0	0	2757	9,17	300595	5,4
H+02:00	5408	100	3908	72,3	1364	25,2	136	2,51	0	0	4983	5,11	974723	18,4
H+03:00	7909	100	4982	63,0	2685	33,9	242	3,06	0	0	6534	3,85	1697564	46,8
H+04:00	10000	100	5618	56,2	4029	40,3	353	3,53	0	0	7580	3,68	2061930	92,4
H+05:00	10000	100	4561	45,6	4984	49,8	457	4,57	0	0	6459	2,74	2357697	267
H+06:00	10000	100	3820	38,2	5630	56,3	550	5,50	0	0	5450	1,88	2905373	512
H+06:45 Landfall	10000	100	3354	33,5	6024	60,2	621	6,21	0	0	4790	1,44	3315835	755
H+07:00	10000	100	3217	32,2	6135	61,4	643	6,43	5,06	0,05	4595	1,36	3369336	842
H+08:00	10000	100	2717	27,2	6530	65,3	732	7,32	22,4	0,22	3880	0,99	3901859	1239
H+09:00	10000	100	2296	23,0	6850	68,5	818	8,18	36,8	0,37	3280	0,80	4107128	1697
H+10:00	10000	100	1912	19,1	7130	71,3	903	9,03	55,2	0,55	2733	0,61	4468761	2232
H+12:00	10000	100	1339	13,4	7481	74,8	1063	10,6	117	1,17	1913	0,61	3113596	3153
H+15:00	10000	100	811	8,11	7766	77,7	1241	12,4	182	1,82	1159	0,65	1791428	4185
H+18:00	10000	100	678	6,78	7837	78,4	1282	12,8	204	2,04	968	2,67	362267	4492

Within the first 6 hours as of the OS start the oil slick spreads southward of the OS point under the action of the wind and current. After 4 hours as of the OS start the oil slick semi-perimeter makes 2545 m, the volume of the evaporated oil -40,3%, the volume of the dispersed oil -3,5%. After 6 hours and 45 minutes the oil slick reaches the eastern coastline of the Toros Island. Impacting first the coastline in the area of the Cape Letinskiy. Further the oil slick drifts south-eastward in the direction of the Kildin Island. After 9 hours as of the OS start the slick semi-perimeter makes 3591 m, the volume of the evaporated oil -68,5%, the volume of the dispersed oil -8,2%. The oil slick drifts eastward and is partially washed ashore on the Murmansk coastline of the Barents Sea. After 12 hours as of the OS start the volume of the evaporated oil -74,8%, the volume of the dispersed oil -10,6%. The volume of the oil slick has spread along the strips of the Barents Sea coastline from the Cape Letinskiy to the cape Toporkov Pakhta. The volume of the evaporated oil -78,4%, the volume of the dispersed oil -12,8%, 6,8% of the OS volume remains afloat, the average oil slick thickness makes 2,7 mm.

The graphic display of the oil slick spreading as per the scenario Na-Spr-NW-1 is shown in figures 288 – 164.

The charts of processes typical for the oil behaviour on water are shown in figures 165-167.

Figure 290. H+03:00. Oil slick spreading as per the scenario Na-Spr-NW-1.

Figure 291. H+04:00. Oil slick spreading as per the scenario Na-Spr-NW-1.

Figure 294. H+06:45. Oil slick spreading as per the scenario Na-Spr-NW-1.

Figure 295. H+07:00. Oil slick spreading as per the scenario Na-Spr-NW-1.

Figure 298. H+10:00. Oil slick spreading as per the scenario Na-Spr-NW-1.

Figure 299. H+12:00. Oil slick spreading as per the scenario Na-Spr-NW-1.

Figure 300. H+15:00. Oil slick spreading as per the scenario Na-Spr-NW-1.

Figure 301. H+18:00. Oil slick spreading as per the scenario Na-Spr-NW-1.
RAMBOLL

Figure 301. The chart of processes as per the scenario Na-Spr-NW-1.

Figure 302. Oil slick area change dynamics as per the scenario Na-Spr-NW-1.

Figure 303. Oil slick thickness change dynamics as per the scenario Na-Spr-NW-1.

RAMBOLL

1.5.5 The process dynamics typical for oil spill behaviour in the Barents Sea under the spring north-westward wind (Spr-NW-1) Figures 304-308 show dynamics of processes typical for the oil behaviour in the Barents Sea as per the scenarios Spr-NW-1.

Figure 304. The evaporation process chart as per the scenarios Spr-NW-1.

Figure 306. Oil/water mixture volume change dynamics as per the scenarios Spr-NW-1.

Figure 305. The dispersion process chart as per the scenarios Spr-NW-1.

Figure 307. Oil slick thickness change dynamics as poper the sceanrios Spr-NW-1.

RAMBOLL

Figure 308. Oil spill spreading area change dynamics per 1 м³ of various types of oil as per the scenarios Spr-SW-1.