South Pacific Regional Environment Programme

SPREP Reports and Studies Series no. 90

Environmental impact of large-scale mining in Papua New Guinea:

Sedimentology and potential mobilization of trace metals from mine-derived material deposited in the Fly River Floodplain

> by Jörg Hettler and Bernd Lehmann

Copyright © South Pacific Regional Environment Programme, 1995

The South Pacific Regional Environment Programme authorises the reproduction of this material, whole or in part, in any form provided appropriate acknowledgement is given.

Original Text: English

Published in September 1995 by: South Pacific Regional Environment Programme P.O. Box 240 Apia, Western Samoa

Printed by: Commercial Printers Apia, Western Samoa

P 39/95 - 4C

Printed with financial assistance from the United Nations Environment Programme (UNEP)

Layout by Wesley Ward, SPREP.

SPREP Cataloguing-in-Publication Data

Hettler, Jörg

Environmental impact of large-scale mining in Papua New Guinea : sedimentology and potential mobilization of trace metals from mine-derived material deposited in the Fly River Floodplain / by Jorg Hettler and Bernd Lehmann. - Apia, Western Samoa : SPREP, 1995.

vi, 71p.; 29 cm - (SPREP Reports and studies series; no. 90).

ISBN: 982-04-0125-9

 Environmental impact analysis - Papua New Guinea.
 Mines and mineral resources -Environmental aspects - Papua New Guinea.
 Lehmann, Bernd, I. South Pacific Regional Environment Programme. III. Title IV. Series.

363.709549

South Pacific Regional Environment Programme

SPREP Reports and Studies Series no. 90

Environmental Impact of Large-scale Mining in Papua New Guinea:

Sedimentology and Potential Mobilization of Trace Metals from Mine-Derived Material Deposited in the Fly River Floodplain

by

Jörg Hettler and **Bernd Lehmann** Technische Universität Clausthal Freie Universität, Berlin, Germany

> Published in August 1995 in Apia, Western Samoa

> > i

Preface

The Ok Tedi mine in PNG ranks amongst the world's largest copper mines. It is a major contributor to the PNG economy, accounting for up to 45% of PNG's total annual export revenues. The PNG Government is a 30% shareholder in Ok Tedi Mining Ltd. (OTML). Mining for gold commenced in 1984, and for copper in 1986. Mining for copper is expected to continue for a further 10-15 years.

It was initially intended that a tailings dam should be constructed to contain the mine's waste. However for economic reasons and given that the area is structurally unstable, no tailings dam was constructed. So, since 1986, 100,000 to 150,000 tonnes of waste per day have been discharged into the Ok Tedi and Fly River system.

In 1989 the PNG Government set compliance standards covering suspended particulate load, dissolved and particulate copper levels, biological parameters like fish catch, and others. It is argued by some that the environmental management of the mine is based on monitoring for compliance with standards that have been established "to facilitate the realization of OTML's mining schedule" rather than to protect the environment.

Ok Tedi Mining Ltd. has an extensive environmental monitoring programme. Compliance monitoring and interpretation are assessed routinely by the company (and the Government), but no detailed data are available for public scrutiny (if at all) for at least a year after data are collected. This lack of public accountability for environmental performance is unacceptable.

Inevitably the Ok Tedi mine evokes different emotions and perceptions by different groups in PNG. For example, Mr Kipling Uiari, the former Deputy General Manager of OTML and now BHP PNG General Manager, stated in 1993 at the 20th Waigani Seminar on "Environment and Development" at the University of PNG:

"Importantly, the mine has brought positive changes to the quality of life of neighbouring communities in the previously underdeveloped Western Province. Investment in project infrastructure has amounted to about K300m and many of the basic services now established are available to all citizens in the area. This is particularly true of the road, power, health and water systems, transport and communication facilities. These services are meeting the basic needs of local villagers by increasing life expectancy and providing access to education, employment and business opportunities.

Ok Tedi Mining Ltd. has taken a number of iniatives to encourage as much participation as possible from people in the region and so ensure human development goes hand in hand with mineral development.

Sustainable development also requires good environmental stewardship. During the devlopment of the Ok Tedi project there have been criticisms of its environmental impacts, many of them based on inaccurate information. Ok Tedi Mining Ltd. is a responsible resources development company which recognises that all environmental effects must be carefully considered. It is the extent of these impacts and whether they are reversible or not, which must be considered in relation to the social and economic benefits to the communities involved and the nation as a whole."

Whereas at the same seminar Mr Alex Maun, a prominent landowner stated:

"With the mining operation our life has changed. The loss of our rainforest and degradation of the environment cannot be calculated in terms of short-term money. We are rural village subsistence farmers who depend on the environment for survival.

Before the Ok Tedi Mine operation our life was paradise, we enjoyed both the aquatic and terrestrial resources. We used the river for fishing, washing, drinking and transportation. We made gardens near the river banks which lasted 3 to 5 years.

Now we river people can no longer drink from the river nor can swim, bath or wash clothes in the river. We lack the protein in our diet that was formerly provided by the aquatic and terrestrial resources. Overflow of the Ok Tedi River has caused the wild life near the river banks and floodplains to disappear. Some game animals were drowned by sudden floods. Trees in the floodplains are dying completely forcing the wild life to migrate to other areas. Now gardens are no longer made near the river banks.

1 would like to stress that Ok Tedi Mining is causing irreversible destruction along the Fly River an Ok Tedi River. Whatever it is destroying will never come back to normal. e.g. customary land, sago swamps, etc. OTML is bringing unsustainable development. We affected river people think it is nonsense talking about sustainable development when the mess done by the Ok Tedi Mining is not cleaned up."

In 1994 Ok Tedi again hit the headlines: "Ok Tedi has to build tailings dam - Zeipi", so says *Post Courier* headline on 18 March 1994. The report goes on:

"Ok Tedi Mining Ltd (OTML) will be told to build a series of dams to dispose of mine wastes or "ship out" if it refuses. Mr Zeipi has always insisted a tailings dam be built because, he says. the river dumping has damaging effects on the ecosystems."

(Mr. Zeipi is Minister for Environment and Conservation).

"K2b case looms on mine damage" again says Post Courier headline, this time on 4 May 1994. Then in Post Courier on 6 May a report states:

"The leader of a Papua New Guinean clan lodged a writ in the Melbourne Supreme Court yesterday against Australia's biggest company, BHP, seeking unspecified damages for allegedly poisoning the Ok Tedi River and destroying his people's subsistence way of life. It also alleges the PNG Goverment. a 30 percent shareholder in Ok Tedi Mining Ltd., had "failed, neglected and refused" to enforce environmental agreements and convenants."

These matters are still being dealt with in both PNG and Australian courts and have not been resolved. Furthermore present debate continues between Government ministers and leaders and Mr Zeipi on the type of compensation payments for environmental damage and whether a tailings dam should and could be built.

The Floodplains

The Ok Tedi mine adds about 58 million tonnes of sediment to the Ok Tedi River per year. It is estimated that 30% is deposited along the Ok Tedi, much of the rest reaches the Fly Delta. An unknown amount is deposited along the Fly River and in the floodplains in the middle Fly. Studies on the coastal and marine ecosystems in the Fly Delta, Papuan Gulf and Torres Straits are being done by both Ok Tedi and Australian scientists funded by Ok Tedi. Studies on the floodplains of the Middle Fly are being done by Ok Tedi scientists, and are also the focus of this UNEP study.

OTML, in its booklet Ok Tedi, the Environment and You states that:

"copper in the sediment in the Fly River is also being transported during floods onto the floodplain where it settles into the lakes, streams and the flooded forest. At this time there is very little scientific information to tell us what effect this copper on the floodplain might have on fish life, feed and breed in this area".

Consequently OTML has commissioned studies of the amounts in and effects of copper on the floodplain ecosystems. Unfortunately, the PNG Government and independent researchers generally lack the financial and human resources to do independent monitoring and research of depth and detail. Hence most studies are done by or commissioned by OTML.

This study by Jörg Hettler and Bernd Lehmann is valuable since it is done by overseas scientists funded by UNEP and SPREP through the universities of Berlin and Clausthal and the University of PNG. It is apparent from their work that copper is being deposited in the floodplain at higher than expected levels. Hopefully future independent scientists can assist in deciding if this copper contamination is likely to have biological effects, for example, if fish populations may be affected.

The present study is a valuable contribution to our present state of knowledge of the Ok Tedi/ Fly River system. In fact, more environmental research has been done on this tropical river system over the last 15 years than probably any other tropical river system in the world. Yet there is still much uncertainty! Back in 1982 in his book *The Pot of Gold*, Richard Jackson made a statement which (in slightly modified form) still is applicable 13 years later:

"In our present state of knowledge of the workings of natural systems, it is only in the rarest of occasions that honest environmental experts agree as a body and confidently predict a sequence of future events and outcomes. The Ok Tedi project is not one of those occasions. Decisions have been made in the project hoping that environmental risks will be worth it, that is, hoping that in the light of the facts available the magnitude of the environmental impact will be minimal. But the facts available are, still, too few. In the Ok Tedi case, the experts, if they are honest, will be keeping their fingers crossed and environmental monitoring systems under constant scrutiny ..."

and hoping that the environmental damages remain acceptable!

Haid Charly

Dr David Mowbray,

Professor of Environmental Science at the University of Papua New Guinea,

and Government Adviser to the Department of Environment and Conservation

NB. The opinions expressed in the Preface are those of its author and not necessarily those of the SPREP.

Î٧

Contents

Pref	face	11
Con	tents	v
Sun	imary	vi
1.	Introduction	1
2.	Sampling and Analytical Methodology	2
	2.1 Sampling	2
	2.2 Analytical Methods	3
3.	The Environment of the Ok Tedi/Fly River Region	6
	3.1 Geology of the Mount Fubilan Ore Deposit	6
	3.2. Geomorphology and Vegetation	6
	3.3 Hydrology and Climate	8
	3.4 Aquatic Biology	9
	3.5 Population	9
4.	Input of the Ok Tedi Mine into the Ok Tedi/Fly River System	11
	4.1 Description of the Mining Project	11
	4.2 Discharge of Tailings and Waste Rock	11
5.	Sedimentology of the Fly River and its Floodplain	13
	5.1 Natural Sedimentary Processes in the Floodplain	13
	5.2 Deposition of Mine-Derived Material	15
6.	Potential Mobilization of heavy metals and hydrochemistry	21
	6.1 Heavy Metals in Sediments of the Ok Tedi/Fly River System	21
	6.2 Hydrochemistry of the Ok Tedi/Fly River System	27
7.	Biological Impacts	40
8.	Conclusions	43
9.	Acknowledgements	44
10.	References	45
Ant	Jexes.	48

Summary

The Ok Tedi copper-gold mine, located at the eastern end of the central mountain range of New Guinea, discharges approximately 80,000 tons of ore processing residues daily, and a similar volume of waste rock and overburden into the headwaters of the Ok Tedi River.

The Mount Fubilan orebody, which is the source of heavy metal-rich sediments deposited along the Ok Tedi and on the Fly River floodplain, contains a suite of base metals, of which copper is the primary environmental concern. The Ok Tedi River flows into the Fly River 200 km downstream of the discharge point, where the mining wastes carried as suspended load are diluted.

This study investigated the deposition of minederived sediments in the lower part of the Middle Fly River flood-plain, and the hydrochemistry and potential mobilization of trace metals, particularly copper, in this alluvial plain. To this end, a total of 156 sediment cores and surface sediment samples and 117 water samples were taken from the upper Ok Tedi and the Middle and Lower Fly River floodplain.

The suspended matter content in Middle Fly River water today is about 5-10 times higher than the natural background of about 60 mg/l. Near-surface sediments deposited along the river channel contain up to 1100 mg/kg copper, with the mean value is 530 ($\pm \tilde{O} = 240-820$) mg/kg.

Of the floodplain water bodies, cut-off meanders receive the largest quantities of mine-derived sediment. Deposits of up to 70 cm in thickness of copper-rich material (with 800-1000 mg/kg copper) were detected in oxbow lakes, which have accumulated since the mine started discharging residues in 1984. Very high deposition rates (around 4 cm/year) of minederived sediment were determined in locations close to the creeks and channels which link the Fly River with the outer floodplain. Due to the flat terrain, turbid Fly River water intrudes regularly upstream of the floodplain tributaries (measured intrusions up to 25 km). A thin layer of 1-5 cm of copper-rich material (400-900 mg/kg Cu) was usually found on the bottom of drowned (tributary) valley lakes. Copper in sediment deposited in the pre-mining period gave a median value of 44 ($\pm \tilde{O} = 25-63$) mg/kg.

Riverine particulate matter also settles down on the floodplain at times of overbank flow, which leads to extensive copper contamination in lowlying swamp sites close to the river. Natural deposition rates in the floodplain were determined by C14 age dating to range between 0.1-1 mm/year, with the exception of oxbow lakes, where natural sedimentation is much higher. Leaching copper from material deposited on swampy, vegetated floodplain sites was detected in sediments which were also strongly depleted in calcite and sulfide, which are the components most easily mobilized of mine-derived material.

The variable water table, oxidizing environment and acidic conditions generated by decomposing vegetation, typical features of low-lying floodplain swamps, facilitate the mobilization of copper from the solid into the dissolved phase. Water taken from swampy floodplain locations showed copper values of up to 50 µg/l copper in the filtered sample (membrane filter 0.45 µm). Average copper content in mixed waters of the inner floodplain is around 9 ($\pm \tilde{O} = 5-14$) µg/l; the Fly River water has around 17 ($\pm \tilde{O} = 13-19$) µg/l copper. Copper concentrations in unpolluted floodplain waters were measured at below 2 µg/l.

Nearly all dissolved copper in the Fly River system is complexed by dissolved organic carbon compounds, however, a fraction of these complexes appears to be labile and reactive. Comparison of dissolved copper levels measured during the present study in the Middle Fly River floodplain with literature data on copper toxicity and international water quality guidelines shows that chronic toxicity of the metal to the aquatic community is to be expected. Significant negative ecological effects, particularly on the local fish population, may develop with a considerable time lag, since aquatic organisms at the base of the food web are the biota most sensitive to copper.

1. Introduction

The environmental problems of mining activities have been receiving increasing attention worldwide in the last decade. The shift in the search for raw materials outside of the classical producer countries to the world's marginal regions like tropical rainforests has led to a number of environmental and social problems.

In many cases, the extraction of natural resources has been the first industrial activity being developed in peripheral regions. Requirements of infrastructure, logistics and workforce may completely change the environmental and social patterns in regions which have previously been nearly untouched by man.

One of the best documented examples of such a development is the Ok Tedi gold-copper mining project in Papua New Guinea. Before the economic value of the Mount Fubilan orebody was discovered in the late 1960's, the mountain was a sacred place to the sparse population of the local Wopkaimin Papua tribe, who were inhabiting one of the world's most isolated regions.

The environmental impact of the mining operation, located in a difficult physical environment, has been subject of controversy since the project's early planning stages. The fact that the Ok Tedi mine works without waste retention facilities has been in the focus of the debate in the last few years.

The mining company is engaged in an extensive environmental monitoring program and also has commissioned a number of studies on individual problems which have been executed by international research institutions and consultants. The present study, funded by the United Nations Environment Programme and the South Pacific Regional Environment Programme, is the first independent research project undertaken in the area. It investigates one of the most important environmental aspects of the mining project. Based on discussions with the Environment Department of Ok Tedi Mining Ltd., it focusses on the fate of mine-derived sediments deposited in the Fly River floodplain.

The project's coordinator was Dr. Bernd Lehmann, Professor of Applied Geology at Technical University Clausthal. The responsible research officer was Jörg Hettler, M.Sc. (Geology), of the Department of Environmental and Resource Geology at the Free University of Berlin. The sedimentological part of the study was co-ordinated by Dr. Georg Irion of Senckenberg Research Institute at Wilhelmshaven. The University of Papua New provided comprehensive logistical Guinea support during the field and laboratory work.

A draft of this report was presented by the study team in a series of discussions held in September 1994 in Port Moresby and Tabubil, Papua New Guinea, with Ok Tedi Mining Limited, the Departments of Mining and Petroleum (DMP) and Environment and Conservation (DEC) of the Papua New Guinea Government, and the University of Papua New Guinea.

2. Sampling and Analytical Methodology

2.1 Sampling

Sampling locations were determined with a handheld Global Positioning System (GPS) receiver and available topographic maps of scales 1:100,000 and 1:250,000. Water depth and bottom relief were measured with a portable electronic depth sounder with LCD.

2.1.1 Sediments

Thirty two (32) surface sediments from the river bank of the Ok Tedi at Tabubil and from a few locations in the Middle Fly region were sampled with a plastic spoon and collected in geochemical sampling paper bags.

The large majority of sediment samples (124) taken along the Fly River was recovered with a gravity corer.

Because of the difficult access to swampy, vegetated floodplain sites, the large majority of sediment cores (and water samples) were taken from channels, lakes and small water bodies which were accessible by boat or dugout canoe.

The gravity corer consists of a massive aluminium tube with a backslash (floating) valve mounted on the upper end. Fins are welded to the aluminium body to stabilize the corer during its free fall through the water column. Coring tubes of transparent acrylic glass ("Plexiglas") of 1 m or 1.5 m length were fixed inside of the aluminium shaft. The corer was brought in an upright position above the water and then released for free fall.

To increase penetration depth in the bottom sediment, a ring-shaped lead weight of 10 kg was fitted to the alumimium shaft. The corer is hoisted from the bottom of the sampled water body with a rope fixed to the backslash valve, which remains closed.

The sediment cores recovered have a diameter of 36 mm and a length of between 20 and 70 cm depending on the nature of the bottom sediment. The cores, which showed no or minimal disturbance, where pushed out of the plexiglas tubes with a rubber stopper and were packed in clean polyethylene bags. On floodplain sites, the sampling tubes were driven by hand into the sediment. After closing the open end with a rubber stopper, the tube was pulled out. The sediment cores recovered were usually in the same range of lengths as the cores from water bodies.

2.1.2 Water

A total of 117 water samples in the Ok Tedi/Fly River system was taken. Water temperature, pH, conductivity and oxygen content were measured in the field using portable electronic equipment. The reduced species $\rm NH_4^+$, HS⁻ and $\rm NO_2^-$ were also determined in the field using "Merck Aquaquant" reagent kits for rapid water analysis, based on a colorimetric method.

All water samples were gulp samples taken by hand 20-50 cm below the water surface, the volumes ranging between 250 and 1500 ml. The wide-mouth polyethylene bottles were soaked in dilute nitric acid for two days and washed with demineralized/distilled water before use in the field. The containers were rinsed twice with water from the sampling site before the sample was taken. Upon return to the field laboratory within a few hours after collection, alkalinity was determined by titration with 0.02 mol HCl to pH 4.5 (APHA Standard Method No. 403).

The water was filtered through $0.45 \ \mu m$ cellulose nitrate membrane filters (Sartorius, Germany) with a portable "ANTLIA" pressure filtration system (Schleicher and Schuell, Germany) which consists of a pneumatic pump, a 50 ml syringe cylinder and a filter holder of 50 mm diameter. Sometimes a pre-filter (Schleicher and Schuell Blue Ribbon ashless) had to be used for highly turbid water. After sufficient rinsing of the pump and filtration system, a 120-ml water sample was taken and was immediately acidified with 3-4 ml of concentrated nitric acid (Merck Suprapur) per litre of sample.

Filters were retained for gravimetric determination of suspended solids. The suspended matter content in some samples was measured using a 1.5-litre "Imhoff" funnelshaped sedimentation cylinder. Few water samples were split and a subsample was acidified unfiltered to determine the trace metal content associated with the particulate matter. Water samples selected for anion analysis were filtered but not acidified, DOC samples were stabilized with 2 ml/litre of 50% H₂SO₄.

Great care was taken to avoid crosscontamination of collected material. All equipment was acid-washed and rinsed with distilled and deionised water between use for different samples in the field laboratory. Blanks were included and submitted to the same procedure as the samples.

2.2 Analytical Methods

2.2.1 Sediments

Sediment cores were cut in halves in the laboratory with a stainless stell knife to allow visual inspection and taking of photographs.

Sub-sections of sediment cores were wet sieved with distilled water through nylon sieves of 20, 60, 100 and 200 μ m mesh size. The resulting size fractions <20 μ m, 20,60 μ m, 60-100 μ m, 100-200 μ m and >200 μ m were washed from the sieves into plastic containers and dried to constant weight at 80° in a drying oven. Grain size distribution was determined after weighing.

The fraction less than 20 μ m in samples selected for clay mineral analysis was submitted to gravity separation in "Atterberg" sedimentation cylinders. Of the resulting three fractions (<2 μ m, 2-6.3 μ m, 6.3-20 μ m), the finest was used to prepare smear slides which were submitted to X-ray diffraction analysis.

Samples selected for chemical analysis (grain size <20 μ m was the standard fraction used) were shipped to commercial laboratories (ACME and XRAL, Canada), where the sediment was homogenized and pulverized in an agate mill. In the "total digestion" procedure, 250 mg of sample is digested with 10 ml HCl0₄-HNO₃-HCl-HF at 200°C to fuming and diluted to 10 ml with diluted aqua regia.

The vigorous digestion procedure leads to potential loss of As, Sb and Cr due to volatilization during HClO_4 fuming. The leach, however, is partial for magnetite, chromite, barite, oxides of Al, Zr and Mn. 35 elements were determined by inductively coupled plasma spectrometry (ICP-S), of which 24 are reported in the present study. Arsenic and antimony were additionally determined by hydride generation with aqua regia digestion and ICP-S analysis.

Gold together with some other elements were analyzed in selected samples by neutron activation analysis (NAA) in a commercial laboratory (Bondar-Clegg, Canada). Insoluble carbon and sulfur were determined by Leco furnace, in which CO_2 and SO_2 gases are released during combustion and then detected. A 15% HCl leach prior to combustion was performed to remove soluble sulfate and carbonates. This procedure ensures that only organic carbon and sulfur bound as metal sulfide is detected.

Two reference sediment samples, NBS 2704 Buffalo River Sediment and EEC/BCR RM 280 Lake Sediment, were submitted to the commercial laboratory for quality control. Results are shown in Table 1.

Radiocarbon age dating was performed on five samples of peaty sediment from drowned valley lakes at the C-14 laboratory of Kiel University, Germany.

2.2.2 Water

Water samples were analyzed at a commercial laboratory (XRAL, Canada), at the laboratory of the Department of Environmental and Resource Geology at Freie Universität Berlin (FUB), and at the laboratory of the Environment Department of Ok Tedi Mining Limited at Tabubil (OTML).

Commercial analysis for metals was by multielement ICP-S, of which measurements for 13 elements are reported in this study. The trace metals copper, lead, zinc and cadmium, which were present in some samples in concentrations close to the detection limit of ICP-S, were additionally determined by graphite furnace atomic absorption spectrometry (GFAA) at FUB and OTML laboratories.

Major anions (sulfate, chloride, nitrate) were analyzed by suppressed ion chromatography on non-acidified samples. Dissolved organic carbon (DOC) was determined with a "Technicon" auto analyzer.

Quality control for water analysis was more difficult when compared to sediments, as no standard reference material was available. Calcium and bicarbonate values, which were determined by two different methods, gave a correlation of 99% in the data set of all measured values.

Values obtained for blanks and measurements of the same sample by different methods and laboratories are given in Table 2. The analyses of blanks (demineralized / distilled laboratory water) showed no or minimal contamination, with the exception of zinc. Reported values for this metal have been corrected by subtraction of zinc content in blank samples.

Table 1: Quality contro given are noncert		dard reference materia lue with * is by hydrid	ertainty range
	ί r	1 1	

NBS 2704 Buffalo River Sediment Na	Na	X	Mg Ca	Ca	Al	Fe	됫	Zn	5	P.	cq	Ag	As	5	Mo	S	N	A	II	12	La	Ba	Sr	84	Sc
	EL.																								
Certified Uncertainty	5470 ±140	20000 ±400	12000 ±200	26000 ±300	61100 ±1600	41100 ±1000	555 ±19	438 ±12	98.6 ±5.0	161 ±17	3.45	-16-34 120-11	23.4	135 ±5		14	1	35 ±4	4570	300	29	414	130	998 ±28	12
Analyzed (ICP-S)	6100		20100 12300 27800 61500	27800	61500	41000	537	397	103	129	2.4	9.0	8/20*	103	5	11	40	15	2700	102	28	467	145	066	13
EEC/BCR RM 280 Lake Sediment	Na '	X	Mg	G	Al	Fe	ų	UZ	3	ą	B	Ag	As	ដ	Mo	3	NI	A		11	La	80	Sr	8	Sc
	Edd						1																	ł.	
Certified Uncertainty	17600	26000	17600 26000 16430 16870 77500	16870	77500	42360	1350	291 ±4	70.5	80.2 ±2.3	1.6	E	51.0] ±2.4	111 14	1.9	20	73.6 ±2.6	102	4040		-	618		1530	12.8 ±0.7
Analyzed (ICP-S)	15800	24800	15800 24800 16200 16500 77500	16500	77500	41400	1148	262	65	59	1.0	3	30	87	2	15	19	72 3	10016	15	30	681	203	1410	14

Samples and Laboratories	(in ppb)					
W1/28.10	Zn	Cu	РЪ	Cd		
XRAL ICP-S	24	23	2	<1		
FUB GFAA	25	22	3	<,1		
W1/30.3.	Fe	Mn	Zn	Cu	Pb	Cd
XRAL ICP-S	126	167	8	4	nd	nd
FUB GFAA	nd	nd	10	5	<1	<.1
OTML GFAA	102	76	8	5	<1	0.05
W3/1.4.	Fe	Mn	Zn	Cu	Pb	Cd
XRAL ICP-S	111	21	28	<2	nd	nd
FUB GFAA	nd	nd	20	1.5	<1	<.1
OTML GFAA	87	24	19	1.3	<1	<.04
W1/7.4.	Fe	Mn	Zn	Cu	Pb	Cd
XRAL ICP-S	319	13	17	53	nd	nd
FUB GFAA	nd	nd	20	50	<1	<.1
OTML GFAA	134	15	15	34	<1	0.1
W3/8.4.	Fe	Mn	Zn	Cu	РЪ	Cd
XRAL ICP-S	50	<5	<5	14	nd	nd
FUB GFAA	nd	nd	<5	16	<1	<.1
OTML GFAA	48	4	1.3	16	<1	0.08
Blank (DDW lab water)	fe	Mn	Zn	Cu	Pb	Cd
XRAL ICP-S	<10	<5	11	<2	nd	nd
FUB GFAA	nd	nd	20	<1	<1	<.1
OTML GFAA	27	0.5	13	0.2	<1	< 04

Table 2: Quality control for water samples, in ppb. The same sample was analysed by three different laboratories.

Statistical analysis of sediment and water values was performed using the U.S. Environmental Protection Agency Environmental Assessment" "Geostatistical (GEO-EAS, software USEPA 1988). Geochemical modelling and speciation determination was done with an updated version of the PHREEQE software (Plummer, Parkhurst & Thorstenson, 1980).

3. The Environment of the Ok Tedi/Fly River Region

3.1 Geology of the Mount Fubilan Ore Deposit

Trace metal contamination of the Ok Tedi/Fly River system through mine discharges is closely related to the geochemical composition of the Ok Tedi ore.

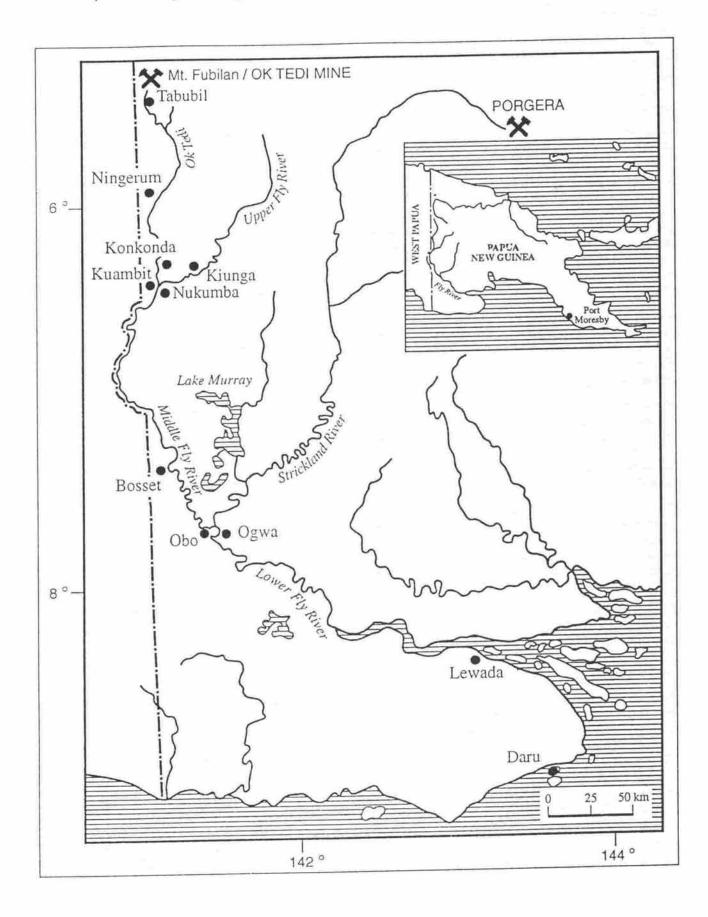
The orebody at Mount Fubilan consists largely of an intruded and altered monzonite porphyry stock of Lower Pleistocene age, which hosts a mesothermal, stockwork and disseminated copper-gold mineralization (Rush and Seegers 1990). Intense weathering at Mt. Fubilan led to the formation of a copper-depleted, but goldenriched cap (gossan) overlying the primary mineralization. The deposit is similar to other big copper porphyry mines in the Pacific Rim region. Pyrite and chalcopyrite are the dominant sulfide minerals in the protore below the supergene enrichment zone. Average metal concentrations in the orebody are 0.75% of copper and 0.67 grams per ton of gold (OTML 1993).

At the contact between the intrusive and adjacent sediments, calc-silicate, sulfide and magnetite skarns have formed, which make up approximately 10% by volume of the orebody (Jones and Maconochie 1990).

Porphyry base-metal deposits of hydrothermal origin like Ok Tedi typically contain a paragenetic sequence of the metals copper, molybdenum, silver, gold, lead, zinc, iron, manganese, selenium, arsenic, cadmium, tungsten and others, which are not evenly distributed within the orebody, but are located in distinct zones around the low-grade quartz core of the intrusion. Very high values for lead (1000-3000 ppm) have been found in overburden sampled in October 1991.

The skarn mineral paragenesis has an elevated and more variable content of trace metals as compared to the copper porphyry ore, and is more critical from an environmental point of view.

However, arsenic and mercury, which are frequently associated with gold mineralisation, show no enrichment above background levels in the Ok Tedi deposit. Table 3: Ok Tedi ore composition


- Ore minerals of the oxide zone: cupriferous goethite Cu.FeOOH, cuprite Cu₂O, native Cu, malachite Cu₂CO₃(OH)₂, azurite Cu₃(CO₃)₂(OH)₂, copper carbonates
- Ore minerals of the sulfide zone: chalcocite Cu₂S. digenite, covellite CuS (supergene formations)
- chalcopyrite CuFeS₂, bornite Cu₅FeS₄ (very minor),
- 4. pyrite/marcasite FeS₂, molybdenite MoS₂
- 5. (protore mineralization)
- Sulfides of Se and Ag are accessory minerals in the main orebody (Fubilan Monzonite Porphyry)
- Pb, Zn, Cd, As, Ag and Se minerals are found mainly in skarn ores

3.2. Geomorphology and Vegetation

The minesite at Mount Fubilan, which had an elevation of 2094 m above mean sea level (MSL) before mining started, is located in the upper catchment of the Ok Tedi (see Map 1). The site receives rainfall of 10,000 mm per annum, which is amongst the world's highest.

Dense tropical rainforest blankets the ridge and ravine topography. The area is seismically active and prone to landslides. North of the Ok Tedi catchment stretches the massive Hindenburg Range with maximum heights of 3325 m. The range is a highly unstable, cliff-like structure build up of Tertiary Darai Limestone, which is responsible for the high natural calcium and bicarbonate content in Ok Tedi water.

Tributary streams in the area are very steep and form narrow, gorge-like valleys, with boulder-size alluvial debris. Upstream of Ningerum (60 m above MSL), the Ok Tedi is a braided river, up to 100 m wide. At Ningerum, 70 km to the south of the mine, the Ok Tedi River leaves the mountaineous region. Between Ningerum and Konkonda, the river passes through a transition phase and enters the Fly Platform, a vast alluvial plateau with very little relief and meandering streams. 130 km downstream of Ningerum, the Ok Tedi flows into the Upper Fly River at D'Albertis Junction at 20 m elevation above MSL.

7

South of the junction, the river channel is flat and meandering, flanked by thick jungle, extensive backswamps, lakes and lagoons. The reach between D'Albertis Junction and the confluence with the Strickland River south of Obo (Everill Junction) is called Middle Fly River, with a length of 410 river kilometers. The sinuosity factor is about 2.4. The channel width varies between 200 and 300 m on average.

Downstream of Kai and Agu Rivers/Lakes, the floodplain vegetation pattern is dominated by tall, dense reed (*Phragmites, Saccharum*) and smaller grasses. Jungle is restricted to a few isolated areas of higher elevation. Trees grow only in rarely inundated areas (with the exception of Sago palms and thin-stemmed *Melaleuca*) because of their susceptibility to prolonged flooding. The fact that trees are largely missing in the lower part of the Middle Fly points to frequent natural flooding.

Lakes and shallow water bodies and channels of the floodplain often have a dense vegetation of aquatic grasses, floating *Azolla* (Equisetum), *Pistia* (Araceae), water lillies, and the submerged *Ceratophyllum*.

Below Everill Junction, the Lower Fly River is tidally influenced, reaching the delta 400 km downstream. Due to the increased flow rate and a lower gradient, the channel width and meander amplitude are greater than in the Middle Fly.

The Fly River floodplain is made up of an inner part, the channel migration zone comprising the present river channel, cut-off meanders and meander scroll complexes, and the outer part with drowned valley lakes and extensive backswamps.

The floodplain widens from 4 km width near Kiunga to over 14 km close to Obo. Discontinuous low natural levees, about 1-2 m above mean river level, flank the existing river channel.

Drowned valley lakes are typically connected to the river by a narrow, sinuous channel with a length of 1-2 km, 3-10 m width and a depth of 2 to 5 m, becoming more shallow towards the lake. The channel itself is being kept open by the scouring action of sediment particles in the water. The lakes have a depth of about 1.5 to 2.5 m, cut by slightly deeper channels, decreasing to less than 1 m towards the end away from the river. Their bottom relief clearly reflects their origin as tributaries to the Fly River. During the sea level rise which ended about 5,000 years ago, the river ends of the larger floodplain creeks were filled with sediment derived from the Fly River. Water can flow freely in both directions, depending on the water levels in lakes and the Fly River.

Due to the low relief, the edges of lakes or "lagoons" are not well defined and tend to merge with neighbouring grasslands at high water level. Higher banks, on which the villages are usually located, are remnants of eroded plateaus of Pleistocene age. The water level in the lakes is highly variable. Following consecutive dry months, lakes may dry out completely which can result in massive fish kills.

3.3 Hydrology and Climate

The climate in the investigated area is wet tropical. The minesite receives well distributed rainfall on 325 days throughout the year. Average temperatures show a nocturnal minimum of 20°C and a mean daily maximum of 27°C. Mean annual relative humidity is about 85% in the Fly River lowland. Temperatures are constant throughout the region with an annual mean of 29°C.

The Fly River has a total length of 1120 km. Its most important tributaries are the Ok Tedi and the Strickland Rivers. The catchment comprises more than 76,000 km². The mean annual runoff per unit of catchment area is about 2500 mm, which is higher than for any other river system in the world (Maunsell and Partners 1982). As the river catchment is relatively small, streamflow is characterized by short-term water level fluctuations with rapid changes between flood peaks and drought periods.

Rainfall is highest in the upper Ok Tedi region, with recorded annual values up to 14,000 mm, 7,800 mm at Tabubil, and decreasing in the lowland. At Kiunga on the Upper Fly River, the annual mean is 4,700 mm, at Lake Bosset in the Middle Fly area 2,670 mm, and at coastal Daru, 2,100 mm. Rainfall and river flow show limited seasonality. June to October usually are the dryest months in the Middle Fly region.

The long-term mean discharge rate of the Ok Tedi at the junction with the Upper Fly River (flow $1178 \text{ m}^{3}/\text{s}$ at Kiunga) was measured at 923 m³/s. The combined flow is 2161 m³/s in the upper Middle Fly.

There exists a water exchange between the floodplain and its water bodies and the Middle Fly River. The net supply of sediment-poor, but DOC-rich floodplain water to the Middle Fly, however, appears to be small. At Obo, the long-term mean discharge is 2244 m³/s. The Strickland River discharges 3110 m³/s into the Fly River at Everill Junction (OTML 1994). Mean daily flow data for the last few years are summarized in Table 4.

Water level fluctuations in the Middle Fly are smaller than in the Upper Fly River, where water level changes of up to 15 m have been recorded at Kiunga. The discharge of the Fly River at its mouth of 6.000 m³/s makes it comparable in size with the Niger and Zambesi in Africa or the Danube in Europe.

Table 1: Mean daily flow data collected by OTML for the Ok Tedi, Fly and Strickland Rivers at different locations in the catchment.

Site	1988	1989	1990	1991/92	1992/93
Flow rate (m ³ /s	5)				
Bukrumdaing		25	27	24	27
Tabubil	175	110	*		
Ningerum	305	222	183	193	290
Konkonda	965	850	1122	456	805
Kiunga	1435	1197	1044	807	941
Kuambit	2400	2124	2094	1407	2061
Obo	2515	2613	2424	2057	1978
Strickland	3785	3869	3769	2870	3141
Ogwa	6300	5792	5461	•	

* no data available

3.4 Aquatic Biology

A study conducted prior to OTML's operation (Roberts 1978) came to the conclusion that the Fly River system supports the most diverse fish fauna in the Australasian region, with at least 105 freshwater species from 33 families. The Sepik River in Northern New Guinea, the river closest to the size of the Fly on the island, has a relatively low overall fish density with a total of 57 freshwater species (Allen & Coates 1990). The fish population in the Fly is remarkable for the large size of some species (e.g. black bass and barramundi) and the abundance of endemic species like catfish. The most targetted species by commercial fisheries is the barramundi *Lates calcarifer*, which roams the entire length of the Fly and resides in floodplain water bodies during most of its lifecycle. The barramundi migrates annually to the coastal areas for spawning (Eagle 1993).

Fish ecology is characterized by an overlap of species types resident in the two main habitats, the river channel and the floodplain with its waterbodies. Due to the high biological productivity of the Fly floodplain, the majority of the food for the Fly River fishes originates from off-river sources (Kare 1992). Overlap in diet and habitat requirements is an important mechanism for survival since prolonged periods of low water level may result in drying out of the floodplain and its shallow water bodies (Eagle 1993). Under these conditions, the fish take refuge to the stream channel and oxbow lakes, which may represent the only standing water on the floodplain.

The fish populations decline substantially, however, the recovery usually is rapid with recolonisation of the newly flooded habitat by the surviving stocks (Smith & Bakowa 1994). The most important food items for fish are aquatic and terrestrial invertebrates (freshwater prawns, mayfly larvae and other insects, worms etc.), algae, plant and organic detritus. Predatory fish like barramundi and catfish feed on smaller fish like *Nematalosa* herrings.

3.5 Population

In the entire Ok Tedi/Fly River drainage area lived about 73,500 people, according to the 1980 national census. They speak 28 different languages and form five different language families: the Ok and Awin people of the Ok Tedi and Upper Fly River, the Marind of the Middle Fly and Lower Strickland (Lake Murray) region, the Suki-Gogodala people of the Lower Fly, and the Trans-Fly peoples of the southern coastal plain.

The mountain people are hunter-horticulturalists living a subsistence lifestyle. Fish is a more important part of the diet for the lowland riverine people. In the Middle Fly-Lake Murray region, habitable land and ground suitable for food cultivation is scarce. The inhabitants (about 4,500 in 1980) are mainly hunter-gatherers who collect wild sago, cooking-bananas and sugar cane, and use the fish resource of barramundi, black bass and catfish (Busse 1991). The sale of crocodile skins is an important source of cash.

The largest populations in the Middle Fly area are at Lake Bosset, Lake Pangua and Lake Daviambu. Small villages and homesteads are typically located along lakes and rivers. Virtually all travelling is by dugout canoe. During extremely dry periods, in which lakes may dry out completely, people abandon their villages and move to the main rivers which remain the only source of water. The development of the Ok Tedi Mine has resulted in massive cultural and socioeconomic changes in the affected region. A former government adviser emphasized the "psychological trauma that Ok Tedi development will bring to the simple life styles of the mountain people" (Pintz 1984).

The mining company has established the "Lower Ok Tedi/Fly River Development Trust" which offers basic village infrastructure in the field of transport, health, education and business development. It supports an estimated 30,000 people in 101 villages living along the river system, who may be negatively affected by the discharge of mine residues and associated problems.

Input of the Ok Tedi Mine into the Ok Tedi/Fly River System

4.1 Description of the Mining Project

Mining of the Mount Fubilan orebody as an open pit started in 1984, sixteen years after the discovery of the deposit by Kennecott exploration geologists in 1968. The particular features of the ore deposit were responsible for the development of the mine in mainly two stages: from May 1984 to late 1988, the goldenriched cap was mined and processed. This involved the use of sodium cyanide and other process chemicals for gold extraction. Following this stage, the phase of extracting copper ore commenced. The gold is now recovered in the sulfide flotation concentrate.

Currently, the production is about 80,000 tons of ore and a similar volume of waste rock per day. The latter is material in which the metal content falls below the cut-off grade of 0.2% for copper or 0.8 g/tons of gold. The copper content of the ore currently being mined is 0.84% on average and overburden contains about 0.11% (OTML 1993). Assuming a mean recovery rate of 85%, the copper content of tailings is around 0.13%.

The ore is crushed and subsequently fed to a series of ball mills where the material is ground to fines. A copper-rich concentrate, containing all valuable metals, is recovered by means of a conventional sulfide froth-flotation process. For maximum sulfide recovery and pyrite depression, the pH of the flotation mixture is adjusted with lime to 10,5-11 and organic process chemicals are added (England et al. 1991).

The final concentrate is transported by a 160 km slurry pipeline to the river port of Kiunga on the Upper Fly River. At the Kiunga wharf, the slurry is filtered, dried and stored to await shipment by bulk carriers down the Fly River. From a storage facility in the Fly River Delta. the concentrate is sold under long-term contracts to smelters in Japan, Germany, South Korea, Finland and the Philippines.

In 1992, OTML produced 193,400 tons of copper in concentrates, containing also 10.1 tons of gold, about 25 tons of silver, and other metals. The mine is the world's fifth biggest copper producer. Ok Tedi's mineable reserves at the end of 1992 were estimated at 431 Mt of ore, sufficient for another 15 years of operation (*Mining Journal*, October 1, 1993). Following a recent restructuring of ownership, the shareholders of Ok Tedi Mining Limited are held by Broken Hill Proprietary (51%), a leading Australian mining company, which is also the project's operator; the Government of Papua New Guinea has increased its stake from 20 to 30%: and 19% now held by Metall Mining, a German-Canadian mining company (*Mining Journal*, May 6, 1994).

4.2 Discharge of Tailings and Waste Rock

The tailings from the copper extraction in the mill, approximately 98% of the original feed to the processing plant, is piped without further treatment to the Ok Mani, a tributary of the Ok Tedi. Waste rock is hauled to erodible dumps adjacent to Mt. Fubilan, from where the material is washed into the headwaters of the Ok Tedi.

The thickened, alkaline tailings slurry consists of approximately 55% solids of which 78% have a grain size less than 100 μ m. The material has about 10-20% of its original copper content, varying amounts of trace metals including zinc, lead and cadmium which occur naturally in the porphyry ore, and small quantities of organic flotation chemicals.

Waste rock and overburden is coarser, but has a high percentage of soft material (siltstone and limestone) which breaks down easily, containing copper and significant quantities of other heavy metals. Although some of the waste rock remains temporarily in the dumps and adjacent creek valleys (depending on the rainfall activity), most of it is washed down rapidly into the Ok Tedi River.

Since the beginning of mining at Mt. Fubilan, all waste rock and overburden (with the exception of a short period during the gold stage) has been disposed off in the river system. The construction of a tailings dam was halted in early 1984 when a land slide forced the abandonment of the construction site, which was located in a geotechnically highly unstable zone. The larger part of the mine-derived material entering the upper Ok Tedi has a particle size of less than 100 μ m and can be transported as suspended load throughout the entire length of the Ok Tedi/Fly River system, given sufficiently high hydraulic transport capacity.

The massive input of mine-derived sediments into the Ok Tedi exceeds the sediment transport capacity of the river system, which has led to severe aggradation of the river and a rise of the Ok Tedi channel bed by ten meters and more in the upper reaches. Riverbank food gardens and plantations have been flooded and the natural ecology of the river and subsistence fishing has been seriously disrupted.

About 60 million tons of material are delivered to the Ok Tedi/Fly River system per year, containing approximately 69,000 tons of copper. The daily discharge rates are 160,000 tons of rock material with 190 tons of copper. The presence of iron and base metal sulfides in the waste rock and tailings indicates the possibility of developing acid mine drainage (AMD), which arises from the oxidation of sulfide minerals and subsequent sulfuric acid production. AMD generation in the Ok Tedi waste rock dumps was considered a potentially serious problem in the Ok Tedi Environmental Study by Maunsell and Partners (1982). Low pH in waste rock drainage may result in enhanced solubility of trace metals like lead, silver, zinc, cadmium and copper (Ferguson and Erickson, 1988).

However, acid formation may be buffered by alkalinity released from carbonate minerals in the mine waste, such as calcite (CaCO₃). Given the relatively high calcium content in the waste material, development of AMD in the waste rock dumps appears unlikely. Despite the fact that sulfide oxidation is occurring in the mine discharges, no pH values below 7 have been recorded in water of the upper Ok Tedi, neither by OTML nor in measurements during the present study.

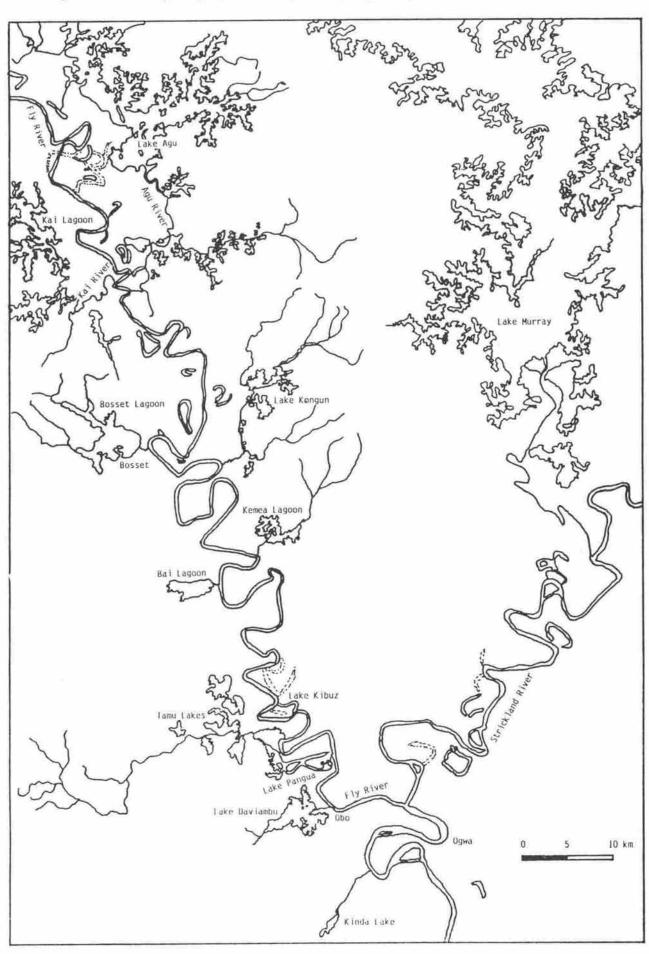
5. Sedimentology of the Fly River and its Floodplain

5.1 Natural Sedimentary Processes in the Floodplain

The Fly River has a highly variable flow regime extensive flooding and where overbank deposition on its wide floodplain alternates with extremely low water levels in drought periods. The sedimentary processes in the Fly River floodplain are dominated by the river itself and the suspended load it carries. Sediment delivery by floodplain creeks and channels to the system is negligable. The catchment in the outer floodplain and the adjacent piedmont plain comprises forested areas with some swamp savannah. The content of particulate matter in floodplain creek waters generally is very low (below 15 mg/l), consisting of organic material, mainly plant debris, and strongly weathered soil material.

At mean flow in the Fly River and low water table in the floodplain, intrusion of riverine suspended sediment occurs along pre-existing channels linking the river with the floodplain. Sedimentation is highest in oxbow lakes and tie channels, where medium to coarse silt from the river suspended load settles down, and much lower in drowned valley lakes and floodplain depressions where clay and fine silt may become deposited.

Drainage direction throughout most of the Fly River floodplain is towards the Fly, although the inner floodplain, the active meander belt, tends to be higher in elevation than the outer floodplain due to sedimentation along and in the main river channel. No broad continuous levee is developed along the river and where there is a dam, it is cut by small drainage channels.


During periods of high water level in the Fly River, which are associated with higher sediment loads because of increased transport energy, river bank overflow and inundation of the alluvial plain occurs. Overbank flooding during moderate floods is localized close to the Fly River channel in flanking swamps. The water returns to the river when the flood recedes, although most of the suspended load carried into the floodplain will be deposited there due to vegetative filtering in the grassland bordering the main river, and in sediment traps such as lakes. Maunsell and Partners (1982) recorded a period of very high flow in the Fly River in July 1981, which was the highest since 1977. The water level was about 1 m above the natural levees. According to their observation, grassland and forests adjacent to the river channel in the reach between Lake Bosset and Obo were flooded to a width of about 16 km on either side of the channel. Although this situation is highly anomalous, it is evident from aerial photographs that at high water level in the Fly River, turbid flood water may flow several kilometers across the floodplain.

The background deposition rate (i.e. before the mine started discharging material) in drowned valley lakes is very low. Sediment fractions less than 2 um were analysed from small islands (0-1 m above mean lake level) in Lake Bosset and Bai Lagoon as seen in Map 2. These indicated a mineral composition dominated by kaolinite, aluminium chlorite, quartz and gibbsite. All four minerals are typical of highly weathered tropical sediments. Sediments probably from the Pleistocene age were found on the surface of these shallow islands, showing that no Fly River material has been deposited there in the last 120,000 years, when the sea level began to drop and Pleistocene sedimentation in the alluvial plain ended.

Table 5 shows the results of C^{14} age dating which was performed to determine sedimentation rates in drowned valley lakes. The overall deposition rate seems to be well below 1 mm/year and may be as low as 0.1 mm/year. The sediment deposition at a particular site within a lake depends largely on bottom relief and shape of the lake.

Sample Core 3/30.3. was taken from the distal end of Lake Daviambu. The upper 13 cm consist entirely of peat-like organic debris. Accumulation of this material, derived from the catchment of the lake itself, is much slower than at those sites which receive suspended sediment from the Fly River.

With the other three cores, the sediment layer above the peat was made up of Fly River material, as determined from its characteristic clay mineral assemblage with dominantly (low charged) smectite. A thin layer of copper-rich material on the top of the cores was observed.

Map 2: The lower part of the Middle Fly River (study area).

Core Number		3/30.3.	3/11.4.	1/5.4.	1/9.4.
Locality	Units	L. Daviambu W	L. Bosset NW	Bai L. C	Kai L. SW
Depth of peaty layer below sediment surface	cm	13	28	27	28
C14 age	years before present	5265	2950	4030	4380
	years	±215	±70	±110	±125
Sedimentation rate	mm/1000 years	24	95	67	64
Water depth at site	mean water level	1.10	2.40	1.70	2.60
Distance from Fly	air km	6	5	3	9

Table 5: Results of radiocarbon age dating of sediment cores from drowned valley lakes.

Due to the lack of dateable organic matter in sediment cores from tie channels and their banks, where sedimentation certainly was much higher, no data are available to establish deposition rates at these sites. The simple fact that the shallow lakes still exist after about 5,000 years of possible sedimentation from the Fly River points to very low deposition rates. Assuming that the maximum channel depth of 5.4 meters, measured in Lake Bosset channel close to the Fly River, reflects the original channel depth of the drowned tributary, then the deposition rate was about 1 mm/year in the last 5,000 years at sites close to the Fly.

At times when discharge from the Strickland River is greater than the flow of the Fly, a backwater effect develops, which results in decreasing river velocity in the Middle Fly and subsequent settling of suspended material on the river bed. The same occurs during low-flow periods. The deposited material may be resuspended at high flows.

Pickup et al. (1979) estimated the natural suspended load of the Middle Fly at 7-10 million tons and bed load at 1-2 million tons per year.

5.2 Deposition of Mine-Derived Material

The suspended sediment concentrations in the Middle Fly River today are 5 - 10 times above the natural load of about 60 mg/l. Significant quantitities of mine-derived sediments are deposited and trapped in creeks, lakes and swamps adjacent to the Fly River. Such offriver sites play an important role in the food web and in the reproduction cycle of aquatic organisms like invertebrates and fish. Flow inversion in channels linking the floodplain with the Fly River is an important process because it is responsible for suspended sediment transport to off-river sites during mean flow conditions. Reverse flow upstream the tributary channels was frequently observed during the three field trips undertaken.

On April 8, 1993 slightly turbid water (sample W1/8.4.) with elevated calcium, copper (9 μ g/l) and cadmium (0.12 μ g/l) levels was encountered in the Agu River/Lake system about 25 km upstream of the junction with the Fly River, which had about mean flow. The Agu River/Lake in this reach runs roughly parallel to the Fly. As a result of a recent Fly River intrusion upstream the Agu River, turbid water was visible in the densely vegetated parts of Agu Lake, whereas in the Agu main channel, Fly water was slowly pushed out in southerly direction (downstream) due to heavy rainfall in the days before the site was visited.

A similar observation was made in the Kai River/Lake system which was sampled on April 9, 1993, although in this case Fly River water was still flowing upstream. The upstream current observed close to the Kai River mouth was remarkably strong and made the use of the outboard motor necessary for passage.

Water with high conductivity, neutral pH and elevated copper values (39 μ g/l in unfiltered sample W4/9.4.) was encountered 19 channel km upstream of the Kai River confluence with the Fly River. Water movement at the sampling location was in northerly direction (upstream). One could expect that there exists a flowthrough mechanism, in which Fly River water enters the Kai River/Lake system (which is about parallel to the Fly) through an upstream connection. However, satellite images and aerial photographs show no such connecting channel and give no indication of flow across the floodplain, away from the river. The same observation was made for the Agu River system, although maps show a northerly channel connection of the Agu with the Fly River. According to local villagers, this flow-through mechanism is only active at very high water level in the Fly.

The frequent intrusions of highly turbid Fly River water should result in widespread sedimentation of mine-derived material in the Kai and Agu Lakes. Sediment sample analysis revealed moderate copper pollution. Only the uppermost 3-5 cm of sediment cores showed strongly elevated trace metal contents, with Cu around 300-600 ppm. In the Kai River samples, the contaminated sections consisted of deposited riverine suspended matter. In the Agu River system, the uppermost, copper-rich sediments were mainly made up of humic material in which the high copper content may be secondary, due to adsorption on flocs of organic matter.

Deposition of mine-derived sediments generally is highest at locations close to the channels which connect floodplain water bodies with the Fly River. Comparatively coarse material (medium to coarse silt) is deposited there, whereas the remaining fractions of clay and fine silt of the riverine suspended load is carried into the floodplain water courses shown in Figure 1. Trace metals are generally enriched in the finest particle fractions.

In a sediment core from the Kai River channel bank (1/10.4.), taken approximately 3 km upstream of the Fly River confluence, the upper 38 cm showed strongly elevated copper values (400-700 ppm). This material must have been deposited within the last ten years, since the Ok Tedi mine is operating. The sedimentation rate is about 4 cm/year.

Similar observations were made at the other drowned valley lakes investigated (Bosset, Kongun, Kemea, Bai, Daviambu). Where the well defined channels extend into the lake, substantial deposition of 20-40 cm of coppercontaminated sediment was detected several kilometers away from the Fly River, whereas in the proper lake copper-rich sedimentation did not exceed 5 cm.

Sediment core 4/11.4. showed elevated trace metal levels in the upper 23 cm with about 200 ppm copper at the bottom and 800 ppm at the top section This core was taken in Lake Bosset at the location where channel and lake water merge, about 2 km inside the lake (see Map 2). Sedimentation of mine-derived material was highest in oxbow lakes with up to 70 cm measured at sites close to the river end of Lake Pangua and Lake Kibuz. Twenty-nine oxbow lakes at different infilling stages exist along the Middle Fly River.

Two sediment cores were taken from the Fly River channel bed (see Figure 2a-c), one at Lake Pangua (water depth 10.5 m) and the other downstream of Obo (depth 14.5 m), both in the deepest part in the channel cross section. The entire bed core from the Lake Pangua site (56 cm) consisted of fine grained sediment with 55-75% finer than 20 μ m (clay, fine and medium silt fraction), and displayed a constantly high copper content of about 850 ppm.

The upper 30-35 cm of the core taken close to Obo were very similar in composition, however the bottom section (41-43 cm) showed much coarser material with 75% fine sand (63-200 μ m). The copper content dropped to 48 ppm in this section. From both cores, it is evident that suspended load has settled down on the channel floor.

Only the section with mainly fine sand, from the sample taken downstream of Obo, shows the typical grain size of bed load. It is known from earlier sedimentological studies (Pickup et al. 1979) that fine material does temporarily deposit on the river bed upstream of Everill Junction. Due to the cohesive forces among fine grained particles, high current speeds are necessary to erode these deposits. The resuspension of mine-derived clay- and silt-size material from the channel floor today may be limited because much more sediment settles down, and will be flushed downstream at high flows only at hydraulically preferred sites like meander bends and immediately upstream of the Strickland junction.

In this connection, it is interesting to note that two islands within the Fly River channel, one immediately downstream of Lake Bosset and the other at the junction of Tamu Creek, have been observed during the field trips undertaken. Sediment samples taken showed relatively coarse, copper-rich material (see Figure 2d). No such islands are visible in aerial photographs from the 1960's and 1970's. The formation of islands in the river channel also indicates insufficient transport capacity of the Fly River to carry all mine-imposed waste material. OTML (1993) reports an increase in bed level at Kuambit, immediately downstream of the Ok Tedi/Fly River confluence, of more than one meter above the 1984 pre-mine baseline.

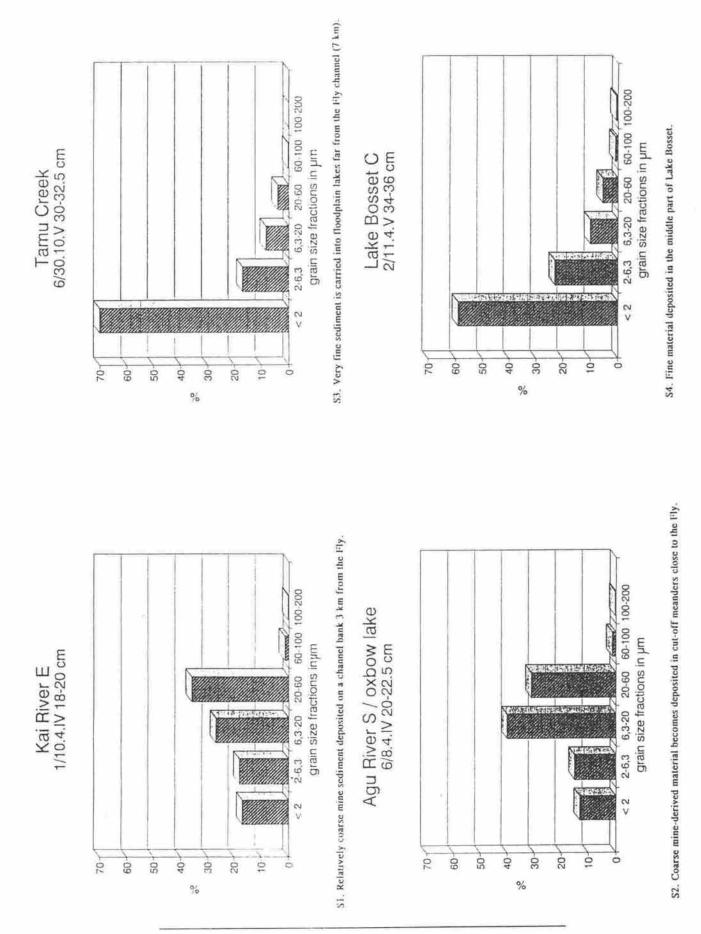
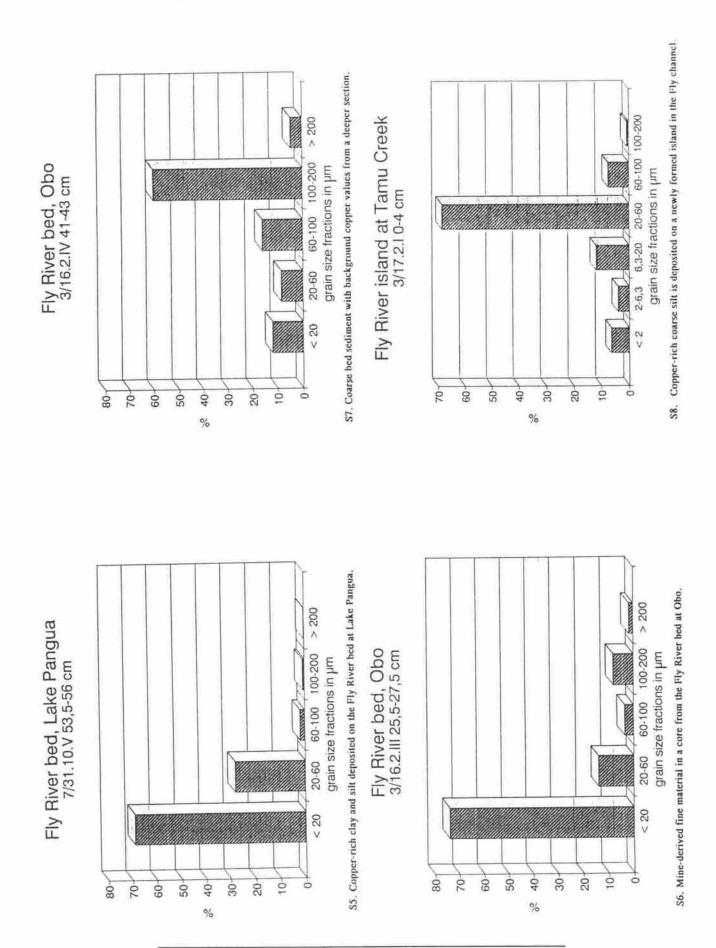
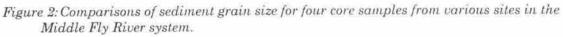




Figure 1: Comparisons of sediment grain size for four core samples from various sites in the Middle Fly River system.

17

Two effects probably are responsible for the strongly increased deposition rates as compared to earlier sedimentation: firstly, because of the increase in the (mine-derived) suspended sediment load of the Fly River, which today also contains more silt than the natural particulate load. Secondly, with reduced channel capacity due to bed aggradation, overbank flow frequency increases. In the lower part of the Middle Fly, close to the Strickland River junction, aggradation of the main river channel is higher due to the backwater effect from the Strickland.

Sedimentation studies which were undertaken before the Ok Tedi mine was developed (Pickup et al. 1979) assumed that frequent landslides, particularly in the upper Ok Tedi catchment, have lead to a high natural suspended sediment load in the Fly River. Had this been the case, this should have resulted in much higher natural deposition rates in the Middle Fly floodplain. The comparison of sedimentation rates before and after the mining at Mt. Fubilan started points to the fact that the background suspended sediment concentration in the Fly River was very low, probably in the range of 40-60 mg/l.

Attempts were made to establish a suspended sediment balance using data collected by OTML. A proper balance would show sediment losses (or gains) in the system. A brief examination of data in Table 6 shows that there is a large scatter in the measured concentrations over several sampling periods.

Of main interest to the present study is the deposition of suspended riverine material in the Middle Fly region. The measured suspended matter content in gulp samples of near-surface water in the Fly River reach between Kuambit and Obo shows a strong decrease in all sampling periods. This effect can not be seen clearly in the depth-integrated measurements in which the suspended matter content is determined in vertical sections through the water column.

Typically, the suspended sediment concentration of near-surface river water (gulp samples) is 70-90% of the depth-integrated suspended matter content (Higgins 1990). No such relationship can be established in the data of Table 6. Differences between suspended sediment content determined by gulp and depthintegrated sampling were up to 90% in measurements from the same site and date (data in OTML 1993).

It is difficult to explain this discrepancy, which is particularly evident at Obo. There obviously exists a pronounced stratification within the flowing water body, with particulate-rich water travelling close to the bottom. Due to the shift of the main current in river bends, which leads to a more turbulent (spiral) flow, the bottom strata with a higher suspended solids content rise to the surface. This effect was observed in the depth-integrated measurements at Obo where suspended sediment concentrations are usually highest close to the outer bend.

The stratification in suspended sediment concentration within the water body points to the settling down of suspended load on the channel floor. River bed sedimentation is largely dependent on flow velocity, which at Obo is significantly lower than at Kuambit/Nukumba. A detailed comparison of flow data gathered in February and April of 1992 by OTML gave a mean value of 1.12 m/s for Kuambit and 0.66 m/s flow velocity at Obo.

Table 6. Average data on suspe	nded sediment concentrations in gulp (surface) and depth-
integrated (DI) samples.	Medians shown and number of measurements in brackets.

Years Locations	1988	9/88-8/90 ss/gulp (mg/l)	10/91-9/92	1990/91 ss/DI (mg/l)	1991/92
Bukrumdaing	*	151(3)	44(5)	57	64
Tabubil	4709	7825(25)	6696(12)	8095	10626
Ningerum	1802	524(124)	3477(12)	5846	5882
Konkonda	698	1420(24)	949(12)	2072	2744
Kiunga	*	60(24)	26(12)	186	149
Kuambit	305	520(24)	316(12)	625	573
Bosset		171(23)	118(12)		
Obo	65	92(25)	103(12)	649	450
Strickland		414(24)	239(12)	690	509
Ogwa	326	283(23)	*	677	323

Data from OTML (1988-92).

* nodata available

Ok Tedi Mining Ltd. has tried to establish an annual suspended sediment mass balance based on its regular measurements taken in the Ok Tedi and the Fly River (see Table 7). The calculations illustrate the complexicity of the system and the difficulties in predicting sediment transport in the two rivers. The measured load values (calculated from a small number of measurements) in the 1991/92 data indicate a loss of sediment from Ningerum to Obo (46 to 35 Mt/a), whilst the model predicts a steady increase in the same reach (43 to 55 Mt/a). In the data set for the following year, the discrepancy between observed and predicted load is minor. Given that sediment input by the Ok Tedi mine into the system is fairly constant over the years, the massive adjustment of the predictive model between the two years (at Obo 38 instead of 55 Mt/a) is hard to understand. The flow weighted load data for 1992/93 suggest heavy erosion of material in the Middle Fly between Kuambit and Obo (increase of suspended load by 4 Mt/a), which is hard to explain, too. This may be attributed to the limited number of data collected (9 depth-integrated samples).

Table 7. Suspended sediment mass balances for 1991/92 (above) and 1992/93 (below) calculated by OTML (1993, 1994).

Station	Flow Weighted Load (Mt/a)	Flow Weighted Conc. (mg/l)	Predicted Load (Mt/a)	Predicted Conc. (mg/l)
Ningerum	46	5750	43	5991
Konkonda	40	2001	43	1862
Kuambit	37	646	44	724
Obo	35*	450*	55	687
Strickland R.	84*	900*	85	
Ogwa	119*	323*	140*	807

Station	Flow Weighted Load (Mt/a)	Predicted Load (Mt/a)
Ningerum	40	
Konkonda	31	35
Nukumba/	34	38
Kumabit		
Obo	38	38

insufficient records; estimates based on available data

Potential Mobilization of heavy metals and hydrochemistry

6.1 Heavy Metals in Sediments of the Ok Tedi/Fly River System

Analytical results for sediments from the Fly River floodplain are shown in Tables 8 and 10 (A1 and A3 in annex) and from the upper Ok Tedi in Table 9 (A2 in annex). The samples from the Fly River section are grouped into two populations, i.e. sediments which were deposited before the Ok Tedi mine started discharging residues into the Ok Tedi/Fly River system (Table 8), and sediments controlled by minederived material (Table 10). This classification is easily practicable due to the distinct geochemical signature in the mine-derived material, which shows for some elements a significant enrichment above the natural background.

Table 8. Mean, standard deviation, median values and 25% - 75% confidence intervals for 27 elements in Middle Fly River background sediment samples (n = 128).

Element	Units	Mean	SD	Median	Percentiles	
					25	75
Na	mg/kg	4365	3146	3700	2000	5400
к	mg/kg	10829	4448	12050	7200	14100
Mg	mg/kg	5335	2320	5900	3400	7200
Ca	mg/kg	8787	7493	6100	4875	8025
AI	mg/kg	85538	25348	91100	71700	102400
Fe	mg/kg	37302	15185	33700	7200	46300
Mn	mg/kg	289	225	197	136	334
Zn	mg/kg	142	54	130	115	164
Cu	mg/kg	45	19	44	32	54
Pb	mg/kg	18	9	18	11	23
Cd	mg/kg	0.26	0.13	0.2	0.2	0.2
Au	µg/kg	6.7	6.5	3.0	1.0	8.5
Ag	mg/kg	0.24	0.26	0.2	0.1	0.3
As	mg/kg	4.6	3.6	4.0	2.0	5.0
Cr	mg/kg	61	16	61	55	70
Mo	mg/kg	1.7	1.4	1.0	1.0	2.0
Co	mg/kg	13	6	12	9	16
Ni	mg/kg	33	13	29	24	41
V	mg/kg	165	49	171	143	196
Ti	mg/kg	3765	1269	4100	3100	4400
Zr	mg/kg	67	25	67	49	83
La	mg/kg	24	7	25	20	28
Ва	mg/kg	309	119	309	255	361
Sr	mg/kg	137	57	127	101	16:
Sc	mg/kg	17	5	18	14	20
С	%	6.7	9.4	2.6	1.3	6.0
S	mg/kg	1447	1445	800	300	252

Gold gives the highest enrichment factor of 53, followed by molybdenum (factor 23), copper (factor 12), lead (factor 4.4), calcium (factor 4.1), silver (factor 3.5), sulfur (factor 2.6) and strontium (factor 2.5). Zinc shows an enrichment factor of 1.6.

The elements Al>V>Co>Cr>Sc>Ni>Ti>Zr (in decreasing order) are present in mine-derived material in lower concentrations than in background sediments. It is evident that the elements associated with the copper-gold ore from Mount Fubilan are also found in the lowland depositional sites. Those metals which are typically enriched in soils during tropical weathering are found in higher concentrations in unpolluted lowland sedi-ments as in material from the mine, deposited in the floodplain.

The comparison of mine-derived sediments from the Fly River floodplain (Table 10) with material from the upper Ok Tedi, which consists nearly exclusively of tailings and waste rock (Table 9), gives the following results: Calcium is found in upper Ok Tedi material 4 times and sulfur 3.8 times higher as compared to lowland minecontrolled sediments.

Factors for other important elements which are found in the Mount Fubilan orebody are: copper (2.2), silver and cadmium (both 2), zinc and strontium (1.8), gold (1.7), arsenic and molybdenum (1.6) and lead (1.5). The elements K>Ba>Mg>La>V>Ti>Ni>Sc>Zr (in decreasing order) are present in tailings and waste rock in lower concentrations than in mine-derived sediments of the Middle Fly region.

Table 9: Mean, standard deviation, median values and 25% - 75% confidence intervals for 27 elements in sediments from the upper Ok Tedi, mainly tailings and waste rock (n = 24).

Element	Unit	Mean	SD	Median	Perce	ntiles
				-	25	75
Na	mg/kg	11921	4159	10950	8100	15000
K	mg/kg	30350	7395	27950	24400	37200
Mg	mg/kg	6733	1463	6350	5700	7700
Ca	mg/kg	86117	33796	98450	54800	115900
Al	mg/kg	61462	11766	62750	54800	65800
Fe	mg/kg	47512	29854	40900	29300	54200
Mn	mg/kg	700	323	775	436	965
Zn	mg/kg	541	450	378	182	779
Cu	mg/kg	1523	976	1158	805	1791
Pb	mg/kg	463	744	123	63	488
Cd	mg/kg	1.6	1.3	1.0	0.6	2.2
Au	µg/kg	426	381	266	107	609
Ag	mg/kg	2.4	2.5	1.4	0.8	3.3
As	mg/kg	14.9	11.5	11	5	19
Cr	mg/kg	30	12	26	21	33
Mo	mg/kg	38	14	36	27	45
Co	mg/kg	13	10	11	5	16
Ni	mg/kg	17	9	14	10	23
V	mg/kg	111	21	105	99	120
Ti	mg/kg	1788	305	1750	1500	1900
Zr	mg/kg	22	11	19	13	29
La	mg/kg	23	6	22	19	26
Ва	mg/kg	410	202	368	275	599
Sr	mg/kg	576	86	548	510	620
Sc	mg/kg	7.3	2.4	7	5	9
C	%	1.8	0.5	1.9	1.3	2.1
S	mg/kg	15211	20643	7900	4425	10625

Evaluation of relationships between elements in the data obtained for the upper Ok Tedi sediments give the result that sulfur versus Fe, Mn, Zn, Cu, Pb, Cd, Ag and Mo is strongly positively correlated (r = 0.80-0.99, significance level p <0.05). This can be explained by the fact that most metals are dicharged in sulfidic form into the Ok Tedi River.

In the Fly River floodplain sediments, the positive relationship between trace metals and sulfur is much weaker (in the range of r = 0.31-0.71 for the metals mentioned above) with the exception of iron, which shows no correlation with sulfur in lowland mine sediments.

In sediments from the upper Ok Tedi, the metals Fe, Mn, Zn, Cu, Pb, Cd, Ag and Mo are all highly intercorrelated (r = 0.65-0.95). As in

the case of sulfur, the positive relationship is lost or becomes weaker in the Fly River floodplain data for the same metals. It is interesting to note that gold shows no relationship with any of the trace metals mentioned above in the upper Ok Tedi sediments. In the mine-affected lowland sediments exists a positive correlation with lead (r = 0.68) and molybdenum (r = 0.66).

There are mainly two processes operating in the river system which are responsible for the differences in the element concentrations in upper Ok Tedi and lowland sediments: Sediment admixture/erosion and mobilization of metals from the solid phase. The Ok Tedi River on its 200 km long way to the Fly River junction receives water and suspended sediments from several tributaries.

Table 10: Mean, standard deviation, median values and 25% - 75% confidence intervals for 27 elements in mine-controlled sediments from the Middle Fly River floodplain (n = 197).

Element	Units	Mean	SD	Median	Percentiles	
					25	75
Na	mg/kg	8010	3218	8200	6025	9800
к	mg/kg	28807	11610	30300	18850	36950
Mg	mg/kg	7242	1831	7400	6200	8575
Ca	mg/kg	30139	23842	24800	8200	50350
AI	mg/kg	80994	14915	81100	72325	91025
Fe	mg/kg	40004	11012	39500	32200	46850
Mn	mg/kg	528	254	510	310	710
Zn	mg/kg	211	68	204	163	245
Cu	mg/kg	530	289	529	278	732
Pb	mg/kg	79	36	80	48	104
Cd	mg/kg	0.5	0.3	0.5	0.2	0.7
Au	µg/kg	166	81	160	120	205
Ag	mg/kg	0.7	0.5	0.7	0.3	1.0
As	mg/kg	8.3	5.8	7.0	4.0	12
Cr	mg/kg	48	14	46	39	56
Мо	mg/kg	24	13	23	13	32
Co	mg/kg	10	5	10	7	12
Ni	mg/kg	21	9	19	15	24
V	mg/kg	145	35	139	123	163
Ti	mg/kg	2753	801	2600	2200	3200
Zr	mg/kg	44	16	41	32	52
La	mg/kg	26	7	27	22	30
Ba	mg/kg	415	100	420	363	466
Sr	mg/kg	330	139	313	226	438
Sc	mg/kg	13	4	12	10	15
С	%	1.6	1.5	0.9	0.6	2.0
S	mg/kg	2464	2160	2100	675	3425

23

Further dilution with uncontaminated riverine particulate matter occurs at the Ok Tedi/Upper Fly River confluence. Due to the fact that unpolluted tributaries have a much lower suspended load than the Ok Tedi, dilution effects, however, are small. Lateral erosion in the highly sinuous channel of the Middle Fly appears to be a more important process. Admixture of weathered floodplain sediment in the river course is responsible for increasing concentrations of elements like zirconium, scandium, titanium and chromium (which are highly persistent in chemical weathering) in the mine-derived sediments deposited downstream in the Middle Fly floodplain.

A sediment particle which is discharged into the upper Ok Tedi travels about 7 days until it reaches Everill Junction 610 km downstream of the discharge point. During this time, mineral dissolution occurs. It is evident that particulate. mine-derived calcite is being dissolved in Ok Tedi and Fly River water. Particulate sulfide minerals, mainly pyrite and chalcopyrite, are also unstable in the oxygenated river waters and are oxidized to sulfates. The trace metals associated to these minerals either go in solution or become adsorbed to particulate matter, mainly to unsoluble iron oxyhydrates or organic matter. They are partitioned between the solid and dissolved phase according to their geochemical mobility in the aquatic environment of the Ok Tedi/Fly River system.

Table 11 shows analytical data for two sediment cores sampled from locations close to the Fly River channel (Kai River channel, 1/10.4., and Fly River bank at Obo, 5/27.3.), whereas Table 12 shows data from swampy sites (locations in Table A3).

Calcium and sulfur values are much higher than in the cores shown in Table 12. Very little calcite dissolution and sulfide oxidation has taken place in the material from the river channel. The declining copper values towards the base of the sediment core 1/10.4. reflect the development stages of the mine. In the early mining phase of gold extraction only, tailings and waste rock consisted mainly of oxidized gossan material with a relatively low copper content and almost no sulfide minerals, which can also be seen in the base section of core 1/10.4. It was frequently observed that copper values increased in steps from the base to the top of a sediment core whereas gold showed the opposite behaviour (Table A3 in annex).

Sediments of Table 12 display very low calcium and sulfur values, although high lead and gold contents indicate that it is largely mine-derived material. Gold is a very resistant element in tropical weathering, and lead also shows very little mobility in the Ok Tedi/Fly River environment (see following section). Copper, together with calcium and sulfur, is clearly depleted in the sediments in Table 12. See also Figures 3 and 4.

Sediment core t section	/10.4.	C. ppr		Cu ppm	Pb ppm	S ppm
0-2 cm		3540	0	663	51	2300
2-4 cm 18-20 cm 28-30 cm 30-32.4 cm		4430	D	668	54	1700 nd 2700 nd
		5000	D	664	98	
		56800	D	618 574	78 94	
		50200	200			
32.4-34.5 cm		35200)	483	83	<100
Sediment core 5/27.3 section	Ca		Cu ppm	Pb ppm	Au ppb	S ppm
9.5-22 cm	487	'00	977	76	205	5300
80-32 cm	560	000	929	79	nd	3000
16-48 cm	478	00	891	71	nd	4600

Table 11. Typical vertical profiles of mine-controlled sediments (fraction <20 μm) in the Middle Fly River floodplain deposited at sites close to the river at high deposition rates.

Ca and S remain in the sediment body when the deposition rate is high and each layer of riverine suspended matter is rapidly covered by fresh sediment. Sulfide minerals are stable under conditions of oxygen deficiency, which are generated by the decay of riverine organic matter. The pore water in the fine-grained sediment will soon be saturated with calcium which prevents further calcite dissolution. Mobilization of trace metals will be minimal under these conditions.

To the contrary, mine-derived material deposited sporadically on swampy floodplain sites is subject to intense leaching. The undulating water table permits penetration of atmospheric oxygen into the sediment body, which is facilitated by the roots of floodplain vegetation. Both factors result in sulfide oxidation. Rainwater leaches calcite from the deposited material, and the rotting of swamp vegetation generates acidic pore waters which may bring trace metals in solution.

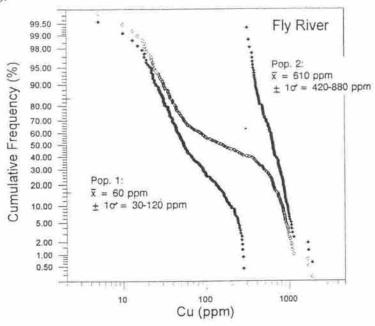
Table 12: Vertical profiles of mine-controlled sediments (fraction <20 μm) deposited at swampy sites on the Middle Fly River floodplain.

Sediment	core 4/7.4.
----------	-------------

section	Ca ppm	Cu ppm	Pb ppm	Au ppb	S ppm
0-2.5 cm	7800	583	92	130	600
2.5-5 cm	6600	576	122	160	300
7-9 cm	4200	557	140	nd	nd
19-21.5 cm	6400	37	16	<2	<100

Sediment core 1/7.4.

section	Ca ppm	Cu ppm	Pb ppm	Au ppb	S ppm
7.5-10 cm	8700	401	102	310	200
27-29 cm	14000	356	79	291	500
33-35 cm	7500	69	29	nd	200


Sediment core 2	127	.3
-----------------	-----	----

section	Ca ppm	Cu ppm	Pb ppm	Au ppb	S ppm
3.5-5.5 cm	6100	430	110	240	<100
5.5-8 cm	6900	320	81	nd	100
30-32.5 cm	5900	40	19	nd	100

Sediment	core 1	/30.3
----------	--------	-------

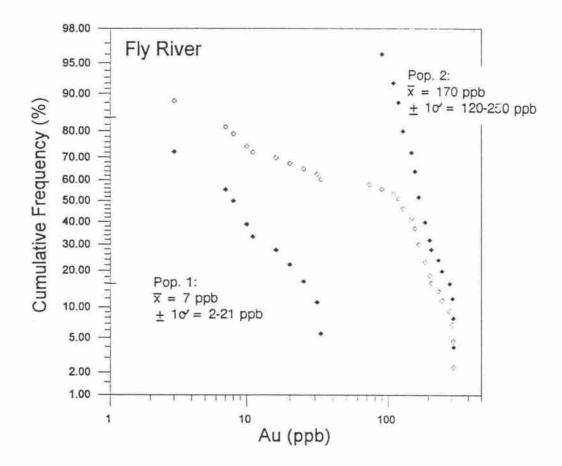

section	Ca ppm	Cu ppm	Pb ppm	S ppm
2-4 cm	7300	409	81	100
26-28 cm	5800	35	14	400

Figure 3: Copper distribution of alluvial sediments in the Middle Fly River floodpain. The probability graph of the composite population of 385 data points (open squares) separates into approximately log-normal subpopulations (closed squares) with a natural background of about 50 ppm Cu, and a second population of mine-derived material at 610 (geometric means).

25

Figure 4: Gold distribution of alluvial sediments in the Middle Fly River floodpain. The probability graph of the composite population of 27 data points (open squares) separates into approximately log-normal subpopulations (closed squares) with a natural background of about 7 ppb Au, and a second population of mine-derived material at ppb.

6.2 Hydrochemistry of the Ok Tedi/Fly River System

6.2.1 General

6.2.1.1 Earth alkaline and alkaline metals

These elements have a high solubility of their salts in common, which is independent of redox changes and partly independent of pH (Na, K). Because of the reaction:

 $CaCO_3 + H_2CO_3 \Leftrightarrow Ca^{2+} + 2 HCO_3^-$

calcite dissolution requires the presence of carbon dioxide, which forms the carbonic acid consumed in the reaction. The carbon dioxide partial pressure in water decreases with increasing temperatures. Dissolved Ca, Mg and Sr compounds are stable in water in the presence of carbon dioxide.

Calcite is abundant in the mine waste discharged into the Ok Tedi/Fly River. Its dissolution exerts a buffering effect on pH which will remain in the range of about 6.4 to 8.0, in spite of concomitant dissolution of sulfides from mine discharge. Calcium forms complexes with humic acids. Mg compounds are, in general, more soluble than their Ca counterparts. Na is the most mobile metal in the aquatic environment. K is usually present in lower concentrations than Na. The natural leaching of K from minerals does not result in significantly increased solubilization because K is usually incorporated into new mineral readily structures like clays.

6.2.1.2 Iron and manganese

Both metals show a similar hydrochemical behaviour. Manganese tends to be more mobile as compared to iron.

Compounds of ferric iron (Fe³⁺) and Mn⁴⁺, which are the stable oxidation states in aerobic waters, are nearly insoluble. In reducing waters, the divalent reduced forms (ferrous/manganous) can persist in the absence of sulfide and carbonate anions. Iron and manganese may also occur in both oxidation states in inorganic or organic complexes. In oxygenated, alkaline waters both metals are present as colloidal suspensions of ferric resp. manganic hydroxide particles which pass through a 0.45 μ m membrane filter. For this reason, the "dissolved" concentrations reported for iron and manganese in neutral or alkaline waters in most cases do not correspond to electrolyte solutions.

6.2.1.3 Trace metals

Copper, zinc, molybdenum, cadmium and lead were analysed in waters.

Between pH 6.5 and 8.5, **lead** speciation in the aquatic environment is dominated by carbonates and hydroxides (Hem and Durum, 1973), which are almost insoluble. Pb may be complexed with organic ligands, yielding soluble, colloidal and particulate compounds. It can easily be adsorbed to particulate organic and inorganic matter, which is the dominant mechanism controlling the distribution of lead in the aquatic environment above pH 6 (Farrah and Pickering 1977).

Copper generally shows a higher geochemical mobility than lead. The distribution of copper species in the aquatic environment depends on pH and on the presence of inorganic and organic ligands. Carbonates and hydroxy-anions are the favoured inorganic complexing ligands in oxidized freshwaters with pH above 7. In the presence of soluble organic matter, sorption of copper to particulates may be relatively ineffective because complexation with humic acids is the dominant process (Jackson and Skippen 1978).

Cadmium and **zinc** are characterized by a lower affinity to carbonate and hydroxy anions at near neutral pH values. The influence of pH and alkalinity on the solubility of Cd^{2+} and Zn^{2+} is much lower as compared to lead and copper. Zinc also forms complexes with humic substances, a process which is favoured by increasing pH.

Molybdenum occurs in oxidized waters as molybdate ($MoO_4^{2^-}$) and bimolybdate ($HMoO_4^-$) anions. The anions are readily adsorbed by iron and aluminium oxyhydroxides at pH values below 5. Above this value, molybdenum in natural waters is essentially dissolved.

Aluminium in the aquatic environment is mainly present in the form of dissolved and colloidal aluminium hydroxide, $Al(OH)_3$. Its minimum solubility is at pH 5.5-6. Above pH 6.5. soluble aluminium exists primarily as $Al(OH)_4$. It is capable of forming complex ions with inorganic and organic substances.

6.2.1.4 pH

The **pH value** in the Ok Tedi/Fly River system is not only controlled by the dissolved carbon dioxide concentration in waters and calcite dissolution, but also by the biochemical processes of photosynthesis and respiration. Photosynthesis of subaquatic plants is accompanied by the assimilation of ions such as NO_3^- , NH_4^+ and HPO_4^{-2-} . Charge balance is maintained by the uptake or release of H^+ or OH^- , which lead to alkalinity changes.

Alkalinity increases in oxygenated waters as a result of photosynthetic nitrate assimilation according to the bulk reaction (Stumm and Morgan 1981):

$$106 \text{ CO}_2 + 16 \text{ NO}_3^- + \text{HPO}_4^{2} + 122 \text{ H}_20 + 18\text{H}^+$$

$$\Rightarrow C_{106}H_{263}O_{110}N_{16}P_1$$
 (mean algae

composition) + 138 O_2

 NH_4^+ is the dominant nitrogen species in reducing waters. NH_4^+ assimilation during photosynthesis causes a decrease in pH:

$$\begin{array}{l} 106 \ \mathrm{CO_2} + 16 \ \mathrm{NH_4^+} + \mathrm{HPO_4^{2^-}} + 108 \ \mathrm{H_20} \\ \\ \Leftrightarrow \quad \mathrm{C_{106}H_{263}O_{110}N_{16}P_1} + 107 \ \mathrm{O_2} + 14 \ \mathrm{H^+} \end{array}$$

Respiration of plant material leads to reactions in opposite direction. When photosynthesis and respiration are in overall equilibrium, no change in pH will be observed, although there exists a pH variability over the day/night cycle. When the rate of production of organic matter (assimilation of NH_4^+) is larger than the rate of decomposition, alkalinity will decrease. Peat formation, which was frequently observed in the Fly River floodplain, leads to low pH values in the overlying water.

6.2.1.5 Reduced species

 $\rm NH_4^+$, HS⁻ and NO₂⁻ were determined in waters as indicators of reducing conditions. All three compounds are unstable in oxygenated water. Nitrite is metastable in both reducing (conversion to N₂ and N₂O) and oxidizing waters (nitrate formation). The stability of NH₄⁺ and HS⁻ is pH-dependent. HS⁻ is converted to volatile H₂S at pH values below 7. To the contrary, NH₄⁺ forms volatile NH₃ at pH above 9 (at 30°C).

Within the pH range observed in the investigated waters with oxygen deficiency, only NH_4^+ was a reliable indicator of reducing conditions. Many redox reactions are slow and depend on biological mediation, hence the concentrations of species encountered in natural waters may be far from those predicted thermodynamically (Stumm and Morgan 1981).

Only the elements C, N, O, S, Fe and Mn are important participants in redox processes in the aquatic environment. However, since the mobility of trace metals is influenced by the adsorption to Fe and Mn oxides and fixation in reduced species (e.g. formation of metal sulfides), redox conditions are of importance to predict trace metal behaviour.

6.2.1.6 Dissolved organic carbon (DOC)

The term DOC is a sum parameter for a number of polymeric organic substances which contain a sufficient number of hydrophile functional groups (-COO, -NH₂, R_2 NH, -RS-, ROH, RO-) to remain in solution despite their molecular size. Polypeptides, amino acids, certain lipids, polysaccharides, humic and fulvic acids and Gelbstoffe belong to this group. Humic substances in general are a result of the transformation of biogenic material. DOC levels in interstitial waters of deposited organic debris may be much higher than in the overlying water.

Humic acid is extracted from humic matter in alkaline solution. Fulvic acid is the humic fraction that remains in acidified solution and is soluble over the entire pH range. Humin is the fraction which cannot be extracted by either acids or bases. Structurally, the three groups are similar; differences are in molecular weight and functional group content. The analytical determination of soluble chelates in natural waters is very difficult, particularly with the minute quantities of metal ions that are usually present.

Humic substances have a strong tendency to become adsorbed on inorganic surfaces like hydrous oxides and clays through a mechanism involving ligand exchange of humic anionic groups with H_20 and OH^- of mineral surfaces (Tipping 1981). These negatively charged coatings may themselves become active absorbers of trace metals. Colloidal iron and aluminium oxides are stabilized by humates. In highly dispersed form, these colloids pass through an 0.45 μ m membrane filter.

The most important feature of humic and fulvic acids is there tendency to form complexes with metal ions. As polycarboxylic acids, humates precipitate in the presence of dissolved Ca and Mg due to coagulation. Humic substances display colloid-chemical behaviour.

In the present study, three types of water were distinguished for their different chemistry and main constituents: Fly River water, unpolluted floodplain waters, and mixed waters.

6.2.2 Fly River Water

Water from the Middle Fly River (Table 13 and Table A4 in the Annex) is characterized by a moderately high content of earth alkaline and alkaline metals which is due to the active mineral dissolution of freshly eroded rock material which is carried in suspension from the Mount Fubilan minesite and the Ok Tedi catchment.

The major anion is bicarbonate, followed by the minor anions sulfate, chloride and nitrate. The dominating dissolved electrolytes are calcium and bicarbonate, which account for approximately 90% of conductivity (calculated from mol equivalents), and which also control the moderately alkaline pH of 7.7. The content of dissolved organic carbon (DOC) is fairly high at about 6 mg/l (low number of samples, not reported in Tables).

Oxygen saturation measurements of Fly River water gave a mean value of only 66% which is obviously influenced by the oxygen-consuming decay of dissolved and particulate riverine organic matter. Reduced species (NH_4^+ , HS^- , NO_2) were present at or below detection limit which indicates oxygenated conditions. Within the temperature range observed in Fly River water, p_{CO2} does not change to an extent which would markedly affect calcite dissolution. The plot of pH versus calcium (Fig. 5a) shows a significantly negative correlation (p <0.05). The plot of suspended solids versus calcium (Fig. 5b) displays a significantly positive relationship. It can be concluded that at low pH, more calcite from the suspended particulate fraction is dissolved, which means that the dissolved calcium concentration is controlled by pH (assuming constant atmospheric p_{CO2}).

The fact that the highest suspended solid concentrations are associated with the lowest pH values may indicate that high flows in the Fly River are associated with low pH. Since high flows are a result of heavy rainfall, and because rainwater is saturated with atmospheric CO_2 , the increased input of carbonic acid may explain near neutral pH values in the river water at high flows.

There exists a positive relationship between conductivity and suspended solids (p < 0.05, Fig. 5c). A high concentration of suspended matter is associated with high values for earth alkaline and alkaline metals (Ca, Mg, Sr, Na and K).

Parameter	Unit	Mean	SD	Median	Percent	iles
					25	75
Temperature	°C	28.2	1.6	28.9	26.4	29.4
рН	Ľ.	7.7	0.2	7.7	7.7	7.8
Conductivity	µS/cm	138	15	136	128	146
Oxygen Saturation	%	66	0.2	64	60	68
Suspended Solids	mg/l	199	149	155	92	207
Na	۲gu	1564	299	1425	1350	1660
к	Ngц	622	87	615	536	667
Са	µg/l	29380	6654	26000	24750	31300
Mg	µg/l	1237	170	1190	1075	1345
Sr	нgЛ	172	36	158	144	181
Al	µg/l		below dete	ection limit of	50 µg/l	1
Fe	µg/l	72	1 02	30	8	75
Mn	µg/l	18.4	13.2	12.5	8.5	25
Zn	µg/l	9.2	6.2	8.0	4.0	10.5
Cd	µg/l		below det	ection limit of	0.1 µg/l	1
Cu	µg/I	19.6	11.8	17.0	13.0	19.3
Pb	hgl		below d	etection limit of	of 1 µg/l	
Mo	µg/l	7.9	5.0	7.0	3.0	12.0
HCO3	mg/l	77	4.0	76	73	78
SO42-	mg/l	5.0	2.5	3.5	0.0	6.0

Table 13: Mean. standard deviation, median values and 25% - 75% confidence intervals for Fly River water samples (n = 11).

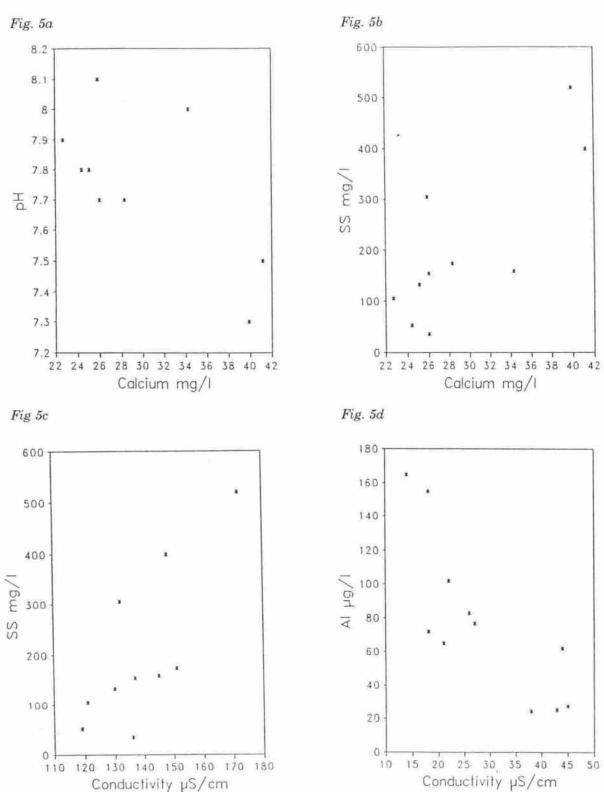


Figure 5: Scatter plots for selected parameters in Fly River water (Fig. 5a-c) and floodplain waters (Fig. 5d).

No correlation was found for suspended solids versus Fe, Mn and Mo. A negative correlation between suspended matter and dissolved copper and zinc was observed, however statistically not significant. Na, Ca, Mg and Sr are highly intercorrelated.

Sample W1/21.2.. which has the highest Fe value of 339 μ g/l, also gave the highest values for dissolved Zn and Cu. In the acidified water sample, the colloidal iron oxide particles are dissolved and adsorbed trace metals are released. This explains the high Zn and Cu values associated with iron. This correlation was not observed in other samples.

Dissolved trace metal levels, with the exception of copper (median value: 17 μ g/l) are generally low due to alkaline pH and high bicarbonate content. Solubility of inorganic copper species in the pH range measured in the river water is very low. The fact that, in spite of the high concentration of suspended matter (which offers adsorption sites), dissolved copper values are relatively high, points to the presence of soluble organic copper complexes.

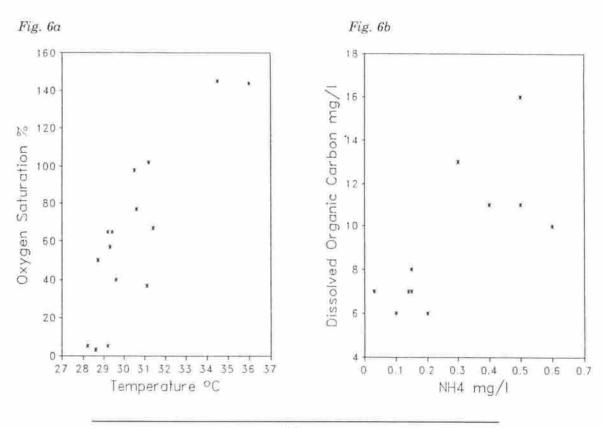
Analytical data from the pre-mining period (Maunsell 1982, Kyle 1988) are of poor quality and make comparison with present data difficult. Dissolved calcium concentrations are reported to have been in the range of 13 to 16 mg/l, which corresponds to about half of the present values. Fly River water has a high natural content of earth alkaline and alkaline metals because of the limestone formations mainly in the Ok Tedi catchment.

Fly River water chemistry probably was not much different from present day conditions, although Maunsell (1982) and Kyle (1988) report slightly acidic pH values in the range of 5.5 to 6.7 which appear erroneous. Trace metal levels measured by Maunsell (1982) were at or below the detection limit of 1 μ g/l with the exception of Fe, Mn and Zn. Pickup et al. (1979) report mean suspended solid concentrations in the range of 60 to 80 mg/l for the Middle Fly and note that "the Fly and the lower Ok Tedi are very clean rivers by Papua New Guinea standards".

6.2.3 Floodplain Waters

The term floodplain waters is used for courses of water which drain the outer Fly River floodplain. Their catchment comprises forested areas and low-lying swamps of high biological productivity with dense subaquatic and swamp vegetation. The main features of floodplain waters are low pH and conductivity (Table 14 and Table A5 in annex) and their yellow-brown colour ("blackwater"). The content of suspended solids is very low as compared to the Fly River. The material retained on the membrane filter is orange brown. consisting of iron oxides (about 10-15% Fe) and particulate organic matter. The high content of iron, most probably in the form of oxyhydrate colloids, is particularly evident in the non-filtered water samples, but also in the filtered water in which the iron values are much higher than in the Fly River water. Sodium, an ubiquitous element, is present in floodplain waters in a similar concentration range as in the Fly River. Aluminium values were highest at low pH and conductivity (Fig. 5d). The overall Al content was higher than in the Fly River, where the metal was below the detection limit (50 µg/l) in the four samples measured.

An influence from the mine discharges was detectable in some water samples (slightly elevated trace metal, calcium and sulfate levels). However, since the main features of floodplain drainage such as low pH and conductivity and high DOC levels were observed in these samples, they were included in this category. Metal levels for Cu, Pb, Cd and Mo in floodplain waters unaffected by mining are at or below detection limit (e.g. <2 μ g/l for Cu, Table 14). Zinc is the only heavy metal present in measurable concentrations. Since floodplain waters drain lowland areas of intensely weathered Pleistocene sediments, extremely low trace metal are to be expected.


Low alkalinity is a result of active accumulation of organic material. Peaty sediments were repeatedly encountered during lake bottom coring. Oxygen deficiency in stagnant or slowly moving, warm waters does not allow complete respiration (oxidation) of organic matter. There is a positive correlation between temperature and oxygen saturation (Fig. 6a), which is contradictory at first sight. However, the oxygen measured was a result of photosynthetic activity, which is highest at intense sunshine, which in turn is responsible for high water temperatures.

It is obvious that the waters are not in redox equilibrium. The photosynthetic oxygen production masks the overall oxygen deficiency of the system, which is evident from the relatively high concentrations of reduced species like NH_4^+ and HS^- . Of both compounds, NH_4^+ is the better indicator of reducing conditions because hydrogen sulfide is volatile at the low pH and high water temperatures measured. NH_4^+ shows a significantly positive correlation with dissolved organic carbon (DOC) (Fig. 6b), which is also positively linked with water temperature.

Parameter	Unit	Mean	SD	Median	Percentiles 25	75
Temperature	°C	30.6	2.2	30.0	29.2	31.4
pН		6.0	0.5	6.0	5.7	6.4
Conductivity	µS/cm	28.5	10	27	20	34
Suspended Solids	mg/l	21	11	19	11	24
Na	µg/l	1233	409	1140	1020	1280
K	hðy	188	107	193	89	244
Ca	Нд\I	4295	1992	4110	3060	5890
Mg	hðų	477	141	480	372	499
Sr	hg/l	27	10	24	21	34
AI	µд/I	67	48	64	25	80
Fe	١/وµ		,	value	s highly variable	
Mn	hây	15.4	15.1	7.5	2.5	27
Zn	hðy		c	lose to detecti	on limit of 5 µg/l	
Cd	µg/l		b	elow detection	limit of 0.1 µg/l	
Cu	hð\		с	lose to detecti	on limit of 2 µg/l	
Pb	hd/l			below detecti	on limit of 1 µg/l	
Mo	µg/l			below detecti	on limit of 5 µg/l	
HCO3-	mg/l	13	6.5	13	9	17
NH4 ⁺	mg/l	0.3	0.2	0.20	0.14	0.38
SO42-	mg/l	0.37	0.26	0.27	0.18	0.45
DOC	mg/l	9.4	3.0	8.0	7.0	11.0

Table 14: Mean, standard deviation, mean values and 25% - 75% confidence intervals for outer floodplain water samples (n = 15).

Figure 6: Scatter plots for selected parameters in floodplain waters (Fig. 6a-6b).

 $\rm NH_4^+$ and DOC are both a result of decomposition of organic matter. The DOC produced in off-river sites is the main source of organic ligands which are responsible for trace metal complexation in polluted waters.

6.2.4 Mixed Waters

Mixed waters are generally intermediate in composition between Fly River and floodplain waters, although the influence of the Fly River is clearly dominant (Table 15 and Table A6 in annex).

Due to the generally flat terrain, the location of the mixing zone of floodplain drainage and Fly River water depends mainly on rainfall in the upper catchment of the Fly River/Ok Tedi and in the Fly River lowland. When there is high rainfall in both catchment areas, the mixing front between Fly water rich in suspended solids and blackwater from the floodplain will be located close to the mouths of creeks and tie channels. At high flow conditions in the Fly River and previously little rainfall in the lowland, river water intrudes several kilometers upstream of the channels and lakes which drain into the main river under reverse conditions. The intrusion of Fly River water is associated with transport of mainly mine-derived suspended matter, which is deposited in the waters of the inner floodplain. Hence, it is not possible to distinguish between dissolved metals in mixed waters which are directly derived from an intrusion of Fly River water and those that may be mobilized secondarily from the sediments already deposited.

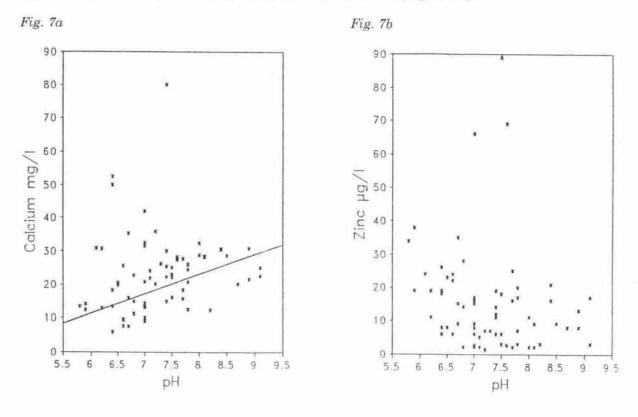
Because of the different composition of Fly River waters and those draining the outer floodplain, the physical and chemical interactions occuring are of environmental interest. Particular attention has to be paid to the behaviour of trace metals, of which copper is the most relevant.

Table 15. Mean, standard deviation, median values and 25% - 75% confidence intervals for mixed water samples (n = 65).

Parameter	Unit	Mean	SD	Median	Per	centiles
					25	75
Temperature	°C	30.2	2.0	30.1	28.9	31.7
pН		7.3	0.8	7,1	6.6	7.7
Conductivity	µS/cm	130	90	119	80	151
Oxygen Saturation	%	77	42	77	41	107
Suspended Solids	mg/l	36	72	15	7	28
Na	ا/وµ	1587	541	1480	1185	1755
ĸ	µg/l	539	657	385	272	603
Са	µg/l	21390	8372	21900	13425	28050
Mg	µg/l	1226	725	1140	881	1345
Sr	١/وبر	150	111	138	82	176
Al	µg/l	102	139	25	25	101
Fe	µg/l	357	590	145	32	457
Mn	µg/I	82	308	2.5	2.5	24.5
Zn	µg/l	15.4	15.5	12	6	19
Cd	µg/l		close	e to detection lim	nit of 0.1 µg/l	
Cu	μg/l	11.8	11.3	9	5	14
Pb	µg/l		clo	ose to detection I	imit of 1 µg/l	
Мо	µg/l	7.8	9.9	5.0	2.5	9.0
HCO3	mg/l	53	28	47	39	62
NH4 ⁺	mg/l	0.21	0.16	0.15	0.10	0.25
SO42-	mg/l	2.5	2.0	2.1	0.7	3.4
DOC	mg/l	9.0	2.5	9.0	7.3	11.0

As mentioned above, the pH of floodplain waters is much lower than in the Fly River. Decreasing alkalinity may lead to increased heavy metal mobility due to desorption from particulate matter and formation of free dissolved metal species.

The plot of pH versus Ca shows a weakly positive correlation (Fig. 7a). Mg, Sr, Na, K and HCO_3^- give similar plots. Calcite in particulate form carried into the floodplain waters is rapidly dissolved and exerts a buffering effect on the local waters. Opposite to the main trend in the pH/Ca plot, there are samples showing a high calcium content at comparatively low pH. These data are from small ponds on the swampy floodplain and slightly acidic floodplain seepage, i.e. extremely iron-rich water trickling from exposed channel or river banks into the river during low flow conditions.


No clear influence of pH on dissolved iron and manganese concentrations was observed, although the highest Fe values tend to be associated with low pH.

None of the trace metals showed a significant correlation with pH. The plots of pH versus zinc (Fig. 7b) and cadmium display a slightly negative trend. No correlation between pH and Cu (Fig. 8a) and pH and Mo was detected. DOC and pH are weakly negatively correlated (Fig. 8b) which is due to the acidic nature of humic and fulvic substances. In the absence of calcium bicarbonate buffering, the organic acids control water pH.

Reducing conditions, indicated by an elevated $\mathrm{NH_4^+}$ content, also seem to have little influence on dissolved trace metal concentrations. Only zinc gave a moderately positive correlation with $\mathrm{NH_4^+}$.

Ca shows a weakly positive correlation with Mo (Fig. 9a). A positive relationship of the alkaline and earth alkaline metals with sulfate (calcium versus sulfate, Fig. 9b) was observed. Elevated concentrations of Ca, Mg, Na, K, and Sr are clear indicators of the influence of mine discharges. High sulfate levels are a product of active dissolution of mine-derived sulfide minerals. Although the metals iron, zinc, copper and molybdenum are discharged into the river system primarily in the form of sulfides and undergo oxidation to sulfates, no positive correlation between sulfate and any of the metals was observed. Iron and zinc even displayed a weakly negative relationship with sulfate. This illustrates the complexity of solution chemistry in the investigated waters. and the fact that aqueous metal transport is not controlled by sulfate complexation. There was also no significant correlation of dissolved organic carbon (DOC) and trace metals found. Only the plot of zinc versus DOC shows a weakly positive correlation.

Figure 7: Scatter plots for selected parameters in mixed waters (Fig. 7a-7b).

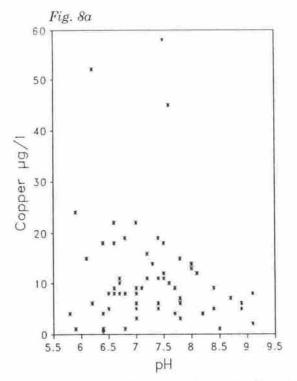
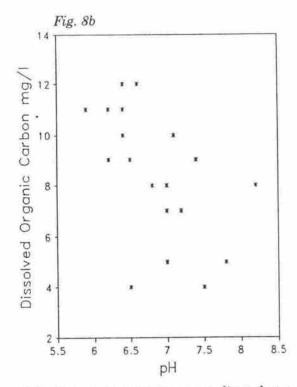



Figure 8: Scatter plots for selected parameters in mixed waters (Fig. 8a-8b).

Intercorrelations between elements in mixed waters are very high in the group Ca, Mg, Sr, Na, K and HCO_3^- , with the exception of Na versus K. Zn and Cd display a positive correlation, too. A significantly positive correlation was found for Al and Cu in unfiltered water samples (Fig. 10). Aluminium hydroxide may complex or adsorb dissolved copper. Al/Zn displayed a similar correlation. Fe versus Cu in unfiltered water shows no clear trend. Fe is weakly positively correlated with DOC and Mn.

The heavy metal concentrations in waters of the Fly River inner floodplain, the zone of mixed water, are of particular interest because of the prominent role which off-river waters play in the ecology and biological productivity of the entire river system.

Dissolved trace metal levels in mixed waters are controlled by a number of abiotic and biotic factors. The most important inorganic factor is the moderately high bicarbonate content of Fly River water and the high earth alkaline metal concentrations, dominated by calcium in dissolved and particulate form, which are responsible for the neutral to alkaline pH values in mixed waters. The most prominent biotic factor are the dissolved organic carbon substances which play a very important role as complexing agents.

Both factors interact in a complicated manner which cannot be predicted from thermodynamic equilibrium calculations.

Despite the fact that lead in mine wastes is clearly enriched above background values, the dissolved metal contents were in the great majority of samples below detection limit (< 1 μ g/l). Elevated concentrations were found only in unfiltered samples and in a few samples which also showed a high content of presumably colloidal iron and manganese, which offer adsorption sites for lead.

Speciation modelling of inorganic lead with PHREEQE suggests that at near neutral pH values and oxic conditions in waters, more than 70% of soluble lead exists in the form of the $PbCO_3^{0}$ complex which easily precipitates out. Between 0-30% of lead may be present in the free ionic form Pb^{2+} under the environmental conditions in the floodplain.

Cadmium and **zinc** are among the geochemically most mobile elements. Their mobility is less pH dependent as compared to lead. Cd was found in concentrations above detection limit (> 0.1 μ g/l) only in waters with a pH below 7. Because of the low Cd values in mining residues, the metal is not considered as being of environmental concern. The same holds true for zinc, which showed a similar concentration range in all waters investigated.

Figure 9: Scatter plots for selected parameters in mixed waters (Fig. 9a-9b).

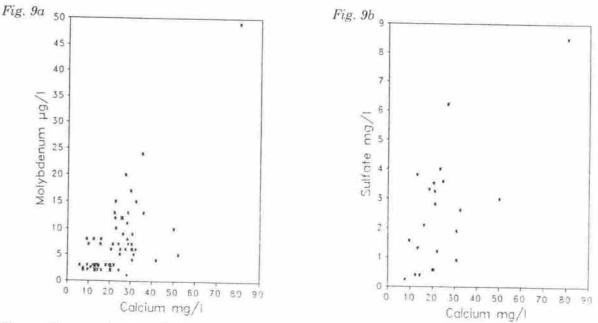
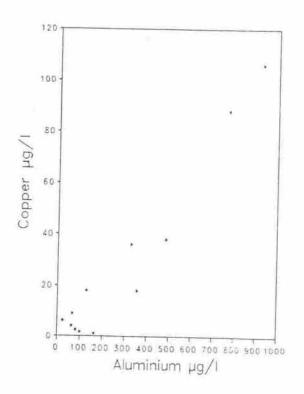



Figure 10: Scatter plot for Al versus Cu in mixed waters.

Molybdenum, because of its anionic form in water, showed a different behaviour than the other trace metals. Highest concentrations were usually found in alkaline waters, or linked with high calcium values. Mo as well as Zn is considered an essential element to biota. The concentrations observed are much below the toxic threshold.

Copper is an essential element to plants and animals, too.

Because of its environmental importance, the fate of copper in the investigated waters will be discussed in some detail in the following chapter.

6.2.5 The Behaviour of Copper

The statistical data analysis showed that copper concentrations in water do not appear to be significantly controlled by inorganic factors.

Alkalinity and pH. adsorption to oxide surfaces (with the exception of aluminium) and reducing conditions (e.g. formation of soluble copper amine complexes) do not seem to have a significant effect on dissolved copper levels. The abundance of organic complexing agents in the investigated Middle Fly floodplain waters may be responsible for the observed behaviour of dissolved copper. No correlation was observed between DOC and copper levels in the floodplain waters. It is evident that dissolved organic ligands, even at comparatively low concentrations in waters of the Fly River system, are always present in excess of trace metals which may become complexed (although some complexing capacity may be occupied by major cations like Ca and Mg). In the Lower Fly River, downstream of the Strickland junction, measured dissolved copper values are still moderately high at 6 µg/l (Table A6, annex) despite the massive admixture of uncontaminated suspended matter from the Strickland River. It appears that the lowering of dissolved copper levels in the Lower Fly is mainly due to dilution effects and that adsorption to riverine particulate matter is of secondary importance.

Davis and Leckie (1978) tested the influence of dissolved organic substances on copper adsorption. Certain organic ligands which form coatings on suspended mineral particles enhance the extent of trace metal adsorption, while others show opposite behaviour. Some organic acids inhibit copper adsorption by forming soluble, stable complexes which keep the metal in solution. When the complexing capacity of dissolved organic carbon substances is larger than the rate of adsorption to inorganic surfaces, copper will remain in solution.

Sholkovitz and Copland (1981) also investigated the solubility and adsorption properties of a number of trace metals in the presence of humic acids. Contrary to similar studies which were performed with synthetic laboratory waters, Sholkovitz and Copland used natural water from a small stream in Scotland which drains peaty soils. The properties of this water (DOC 7 mg/l, pH 6.5, low conductivity) are similar to those of the Fly River floodplain. The authors detected a coagulating effect on humic acids and trace metals, particularly iron and copper, upon adding of only 0.5 mmol/l of Ca, which is equivalent to 20 mg/l Ca.

The mean Ca concentration in mixed waters of the Fly River inner floodplain is about 25 mg/l. Coagulation of humic substances with adsorbed trace metals may be an important process when Fly River water mixes with calcium-rich floodplain blackwaters. This is consistent with the detection of elevated copper levels on the top of black, peat-like sediments sampled from lake bottoms far from direct Fly River influence. The experiments carried out by Sholkovitz and Copland (1981) also gave the result that there was no precipitation of trace metals and humic acids when pH (starting point pH 6.5) was changed in the range of 9.5 to 3, below which humic acids, Fe, Mn, Cu, Ni and Cd began to precipitate.

This behaviour is contrary to that predicted by inorganic solubility considerations. Complexation of the trace metals by dissolved organic matter is the most reasonable explanation. Organic copper complexes are known to be particularly stable because of their favourable electron configuration (Stumm and Morgan 1981).

Fe and Mn in floodplain waters, despite their chemical similarity, showed no significant correlation in any data set. Of the elements investigated by Sholkovitz and Copland (1981), Fe>Cu>Ni>Cd (in decreasing order) showed the strongest affinity for the dissolved humic substances, Mn and Co the least. The differing tendency of Fe and Mn to form complexes with dissolved organic carbon may explain the missing correlation in data from the Middle Fly River region.

In a copper adsorption experiment (spiking to yield 20 μ g/l Cu) with natural waters containing different concentrations of suspended solids and dissolved organic carbon, Sholkovitz and Copland (1981) obtained results which suggest that solubilization of Cu by dissolved organic ligands, forming ultrafine colloids (< 0.01 μ m), is a more important process than the adsorption onto riverine particulate matter. Even in water containing 100 mg/l mostly inorganic suspended matter and 3 mg/l DOC, most of the copper was kept in solution as the pH increased from 4 to 9.

CSIRO of Australia (1989) performed mixing experiments commissioned by Ok Tedi Mining Ltd. with water from the Fly River and a floodplain tributary. Mine derived sediment with high copper values was added to different admixtures. Total dissolved copper concentrations increased with sediment admixture, the pH remained fairly constant. Dissolved copper species in the resulting solutions were analyzed by Anodic Stripping Voltametry (ASV). The method is used to determine labile trace metal species supposed to be present in the ionic, most bioavailable form.

Interestingly, between 30-50% of dissolved copper in the final test solutions was measured as labile or "ionic" copper. Assuming that the copper was present as dissolved organic species, the results point to great reactivity of humic copper complexes in the Fly River system. This is consistent with more recent laboratory work undertaken by CSIRO on behalf of OTML (OTML 1994). Electrochemical measurements of bioavailable copper in the Ok Tedi/Fly River system gave the result that the fraction of potentially bioavailable copper is up to 50% of the total dissolved copper concentration. In the presumably unpolluted waters of the outer floodplain (it is difficult to establish the maximum intrusion range of Fly River water) copper was at or below the detection limit of 2 μ g/l. In the Fly River, copper values were about tenfold above this "background", which may actually be much lower than 2 μ g/l, i.e. 0.2 μ g/l.

Mixing of both waters should result in dilution. This is the case in most mixed water samples, however in some waters copper concentrations were much higher. Sample W1/7.4., which had a dissolved copper concentration of 52 μ g/l in the filtered and 106 μ g/l in the unfiltered sample, was taken from a depression in flat swampy terrain about 150 m behind the low dam paralleling the Fly River channel.

Water sampled from small pools and shallow water courses in the periodically flooded grassland sites usually gave high copper values. The water samples taken generally had low pH and/or alkalinity. It appears that active leaching of copper from deposited mine-derived material is responsible for the high dissolved values observed.

In the floodplain swamps, redox conditions change easily depending on the undulating water table which may result in trace metal mobilization. Because of the dense vegetation and the low rate of water exchange, soluble organic chelates are abundant and may facilitate copper mobilization. The buffering effect of calcium disappears as the easily soluble element is leached from the sediments. Because of the favourable conditions for trace metal leaching, even a thin layer of deposited minederived material will be an important source of Due to difficult access, only a few copper. samples from the swamp sites were taken (water was sampled within a maximum distance of one kilometer from the main river channel). It seems that the copper levels in floodplain waters investigated in the present study are biased towards low values (in samples from large lakes and tie channels) and are not representative for the entire floodplain.

Where floodplain swamp waters with leached copper drain into lakes and the main river, they will increase copper concentrations. This may explain why OTML (1991, 1993, 1994) reports higher dissolved copper levels at Obo as compared to the upstream site at Nukumba, below the Ok Tedi/Upper Fly River confluence.

A different type of water in which high trace metal concentrations could be expected are the samples called "floodplain seepage". These moderately acidic waters percolate through the floodplain sediments and drain spring-like into the channels and rivers. The waters are highly reducing and have a very high Fe^{2+} and Mn^{2+} content which is immediately oxidized to orange coloured gels and flocs upon exposure to atmospheric oxygen. Although the floodplain seepage samples showed high Cd and Pb levels, this was not the case for copper, which probably remains in sulfidic binding in the sediment body.

Table 15 shows predictions based on computer modelling by OTML (1990) of various environmental parameters in the Fly River system in response to the impact of mine discharges. These additional environmental monitoring conditions were established to ensure that the Acceptable Particluate Level of 940 mg/l at Nukumba does not result in actual environmental damage to the Fly River System beyond the level actually specified in the predictions (OTML 1990).

The predictions resulting from the Supplementary Environmental Investigations (undertaken in 1986-89 by OTML) have been established for testing whether or not the State's conditions for environmental management of the Fly River System and off-shore are met. Due to a number of reasons, there has been a noncompliance with monitoring conditions beginning in 1990. Particularly the dissolved copper levels were much higher than expected. Measured values at the APL sites Kuambit/Nukumba, Obo and Ogwa have been in a steady increase between 1990 and 1993 (OTML 1994) contrary to the trend predicted by the models. Revised prediction values for the key environmental parameters were developed by OTML in July 1992 and again in December 1993.

Table 16: Predictions made by OTML in 1989 for key environmental parameters in the Fly River system, and revised predictions for dissolved copper in 1992 and 1993 (OTML 1990, 1993, 1994).

a. Particulate and dissolved copper and fish catch for the Kuambit/Nukumba, Obo and Ogwa (OTML 1990).

YEAR	KUA	MBI	T/NUKUM	BA	()BO		C	GWA
	pCu d	lCu f	ish catch	рСи	dCu	fish catch	рСи	dCu	fish catch
	ug/g		the second se	ug/g	ug/l	kg	ug/g	ug/l	kg
1990	1236	11	15	1202	17	35	524	3	95
1991	905	6	28	879	9	66	401	2	118
1992	715	3	38	693	5	94	321	11	35
1993	875	4	29	850	6	70	388	1	120
1994	581	3	49	564	4	119	270	1	147
1995	581	3	49	564	4	119	270	1	147
1996 to 2008	562	3	49	544	4	119	253	1	147

Source: pCu dCu Fish Catch -Supplementary Investigations, Vol. II, Appendix B. -Supplementary Investigations, Vol. II, Figure 3. -Supplementary Investigations, Vol. III, Appendix H, Figures 10a, 11a, & 12a and Table 4A.

<i>b</i> .	Dissolved copper predictions	(µg/l), provided to S	State in June 1992.
------------	------------------------------	-----------------------	---------------------

Year	Nukumba	Ово	Ogwa
1991	11 (10.5)	15 (14.2)	6 (5.4)
1992	13 (13.1)	17 (15.0)	6 (6.6)
1993	14	17	7
1994	11	15	6
1995	11	15	6
1996	12	18	7
Error Estimate	+- 78%	+- 80%	+- 85%

() annual (calendar year) means of observed data

c. Revised predictions for dCu in Fly River, and mean data for 1993 (OTML 1993).

Year	Nukumba	Obo	Ogwa
1993	16 {4 - 28}(13.8)	17 (3 - 31) (17.6)	6.3 {1 - 12} (7.4)
1994	18 {4 - 32}	18 (4 - 32)	7.5 (1 - 14)
1995	14 (3 - 25)	14 (3 - 25)	6.7 (1 - 12)
1996	14 {3 - 25}	14 (3 - 25)	6.6 {1 - 12}
1997	13 (3 - 25)	13 (3 - 25)	6.1 {1 - 11}
1998	14 (3 - 25)	14 {3 - 25}	6.6 (1 - 12)

() Upper and lower error estimates

() Annual (calendar year) means of observed data

7. Biological Impacts

The discharge of ore processing residues and mining wastes has significantly changed the aquatic environment of the Ok Tedi/Fly River system. From the discussion in previous sections it can be concluded that there are three factors of particular environmental concern: the increase in particulate copper, in dissolved copper, and in suspended solids concentrations. The negative impact of each effect on the fluvial system is spatially different.

The massive increase in the suspended load of the Ok Tedi is mainly responsible for the decline in aquatic life upstream of the confluence with the Fly River, where fish populations and species diversity have been dramatically reduced (Smith 1991). The persistently high concentration of suspended sediments in the water interferes with gill respiration of fish and aquatic organisms, modifies the movement and migration of fish and prevents successful development of eggs and larvae. Heavy metals in particulate and dissolved form, and toxic process chemicals like xanthates probably play a minor role in the adverse impact on the aquatic life of the Ok Tedi River.

In the Fly River itself, a combined detrimental effect of suspended sediment, particulate and dissolved copper on the aquatic ecology is to be expected. Monitoring undertaken by OTML (Smith 1991, OTML 1993, 1994) shows that fish populations in the Middle Fly River at Kuambit. immediately downstream of D'Albertis Junction. are continuously declining, in the range of 30-50% (M. Eagle, pers. comm.). Statistical analyses gave the result that particulate copper (pCu) was the best negative correlate of fish catches, but dissolved copper and suspended solids also have a negative effect. OTML (1994) speculates that the relationship between pCu and fish catch may either be attributed to an avoidance of pCu by fish or by a correlation of pCu with a toxic fraction of dissolved copper.

Both total fish catches and the diversity of the aquatic fauna are affected. No clear negative impact of mine discharges on the abundance of fish in the Middle Fly River downstream of D'Albertis Junction can be established from the data collected so far because of their high variability. Fish biomass monitoring in the last three years has been strongly influenced by low river levels concentrating fish into the river channel as the floodplain dried, hence leading to high catches at the river sites. Clearly, the exact determination of fish populations (including migratory species) in a dynamic fluvial ecosystem is a difficult undertaking since fish catches are influenced by a number of factors which cannot be attributed to the mine waste. like periods of droughts and commercial and subsistence fishing pressure. In addition, OTML (1994) admits that its database on fish biomass is limited with respect to baseline data and comes to the conclusion that "changes between before and after mine start-up conditions cannot be quantified for any site (in the Fly River system)".

Considering the homogeneity of the Middle Fly River system and the fact that the key water parameters influenced by the mine's operation (dissolved and particulate copper and suspended solids) show little changes in the Middle Fly River reach between Kuambit/Nukumba and Obo, negative effects on the fish populations in the lower part of the Middle Fly region are to be expected.

OTML (1993) report elevated copper levels in body tissue of the catfish *Arius berneyi* caught in Lake Pangua, a deep oxbow lake. *Arius* is a bottom feeding omnivore. Aquatic invertebrates form the most important part of its diet, but detritus/mud is also an important food item (Kare 1992). It is not clear whether the copper detected in the fish was taken up via the bottom dwelling invertebrates, or directly from the copper-rich sediment, the metal being released in the intestinal tract of the catfish. In both cases, it is evident that copper in particulate form on the lake bottom is bioavailable. In the off-river floodplain sites of the Middle Fly region, elevated concentrations of dissolved copper may negatively affect aquatic life. The floodplain plays an important role in primary productivity to support fish stocks in the river system, and for the recruitment of fish. OTML (1991) states that the floodplain supports a greater stock of fish than do oxbow and drowned valley lakes. The Fly River channel is to a large extent a fish migration route and a refuge during dry periods. Subsistence and commercial fisheries target mainly the off-river water bodies because of their high productivity. Although the vegetated floodplain sites may not be inundated over the whole year, fish invade rapidly into the alluvial plain at higher water levels because of the abundance of food sources.

Animals at lower trophic levels, such as aquatic invertebrates, and juvenile stages of fish are known to have a high sensitivity to dissolved copper. According to Moore and Ramamoorthy (1984), sensitivity to copper is inversely related to the age or size of an animal. A decrease in the abundance of macroinvertebrates, which are at the base of the food web, may lead to a decrease in the overall fish population. Copper is a strong toxicant to aquatic organisms but does not biomagnify in the food chain. End consumers like carnivorous fish show a much lower copper body burden than benthic invertebrates like burrowing mayfly larvae which feed directly from the contaminated substrate (Karbe 1988).

The average copper concentration in mixed waters of the inner floodplain is around 10 µg/l; the Fly River water has about 17 µg/l of copper. These are concentrations which may be harmful States applicable United biota. The to Environmental Protection Agency (USEPA) "Water Quality Criteria for the Protection of (1986)Uses" and Aquatic Organisms recommends a maximum value of 6.5 µg/l (hardness 50 mg/l as CaCO3, unfiltered water) for the "chronic" 4-day average concentration, and 9.2 µg/l for the "acute" 1-hour average concentration. The Canadian Water Quality Guidelines (1987) are even more stringent, as seen in Table 16.

Dissolved copper levels detected in mixed floodplain waters of the present study are in the concentration range which is reported in the literature to be harmful to sensitive freshwater aquatic organisms. Clements et al. (1989) found a significant decrease in total aquatic insect abundance after 4 days of exposure to $6 \mu g/l$ of copper in an outdoor experimental stream.

The most sensitive species, a chironomid larva (midges, Diptera), was eliminated at 13 µg/l copper after 10 days. Moore and Winner (1989) also found out that benthic chironomid and mayfly larvae show a high sensitivity to dissolved copper. Burrowing mayfly larvae of genus Plethogenesia (together with the Macrobrachium freshwater prawns) were the dominant constituents of the macroinvertebrate fauna in terms of biomass in the Fly River (OTML 1987). Both are important food items for the local fishes. Toxicity of particulate copper in mine wastes on mayflys has been proven by bioassays undertaken by OTML in 1988 (OTML 1989).

Williams et al. (1991) report a 50% mortality after three days of exposure of the extremely sensitive tropical freshwater shrimp Caridina sp. to 4 µg/l copper. Most studies on copper toxicity consider the free ionic species as the most bioavailable form, and copper complexed with naturally derived dissolved organic carbon (DOC) as much less toxic or even non-toxic (e.g. Flemming and Trevors 1989; Meador, 1991). Recent scientific work (Winner and Owen, 1991), however, has provided further evidence that dissolved organic carbon also may enhance copper toxicity. The authors used the alga Chlamydomonas reinhardtii to test the toxcity of organically bioavailability and complexed copper in water from a freshwater pond.

Toxic effects of dissolved copper on alga deflagellation and population growth were observed at values above $12.2 \ \mu g/l$ in natural waters with DOC concentrations varying from 5 to 14 mg/l.

They found a positive correlation between DOC and copper on alga toxicity and concluded that labile organic copper complexes may be responsible for this effect, demonstrating that a simple relationship between DOC concentration and copper toxicity cannot be established. OTML (1994) has commissioned toxicity tests with the freshwater green alga *Chlorella protothecoides*.

No reduction in algal growth rate occurred at dissolved copper concentrations of 12 μ g/l, which was the highest concentration used in the tests. Since copper values measured both during the present study and by OTML in waters of the Fly River and its floodplain were much higher than 12 μ g/l, it appears justified to repeat the tests with copper concentrations of up to 50 μ g/l in order to obtain more information on the species' sensitivity.

Parameter	Guideline	Comments
Inorganic parameters		
Aluminum ¹	0.005 mg·L ⁻¹ 0.1 mg·L ⁻¹	pH<6.5; [Ca ²⁺]<4.0 mg ² L ⁻¹ ; DOC<2.0 mg ² L ⁻¹ pH≥6.5; [Ca ²⁺]≥4.0 mg ² L ⁻¹ ; DOC≥2.0 mg ² L ⁻¹
Antimony	ID ²	
Arsenic	0.05 mg·L - 1	
Beryllium	ID	
Cadmium	0.2 µg·L ⁻¹ 0.8 µg·L ⁻¹ 1.3 µg·L ⁻¹ 1.8 µg·L ⁻¹	Hardness 0-60 mg·L ⁻¹ (CaCO ₃) Hardness 60-120 mg·L ⁻¹ (CaCO ₃) Hardness 120-180 mg·L ⁻¹ (CaCO ₃) Hardness 180 mg·L ⁻¹ (CaCO ₃)
Chlorine (total residual chlorine)	2.0 µg·L ⁻¹	Measured by amperometric or equivalent method
Chromium	0.02 mg·L ⁻¹ 2.0 µg·L ⁻¹	To protect fish To protect aquatic life, including zooplankton and phytoplankton
Copper	2 μg·L=1 2 μg·L=1 3 μg·L=1 4 μg·L=1	Hardness 0-60 mg·L ⁻¹ (CaCO ₃) Hardness 60-120 mg·L ⁻¹ (CaCO ₃) Hardness 120-180 mg·L ⁻¹ (CaCO ₃) Hardness >180 mg·L ⁻¹ (CaCO ₃)
Cyanide	5.0 µg·L=1	Free cyanide as CN
Dissolved oxygen	6.0 mg·L ⁻¹ 5.0 mg·L ⁻¹	Warm-water biota - early life stages - other life stages
	9.5 mg·L-1 6.5 mg·L-1	Cold-water biota – early life stages – other life stages
Iron	0.3 mg·L - 1	
Lead	1 μg·L-1 2 μg·L-1 4 μg·L-1 7 μg·L-1	Hardness 0-60 mg·L ⁻¹ (CaCO ₃) Hardness 60-120 mg·L ⁻¹ (CaCO ₃) Hardness 120-180 mg·L ⁻¹ (CaCO ₃) Hardness >180 mg·L ⁻¹ (CaCO ₃)
Mercury	0.1 µg:L=1	
Nickel	25 μg·L ⁻¹ 65 μg·L ⁻¹ 110 μg·L ⁻¹ 150 μg·L ⁻¹	Hardness 0-60 mg·L ⁻¹ (CaCO ₃) Hardness 60-120 mg·L ⁻¹ (CaCO ₃) Hardness 120-180 mg·L ⁻¹ (CaCO ₃) Hardness >180 mg·L ⁻¹ (CaCO ₃)
Nitrogen Ammonia (total) Nitrite	2.2 mg·L ⁻¹ 1.37 mg·L ⁻¹ 0.06 mg·L ⁻¹	pH 6.5: temperature 10°C (see Table 3-12) pH 8.0: temperature 10°C
Nitrate Nitrosamines	ID	Concentrations that stimulate prolific weed growth should be avoided
pH	6.5-9.0	
Selenium	1 µg·L=1	
Silver	0.1 µg·L=1	
Thallium	ID	
Zinc ³	0.03 mg·L~1	
vsical parameters		
Temperature		Thermal additions should not alter thermal stratification or turnover dates, exceed maximum weekly average temperatures, and exceed maximum shor- term temperatures (see Section 3.2.3.1.1)
Total suspended solids	increase of 10.0 mg·L - 1	Background suspended solids $\leq 100.0 \text{ mg} \cdot L^{-1}$
	increase of 10% above background	Background suspended solids $>100.0 \text{ mg} \cdot L^{-1}$

Table 16: Canadian Guidelines for the protection of freshwater aquatic life (CCREM 1987).

8. Conclusions

The following conclusions can be drawn from the informations gathered in the present study:

- 1. Of the trace metals contained in the Ok Tedi mine waste, copper is of main environmental concern because of its strong enrichment above background (about twentyfold) and its relatively high geochemical mobility.
- The discharge of mining residues into the 2. Ok Tedi/Fly River system leads to a deposition substantial of copper-rich material in the Middle Fly River floodplain, although most of the mining wastes carried as suspended load finally reach the delta. Areas of standing water and vegetated parts of the floodplain play an important role in the recruitment of fish and primary productivity. Hence, this part of the fluvial ecosystem is particularly sensitive to mineinduced changes in the local environment.
- The pollution by copper-rich material is not 3 only a problem of quantity, but also of spatial distribution and the potential mobilization of the trace metal. Deposition of mine-derived sediments in the Fly River floodplain is highest in oxbow lakes. Because of the naturally high organic carbon content in sediments, which is responsible for reducing conditions, only copper in the uppermost layer (few centimeters) of bottom sediments may When copper-rich become dissolved. sediment is permanently covered by water, mobilization and bioavailability of the metal, except to bottom-dwelling invertebrates, is low. However, when minederived sediments settle on extensive areas of the vegetated floodplain, the conditions are quite different. Chemical and biological factors facilitate the mobilization of copper. Even a thin layer of copper-rich material may have a negative ecological impact.
- 4. The way in which copper affects the aquatic community is not clear. Dissolved organic carbon substances, which are present in high concentrations in the Fly River system, complex the metal and keep it in solution. Little is known about the bioavailablity and toxicity of these organic copper species. Recent research has shown that these compounds may exert toxic effects comparable to the free ionic copper species.

The most sensitive biota to dissolved Cu are juvenile stages of fish and aquatic invertebrates which form the base of the trophic web. Populations of larger fish species will only show a response after a full reproduction cycle has been completed. Thus, measurable negative effects may develop with a considerable time lag.

- The copper pollution in the Fly River 5 floodplain is of persistent nature. Even after the cease of deposition of copper-rich suspended load, the environmentally detrimental effects will continue to exist. There is no mechanism to "de-toxify" the alluvial plain. Erosion processes will only remove deposits in the main river channel and on the banks immediately adjacent to it, and, to a minor degree, along the channels connecting drowned valley lakes with the main river. The mine-derived material deposited in oxbow and drowned valley lakes, and in the floodplain swamps, will remain and may be covered by less contaminated sediments carried by the Fly River in the post-mining period. However, when sedimentation rates in the floodplain return to pre-mining values, it may take copper-rich sediment centuries until deposits are sealed by an unpolluted sediment cover.
- The possibilities to mitigate the detrimental 6. effects of the Ok Tedi mine wastes on the Ok Tedi/Fly River system are limited when the construction of tailings and waste retention facilities is deemed uneconomical by the mining company. In order to reduce the amount of metal discharged into the environment, the recovery of copper in the mill, currently at around 85%, could be This may be possible by increased. installing more flotation cells, re-flotation of tailings, increase of the residence time of ore in the cells, improved control of grain size in the flotation process, sulfidization of non-sulfide ores, and other optimisation strategies. Thus, a recovery of 90% may be achievable. The cut-off grade for waste rock could be lowered, which would decrease the copper reaching the fluvial environment. These measures are most probably not economically viable; however, for environmental protective action, they should be investigated thouroughly by the mining company.

9. Acknowledgements

The authors of the study wish to thank the United Nations Environment Programme for financial support of the research project. The study team is particularly indebted to Mr. Gerhart Schneider, Programme Officer with the Water and Lithosphere Unit at UNEP headquarters in Nairobi, who offered prompt assistance in solving all emerging problems.

David Mowbray of the Department of Environmental Science of the University of Papua New Guinea (UPNG) provided invaluable support througout the various stages of the research project. The authors of the present study wish to thank him and Dr. Ian Burrows, Head of the Biology Department of UPNG, who provided working space and laboratory facilities during the field work in Papua New Guinea. Very special thanks go to Mr. Peter Gelau of Obo Station on the Middle Fly River, who helped us in accomodation and transport problems during the various sampling campaigns, and Mr. Ben Kapi Mekeo, our reliable field guide and boat pilot. We also wish to thank the people of Aiambak, Bosset and Manda villages for the hospitality they have extended to us. We also may express our gratitude to Mr. Joseph Gabut, then with the Department of Foreign Affairs of the Papua New Guinea Government, for continued support of our research project. We wish to thank Ok Tedi Mining Ltd. for analyzing a batch of water samples and further logistical assistance.

10. References

- Allen, G.R. and Coates, D. (1990). An ichthyological survey of the Sepik River, Papua New Guinea. Rec. West. Aust. Mus. Suppl. 34, 31-116.
- American Public Health Association (1985). Standard Methods for the Examination of Water and Wastewater. 16th edition, Washington, D.C.
- Applied Geology Associates Limited (1989). Review of the final draft report by Ok Tedi Mining Limited - Environmental Study, November 1988. Unpublished report to the Department of Minerals and Energy. Port Moresby, Papua New Guinea.
- Busse, M. (1991). Environment and human ecology in the Lake Murray-Middle Fly Area. in: D. Lawrence & T. Cansfield-Smith (eds.) Sustainable Development for Traditional Inhabitants of the Torres Strait Region, pp. 261-282. Great Barrier Reef Marine Park Authority, Townsville.
- Canadian Council of Resource and Environment Ministers, CCREM (1987). Canadian Water Quality Guidelines. Environment Canada, Ottawa (Ontario).
- Clements, H.W., Farris, J.L., Cherry, D.S. and Cairns, J. (1989). The influence of water quality on macroinvertebrate community responses to copper in outdoor experimental streams. Aquat. Toxicol. 14, 249-262.
- Davis, J.A. & Leckie, J.O. (1978). Effects of adsorbed complexing ligands on trace metal uptake by hydrous oxides. *Environ. Sci. Technol.* 12, 1309-1315.
- Department of Mining and Petroleum / DMP (1994). Mines, Projects and Prospects. Quarterly Report April to June 1994. DMP, Port Moresby, Papua New Guinea.
- Eagle, A.M. & Higgins, R.J. (1991). Environmental Investigations of the effect of the Ok Tedi copper mine in the Fly River system, in: Rogerson (Ed.) Proceedings of the PNG Geology, Exploration and Mining Conference 1991, p. 232-238. The Australasian Institute of Mining and Metallurgy, Melbourne.
- Eagle, A.M. (1993). Copper Mining and the Environment in Papua New Guinea: The Ok Tedi Case Study. Ok Tedi Mining Ltd., Tabubil.

- England, J.K., Kilgour, I. & Kanau, J.L. (1991). Processing copper-gold ore at Ok Tedi. in: Rogerson (Ed.) Proceedings of the PNG Geology, Exploration and Mining Conference 1991, p. 183-190. The Australasian Institute of Mining and Metallurgy, Melbourne.
- (1988). E. & Sparks, A. Englund, Geostatistical Environmental Assessment Environmental Monitoring Software. States United Systems Laboratory, Environmental Protection Agency, Las Vegas.
- Farrah, H. & Pickering, W.F. (1977). Influence of clay-solute interactions on aqueous heavy metal ion levels. Water Air Soil Pollut. 8, 189-197.
- Ferguson, K.D. & Erickson, P.M. (1988). Pre-Mine Prediction of Acid Mine Drainage. in: Environmental Management of Solid Waste (W. Salomons and U. Förstner, Eds.), pp. 24-43, Springer-Verlag, Berlin.
- Flemming, C.A. & Trevors, J.T. (1989). Copper toxicity and chemistry in the environment: A review. Water Air Soil Pollut. 44, 143-158.
- Hem, J.D. & Durum, W.H. (1973). Solubility and ocurrence of lead in surface waters. J. Am. Water Works Assoc. 65, 562-568.
- Higgins, R.J. (1990). Off-river storages as sources and sinks for environmental contaminants. *Regulated Rivers: Research* & Management 5, 401-412.
- Jackson, K.S. & Skippen, G.B. (1978). Geochemical dispersion of heavy metals via organic complexing: a laboratory study of copper, lead, zinc and nickel behaviour at a simulated sediment-water boundary. J. Geochem. Explor. 10, 117-138.
- Jones, T.R.P. & Maconochie, A.P. (1990). Twenty five million tonnes of ore and ten metres of rain. *Proceedings of Mine Geologists' Conference 1990*, p. 159-165. The Australasian Institute of Mining and Metallurgy, Melbourne.
- Karbe, L. (1988). Interactions with biota. in: Metals and metalloids in the hydrosphere: Impact through mining and industry, and prevention technology, pp. 165-186. UNESCO, Paris.

- Kare, B.D. (1992). Diets of seven freshwater fish species in the Fly River system, Papua New Guinea. Unpublished report to Ok Tedi Mining Ltd.
- Kyle, J. (1988). Water quality and sediment chemistry of Lakes Bosset, Pangua and Daviambu. pp. 9-18 in: J.C. Pernetta (ed.) Potential impacts of mining on the Fly River. United Nations Environment Programme, Nairobi.
- Löffler, E. (1977). Geomorphology of Papua New Guinea. CSIRO and ANU Press, Melbourne, 196 p.
- Maunsell & Partners (1982). Ok Tedi Environmental Study, Main report -Environmental Impact Statement, and supporting studies in seven volumes. Unpublished report to Ok Tedi Mining Limited, Papua New Guinea.
- Meador, J.P. (1991). The interaction of pH, dissolved organic carbon, and total copper in the determination of ionic copper and toxicity. Aquat. Toxicol. 19, 13-32.
- Moore, J.W. & Ramamoorthy, S. (1984). Heavy metals in natural waters. Springer Verlag, New York.
- Moore, M.V. & Winner, R.W. (1989). Relative sensitivity of *Ceriodaphna dubia* laboratory tests and pond communities of zooplankton and benthos to chronic copper stress. *Aquat. Toxicol.* 15, 311-330.
- Ok Tedi Mining Limited (1987). Studies of the benthic fauna of lowland (potamon) localities of the Ok Tedi and Fly River, with reference to mining activities. ENV 87-11.
- Ok Tedi Mining Limited (1989). Supplementary Environmental Investigations, Volumes I-III, unpublished.
- Ok Tedi Mining Limited (1990). APL Compliance and Additional Monitoring Program, unpublished.
- Ok Tedi Mining Limited (1991). APL Compliance and Additional Monitoring: Annual Report 1990. Report to the Independent State of Papua New Guinea.
- Ok Tedi Mining Limited (1993). APL Compliance and Additional Environmental Monitoring Program: 1992 Annual Report. An annual report to the Independent State of Papua New Guinea as a part of OTML's environmental compliance monitoring requirements.

- Ok Tedi Mining Limited (1994). APL Compliance and Additional Environmental Monitoring Program: 1992/93 Annual Report. An annual report to the Independent State of Papua New Guinea as a part of OTML's environmental compliance monitoring requirements.
- Parkhurst, D.L., Thorstenson, D.C. & Plummer, L.N. (1980). PHREEQE - a computer program for geochemical calculations. U.S. Geol. Surv. Water Resour. Invest. 80-96, 210 p., Washington, D.C.
- Pickup, G., Higgins, R.J. and Warner, R.F. (1979). Impact of waste rock disposal from the proposed OkTedi mine on sedimentation processes in the Fly River and its tributaries. Unpublished report to the Department of Minerals and Energy and Office of Environment and Conservation, Port Moresby, Papua New Guinea.
- Pintz, W.S. (1984). Ok Tedi Evolution of a Third World mining project. Mining Journal Books, London, 206 p.
- Remacle, J., Houba, C. & Ninane, J. (1982). Cadmium fate in bacterial microcosms. Water Air Soil Pollut. 18, 455-465.
- Roberts. T.R. (1978). An ichthyological survey of the Fly River in Papua New Guinea with descriptions of new species. *Smith. Contrib. Zool.* 281, 1-72.
- Rush, P.M. & Seegers, H.J. (1990). Ok Tedi Copper-Gold Deposits. in: F.E. Hughes (ed.) Geology of the Mineral Deposits of Australia and Papua New Guinea, pp.1747-1754. The Australasian Institute of Mining and Metallurgy, Melbourne.
- Salomons, W. & Eagle, A.M. (1990). Hydrology, sedimentology and the fate of copper in mine-related discharges in the Fly River system, Papua New Guinea. Sci. Total Environ., 97/98, 315-334.
- Sholkovitz, E.R. & Copland, D. (1981). The coagulation, solubility and adsorption properties of Fe, Mn, Cu, Ni, Cd, Co and humic acids in a river water. Geochim. Cosmochim. Acta 45, 181-189.
- Smith, R.E.W. (1991). Biological investigations into the impact of the Ok Tedi copper mine. in: D. Lawrence & T. Cansfield-Smith (eds.) Sustainable Development for Traditional Inhabitants of the Torres Strait Region, pp. 261-282. Great Barrier Reef Marine Park Authority, Townsville.

- Smith, R.E.W. & Bakowa, K.A. (1994). Utilization of floodplain water bodies by the fishes of the Fly River, Papua New Guinea. *Mitt. Internat. Verein. Limnol.* 24, 187-196.
- Stumm, W. & Morgan, J.J. (1981). Aquatic Chemistry. Wiley and Sons, New York.
- Tipping, E. (1981). The adsorption of aquatic humic substances by iron oxides. *Geochim. Cosmochim. Acta* 45, 191-199.
- United States Environmental Protection Agency (1986). Quality Criteria for Water. Office of Water, Regulations and Standards, Washington, D.C.
- Williams, N.J., Kool, K.M. and Simpson, R.D. (1991). Copper toxicity to fishes and an extremely sensitive shrimp in relation to a potential Australian tropical mining waste seep. Intern. J. Environmental Studies 38, 165-180.
- Winner, R.W. & Owen, H.A. (1991). Toxicity of copper to Chlamydomonas reinhardtii (Chlorophyceae) and Ceriodaphnia dubia (Crustaceae) in relation to changes in water chemistry of a freshwater pond. Aquat. Toxicol. 21, 157-170.

Annex:

Table A1:Analytical results for sediments from floodplain sites in the Middle and LowerFly River region, where no deposition of mine-derived material was detected, and ofsediments deposited in the pre-mining period. Sediments with no grain size are <20 m.</td>Statistics were calculated for the fraction <100 m.</td>

(P0) (P0) (P0) (P1) (P1) <th< th=""><th>(Pa) (Pa) <th< th=""><th>Pfa (Ppb) nhmel 0-1.5 cm 300 1660 8200 600 6300 6300 6470 410 111 15 18 0.2 nd 0.2 16 0.7 1 15 11 11500 14307 7300 7300 5300 6470 410 111 15 18 0.2 nd 0.2 16 0.7 1 15 11 1100 1390 8300 7300 5300 6400 530 71 112 5 0.2 nd 0.2 4 0.1 15 9 1 15 11 1100 1390 8300 2300 5400 510 111 12 8 0.2 nd 0.2 4 0.2 nd 0.2 1 15 11 1000 1300 7300 5300 5400 510 11 12 8 0.2 1 0.2 4 0.2 1 <td< th=""><th>All CUL PD CG AU A</th><th>Ag As Cr</th><th>No Co N</th><th>A IS</th><th>7i 2r</th><th>1.1</th><th></th><th>40</th><th></th><th></th></td<></th></th<></th></th<>	(Pa) (Pa) <th< th=""><th>Pfa (Ppb) nhmel 0-1.5 cm 300 1660 8200 600 6300 6300 6470 410 111 15 18 0.2 nd 0.2 16 0.7 1 15 11 11500 14307 7300 7300 5300 6470 410 111 15 18 0.2 nd 0.2 16 0.7 1 15 11 1100 1390 8300 7300 5300 6400 530 71 112 5 0.2 nd 0.2 4 0.1 15 9 1 15 11 1100 1390 8300 2300 5400 510 111 12 8 0.2 nd 0.2 4 0.2 nd 0.2 1 15 11 1000 1300 7300 5300 5400 510 11 12 8 0.2 1 0.2 4 0.2 1 <td< th=""><th>All CUL PD CG AU A</th><th>Ag As Cr</th><th>No Co N</th><th>A IS</th><th>7i 2r</th><th>1.1</th><th></th><th>40</th><th></th><th></th></td<></th></th<>	Pfa (Ppb) nhmel 0-1.5 cm 300 1660 8200 600 6300 6300 6470 410 111 15 18 0.2 nd 0.2 16 0.7 1 15 11 11500 14307 7300 7300 5300 6470 410 111 15 18 0.2 nd 0.2 16 0.7 1 15 11 1100 1390 8300 7300 5300 6400 530 71 112 5 0.2 nd 0.2 4 0.1 15 9 1 15 11 1100 1390 8300 2300 5400 510 111 12 8 0.2 nd 0.2 4 0.2 nd 0.2 1 15 11 1000 1300 7300 5300 5400 510 11 12 8 0.2 1 0.2 4 0.2 1 <td< th=""><th>All CUL PD CG AU A</th><th>Ag As Cr</th><th>No Co N</th><th>A IS</th><th>7i 2r</th><th>1.1</th><th></th><th>40</th><th></th><th></th></td<>	All CUL PD CG AU A	Ag As Cr	No Co N	A IS	7i 2r	1.1		40			
0 0		Nerver Nerver 0 11300 3200 4670 411 13 18 0.2 46 0.1 10 77 1 16 0 11300 3200 1200 3600 4670 411 13 16 0.2 46 0.1 16 1 16 0.2 46 0.1 16 16 0.1 16 0.2 46 0.2 11 16 0.2 46 1 16 0.2 4 1 16 0.2 11 16 0.2 16 0.2 16 0.2 4 1 16 0.2 11 17 12 0.2 11 12 0.2 11 12 0.2 11 12 0.2 11 12 0.2 11 12 0.2 11 12 0.2 11 12 12 12 12 12 12 12 12 12 12 12 12<						1	5			a	
1 1	0 1380 500 500 500 500 500 500 500 500 500 500 500 500 10 10 10 100	0 1560 5200 5500 4500 4500 4500 4500 4500 4500 4500 450 41 15 16 17 1 15 0 11400 7100 7100 700 4100 77 1 1 16 0 11300 8000 11300 7100 900 510 7 1 1 16 0 11300 8000 5100 510 91 11 1 0 2 0 0 1 <t< td=""><td>(add)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>렸</td></t<>	(add)								-	렸	
0 1300 610 100	0 1300 500 1200 500 50 5 5 1 6 1 1 6 1 1 6 1 <t< td=""><td>0 11300 21300 71100 3100 6100 11 6 1 1 6 1 1 6 1 1 6 1 1 6 1 1 6 1 1 6 1</td><td>35 18 0.2 nd</td><td>10</td><td>14</td><td></td><td></td><td></td><td>1.8.5</td><td></td><td></td><td></td></t<>	0 11300 21300 71100 3100 6100 11 6 1 1 6 1 1 6 1 1 6 1 1 6 1 1 6 1 1 6 1	35 18 0.2 nd	10	14				1.8.5				
0 1300 500 1300 500 10 15 10 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 10 15 10 15 10 10 15 10 <t< td=""><td>0 1300 600 1100 1</td><td>0 11300 8100 11200 7100 9100 610 11 16 1 16 0 13900 8800 1700 8100 55100 610 51 7 5 0 2 0 1 16 1 16 0 19300 8800 17000 8100 55100 5510 510 7 9 6 0.2 nd 0.2 7 9 6 1 16 0 19300 55100 55100 55100 55100 55100 55100 55100 55100 55100 55100 55100 5510 7 9 0 1 1 0 1 0.2 0 1 1 25 9 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1</td><td>37 4 0.2 nd</td><td>-</td><td>1</td><td></td><td></td><td></td><td>IET</td><td></td><td></td><td></td></t<>	0 1300 600 1100 1	0 11300 8100 11200 7100 9100 610 11 16 1 16 0 13900 8800 1700 8100 55100 610 51 7 5 0 2 0 1 16 1 16 0 19300 8800 17000 8100 55100 5510 510 7 9 6 0.2 nd 0.2 7 9 6 1 16 0 19300 55100 55100 55100 55100 55100 55100 55100 55100 55100 55100 55100 5510 7 9 0 1 1 0 1 0.2 0 1 1 25 9 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1	37 4 0.2 nd	-	1				IET				
1300 300 7100 5100	1300 800 7100 8100 7100 810 71 7 9 1 13 9 15 13 14 13 14 13 14 13 14 13 15 15 15 14 13 15 <	0 13300 3200 5310 541 15 6 0.2 nd 0.1 19 56 1 1 0 11300 5300 5300 5510 541 12 5 6 0.2 nd 0.2 9 50 4 112 0 11300 5300 5510 511 12 5 0.2 nd 0.2 3 50 1 12 25 1 11300 800 11900 5510 511 9 5 0 1 0 25 0 1 1 25 0 1 </td <td>43 4 0.2 ad</td> <td>-</td> <td>9 2</td> <td></td> <td></td> <td></td> <td>1115</td> <td></td> <td></td> <td></td>	43 4 0.2 ad	-	9 2				1115				
0 1300 5000 5300 530 51 7 9 1 1 10 15 16 11 12 1300 16 141 18 16 11 12 15 16 <t< td=""><td>0 1300 5010 5300 531 15 6 0.2 9 5 1 1 10 155 15 155 15 <td< td=""><td>0 15900 8500 75100 8010 55100 5600 5500 510 90 11 0.2 0.2 10 0.2 1 12 25 0 11300 800 11900 5100 5100 510 510 11 0.2 0.2 11 12 12 12 1<1100</td> 800 11900 700 110 81 11 0.2 50 1 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12</td<></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td>375</td><td></td><td></td><td></td></t<>	0 1300 5010 5300 531 15 6 0.2 9 5 1 1 10 155 15 155 15 <td< td=""><td>0 15900 8500 75100 8010 55100 5600 5500 510 90 11 0.2 0.2 10 0.2 1 12 25 0 11300 800 11900 5100 5100 510 510 11 0.2 0.2 11 12 12 12 1<1100</td> 800 11900 700 110 81 11 0.2 50 1 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12</td<>	0 15900 8500 75100 8010 55100 5600 5500 510 90 11 0.2 0.2 10 0.2 1 12 25 0 11300 800 11900 5100 5100 510 510 11 0.2 0.2 11 12 12 12 1<1100			1				375				
1100 5100 2500 2500 25 1 1 10 <	1100 200 1300 600 50 5 0 1 1 9 10	0 11900 5500 510 79 1 12 1 1100 800 11900 8200 5100 5100 5100 510 510 79 1 12 1 1110 900 11900 820 110 92 11 92 11 12 12 12 1 1110 800 2190 710 910 71 12 14 12 13 12 12<	Pu c U 32 06	10									
D D	1 1000 <	Internet Interne Internet Internet		2					474			p	
9 0 1000<	900 1100 500 <td>0 9100 11300 1500 65100 5110 12 6 0.2 nd 0.2 3 69 1 22 1 11800 8700 11900 55100 55100 511 12 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1</td> <td>DU 7*0 0 7/</td> <td>en.</td> <td></td> <td></td> <td></td> <td></td> <td>166</td> <td></td> <td></td> <td>13</td>	0 9100 11300 1500 65100 5110 12 6 0.2 nd 0.2 3 69 1 22 1 11800 8700 11900 55100 55100 511 12 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1	DU 7*0 0 7/	en.					166			13	
* 900 1100 500 1500 5600 5100 5100 510	0 1100 1500 5600 5100 500 150 </td <td># 9000 11300 55100 510 510<</td> <td>50 5 0.2 nd</td> <td>00</td> <td></td> <td></td> <td></td> <td></td> <td>126</td> <td></td> <td></td> <td>2 /</td>	# 9000 11300 55100 510 510<	50 5 0.2 nd	00					126			2 /	
1700 770 120 0.2 10 0.2 1 21 120 121 120 120 121 120 121	1700 7700 1700 7700 7700 7700 7700 770 7700 770 <th< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>28 4 0.2 nd</td><td>1-</td><td></td><td></td><td></td><td></td><td>6</td><td></td><td></td><td>8 1</td></th<>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28 4 0.2 nd	1-					6			8 1	
1 1110 600 1400 7100 610 51 15 41 12 54 11 200 21 12 25 11 300 510 350 750 750 75 11 305 11 305 21 12 21 23 11 300 55 11 300 55 11 305 25 11 305 25 11 305 25 11 26 13 400 51 30 25 11 11 26 13 400 51 30 25 11 11 25 25 13 400 11 11 11 11 11 25 25 13 26 11 25 25 13 26 14 11 11 11 11 11 11 11 11 11 11 12 25 13 25 13 25 13 25	11100 5900 1400 7100 5900 710 700 70 71 70	1 11100 8900 24400 7100 910 24 17 0.1 0.2 nd 0.2 1 </td <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>5 K</td> <td></td> <td></td> <td>2</td>		-					5 K			2	
1 1000 2000 2500 7500 1100 700 21 71 11 22 50 11 70 11 70 11 70 11 70 11 70 11 70 11 70 11 70 11 70 11 70 11 70 11 70 11 70 11 70 11 70 11 70 11 70 11 70 11 70 70 70 70 70 70 70 70 70 70 70 70 <	1 1 0 1 0 1 0 1 0 1	1 1 0.2 nd 0.2 nd 0.2 nd 0.2 nd 0.2 1	DU 7*0 57 1/	4	22			18				pu	
11100 7100 2100 5100 <t< td=""><td>$\begin{array}{[c] ccccccccccccccccccccccccccccccccccc$</td><td>(15300 5500 21900 7500 5100 841 121 40 14 0.2 16 93 77 1 22 (11300 7700 21500 5700 5700 5700 5700 550 570 5700 550 570 5700 550 570 1 22 (14100 590 7700 7700 1500 510 51 1 20 0.2 70 1 22 (14100 590 7700 5400 5100 510 51 30 0.2 10 1 20 1 22 1 22 1 22 1 22 1 22 1 21 21 20 12 21 21 21</td><td>M 11 0.2 M</td><td>*</td><td>15</td><td></td><td></td><td>17</td><td></td><td></td><td></td><td>2</td></t<>	$ \begin{array}{[c] ccccccccccccccccccccccccccccccccccc$	(15300 5500 21900 7500 5100 841 121 40 14 0.2 16 93 77 1 22 (11300 7700 21500 5700 5700 5700 5700 550 570 5700 550 570 5700 550 570 1 22 (14100 590 7700 7700 1500 510 51 1 20 0.2 70 1 22 (14100 590 7700 5400 5100 510 51 30 0.2 10 1 20 1 22 1 22 1 22 1 22 1 22 1 21 21 20 12 21 21 21	M 11 0.2 M	*	15			17				2	
1300 1300 1300 5100 511 71 1 2 5 1 1 0 1 0 1	1330 630 1307 7870 510 51 60 131 300 59 77 1 25 58 131 300 59 77 1 <td< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>DU 1.0 11 12</td><td>40</td><td>11</td><td></td><td></td><td>11</td><td></td><td></td><td></td><td>006</td></td<>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	DU 1.0 11 12	40	11			11				006	
(11)00 7700 7500 790 75 7 1 1 1 1 2 3 1 1 1 7 2 1	11300 7130 71500 790 791 71	(11)00 7700 1500 5700 5700 5700 5700 570 1 20 20 20 20 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 21 20 1 20 1 21 1 21 20 1 21 21 1 21 1 1 1 1 1 1 1 1 1 1	10 11 03 M										
(1110 300 7230 7100 9800 710 720 710 780 71	(1110 5300 7300 7400 510 710 740 710 740 710 740 740 740 741 741 741 741 740 741 741 741 741 741 741 741 741 740 741 74	(11100 8300 72300 77900 9100 7770 980 751 13 70 13 70 13 70 13 70 13 70 13 70 13 70 13 70 13 70 13 70 13 71 13 70 13 70 13 70 13 71 13 70 13 70 13 71 13 71 13 71 13 71 13 71 13 71 13 71 13 71 13 71 13 71 13 71 13 71 13 71 13 71 13 71 13 71 13 71 13 14 13 14 13 74 13 23 13 14 13 14 13 14 13 14 13 14 14 13 14 13 14 13 14 <td></td> <td>0</td> <td></td> <td></td> <td></td> <td>22</td> <td></td> <td></td> <td></td> <td></td>		0				22					
17400 7300 7400 7100 7100 7100 7100 7100 710 <t< td=""><td>15000 5500 1500 570 100 57 10 17 52 128 2800 14 19 45 16</td><td>17400 5300 19400 74700 5100 24 2 0.2 0.2 5 5 1 12 17400 7300 54500 7490 5100 818 119 42 20 0.2 20 0.2 5 5 1 12 2010 8300 19200 74600 45100 811 17 4 1 0.2 nd 0.2 1 1 1 21 21 1 1 1 1 1 1 1 1 0.2 nd 0.2 1 1 1 1 1 1 1 1 1 21 <t< td=""><td>40T 2*0 0 02</td><td>ŧ</td><td></td><td></td><td></td><td>12</td><td></td><td></td><td></td><td></td></t<></td></t<>	15000 5500 1500 570 100 57 10 17 52 128 2800 14 19 45 16	17400 5300 19400 74700 5100 24 2 0.2 0.2 5 5 1 12 17400 7300 54500 7490 5100 818 119 42 20 0.2 20 0.2 5 5 1 12 2010 8300 19200 74600 45100 811 17 4 1 0.2 nd 0.2 1 1 1 21 21 1 1 1 1 1 1 1 1 0.2 nd 0.2 1 1 1 1 1 1 1 1 1 21 1 <t< td=""><td>40T 2*0 0 02</td><td>ŧ</td><td></td><td></td><td></td><td>12</td><td></td><td></td><td></td><td></td></t<>	40T 2*0 0 02	ŧ				12					
17400 7300 27800 71300 71300 71300 71300 7130 7130 713 71 11 70 11 70 11 70 11 70 11 70 11 70 11 71 71 11 70 11 70 11 70 11 71 <t< td=""><td>17400 7300 77400 77400 77400 77400 77400 7740 7700 7700 7700 7700 7700 7700 770 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 <th1< th=""> 1 1 <!--</td--><td>17400 7300 2800 7790 7300 7300 7300 7300 7300 7300 7300 7300 7300 7300 7300 7300 7300 7300 7300 7300 7300 730 731 73 73 13 70 1 21 23 20100 8300 19200 7400 5400 5400 5400 5400 5400 5400 510 73 18 19 0.2 nd 0.2 16 74 1 29 15100 8100 5500 5100 550 5100 550 5100 550 70 1 29 1 18 1 29 1 18 11 18 1 18 1 18 1 1 18 1 18 1 18 1 18 1 18 1 1 1 1 18 1 18 1 1 1 1</td><td>24 2 D.2 nd</td><td>5</td><td></td><td></td><td></td><td>19</td><td></td><td></td><td></td><td></td></th1<></td></t<>	17400 7300 77400 77400 77400 77400 77400 7740 7700 7700 7700 7700 7700 7700 770 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 <th1< th=""> 1 1 <!--</td--><td>17400 7300 2800 7790 7300 7300 7300 7300 7300 7300 7300 7300 7300 7300 7300 7300 7300 7300 7300 7300 7300 730 731 73 73 13 70 1 21 23 20100 8300 19200 7400 5400 5400 5400 5400 5400 5400 510 73 18 19 0.2 nd 0.2 16 74 1 29 15100 8100 5500 5100 550 5100 550 5100 550 70 1 29 1 18 1 29 1 18 11 18 1 18 1 18 1 1 18 1 18 1 18 1 18 1 18 1 1 1 1 18 1 18 1 1 1 1</td><td>24 2 D.2 nd</td><td>5</td><td></td><td></td><td></td><td>19</td><td></td><td></td><td></td><td></td></th1<>	17400 7300 2800 7790 7300 7300 7300 7300 7300 7300 7300 7300 7300 7300 7300 7300 7300 7300 7300 7300 7300 730 731 73 73 13 70 1 21 23 20100 8300 19200 7400 5400 5400 5400 5400 5400 5400 510 73 18 19 0.2 nd 0.2 16 74 1 29 15100 8100 5500 5100 550 5100 550 5100 550 70 1 29 1 18 1 29 1 18 11 18 1 18 1 18 1 1 18 1 18 1 18 1 18 1 18 1 1 1 1 18 1 18 1 1 1 1	24 2 D.2 nd	5				19					
1 + 400 17300 6400 77300 6400 77300 6400 77300 6400 77300 6400 77300 6400 77300 6400 77300 6400 77300 6400 77300 6400 77300 6400 77300 6400 77300 6400 77300 6400 7730 7400 7500 7400 750 750 750 750 750 750 750 750 750 750 750 750 750 760 751 750 750 <th< td=""><td>1.400 1300 2460 1730 6400 1730 640 1730 640 173 118 40 13 02.2 nd 0.2 13 15 151 150 151 150 151 150</td><td>1/400 7400 7790 64100 771 118 40 13 0.2 nd 0.3 13 70 1 21 20100 3900 10200 94600 5400 5400 5400 5400 5400 5400 5400 5400 5400 5400 127 38 19 0.2 nd 10 13 74 1 29 1510 8100 1950 5210 750 112 23 0.2 nd 12 70 1 29 1 16 12 14 0.2 nd 12 70 1 13 14 13 14 12 29 1 19 29 1 15 11 13 14 15 12 14 16 0.2 nd 0.2 14 12 21 13 14 13 19 23 13 14 13 19 21 13 14</td><td>42 20 0.2 20</td><td>\$1</td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td></th<>	1.400 1300 2460 1730 6400 1730 640 1730 640 173 118 40 13 02.2 nd 0.2 13 15 151 150 151 150 151 150	1/400 7400 7790 64100 771 118 40 13 0.2 nd 0.3 13 70 1 21 20100 3900 10200 94600 5400 5400 5400 5400 5400 5400 5400 5400 5400 5400 127 38 19 0.2 nd 10 13 74 1 29 1510 8100 1950 5210 750 112 23 0.2 nd 12 70 1 29 1 16 12 14 0.2 nd 12 70 1 13 14 13 14 12 29 1 19 29 1 15 11 13 14 15 12 14 16 0.2 nd 0.2 14 12 21 13 14 13 19 23 13 14 13 19 21 13 14	42 20 0.2 20	\$1				0					
20100 3300 13200 34600 5100 510 <th< td=""><td>20100 3960 4560 640 127 38 39 0.2 nd 0.2 4 80 1 21 55 207 4100 39 25 199 235 20 nd 16100 8100 19507 7200 5100 76 10 17 74 1 29 64 194 4100 54 19 381 74 14 10 54 19 381 25 20 14 10 16 12 74 1 29 64 194 4100 54 19 381 16 14 16 12 70 11 29 64 179 400 14 16 14 16 14 16 14 16 12 70 11 19 52 13 16 14 16 14 16 14 16 14 16 14 16 14 16 14</td><td>20100 3300 19200 34600 45000 640 127 38 19 0.2 nd 0.2 nd 1.2 1 29 14100 8100 19500 5500 5100 510 156 55 22 0.2 nd 1.0 11 74 1 29 14100 8000 5500 5100 510 750 1102 21 4 0.2 nd 0.2 16 1 1 29 14100 8000 5500 5100 550 5100 561 122 1 40 1 20 1 29 1 1 29 1<td>40 13 0.2 nd</td><td>11</td><td></td><td></td><td></td><td>3</td><td></td><td></td><td></td><td></td></td></th<>	20100 3960 4560 640 127 38 39 0.2 nd 0.2 4 80 1 21 55 207 4100 39 25 199 235 20 nd 16100 8100 19507 7200 5100 76 10 17 74 1 29 64 194 4100 54 19 381 74 14 10 54 19 381 25 20 14 10 16 12 74 1 29 64 194 4100 54 19 381 16 14 16 12 70 11 29 64 179 400 14 16 14 16 14 16 14 16 12 70 11 19 52 13 16 14 16 14 16 14 16 14 16 14 16 14 16 14	20100 3300 19200 34600 45000 640 127 38 19 0.2 nd 0.2 nd 1.2 1 29 14100 8100 19500 5500 5100 510 156 55 22 0.2 nd 1.0 11 74 1 29 14100 8000 5500 5100 510 750 1102 21 4 0.2 nd 0.2 16 1 1 29 14100 8000 5500 5100 550 5100 561 122 1 40 1 20 1 29 1 1 29 1 <td>40 13 0.2 nd</td> <td>11</td> <td></td> <td></td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td></td>	40 13 0.2 nd	11				3					
16100 8100 19300 7200 5100 55 72 0.2 nd 1.0 11 74 1 29 64 194 4100 54 19 321 14 nd 14 16 0.2 nd 0.2 16 0.1 11 14 15 64 194 4100 54 19 470 54 15 470 14 nd 14 nd 0.2 nd 0.2 16 0.3 12 14 64 196 4700 54 15 470 14 nd 14 nd 14 nd 16 0.2 nd 0.2 16 0.3 12 13 16 0.3 12 11 16 0.2 nd 0.2 nd 0.2 11 16 17 11 16 17 11 16 17 11 16 17 11 16 17 11 17 14 16 17 14 16 17 14 16 16 17 16	16100 8100 19300 72300 5100 55 72 0.2 nd 1.0 11 74 1 29 64 194 4100 54 19 381 207 14 nd 14100 8000 7300 7500 5100 75 140 16 0.2 nd 0.2 16 0.2 16 0.2 16 11 16 49 4100 54 19 470 54 15 470 14 nd 14 nd 14 14 15 64 194 4100 54 15 421 240 14 nd 14 15 nd 14 15 14 0.2 nd 0.2 15 70 11 15 49 170 470 54 15 14 14 14 0.2 nd 0.2 nd 0.2 14 0.2 14 0.2 14 17 16 170 16 170 170 170 170 14 14 14 16	I5100 8100 19307 7200 510 15 12 0.2 nd 1.0 11 74 1 29 15100 8100 3200 5500 5100 75 14 40 15 0.2 nd 1.0 11 74 1 29 15100 8000 32000 75500 5100 55 14 40 16 0.2 16 70 1 31 14100 8000 5200 55 21 10 0.2 nd 0.8 12 70 1 13 14100 8000 5400 5700 55 21 10 0.2 nd 0.2 10 11 19 11 19 11 19 11 19 11 19 11 19 11 19 11 19 11 19 11 10 1 10 10 10 10 10 10	38 39 0.2 nd	٣	21			25					
16703 8300 1300 75500 5110 76 16 0.2 16 0.2 16 1 10 54 19 361 211 14 nd 14100 8300 23100 75500 561 10 11 56 15 70 1 13 56 196 4700 54 19 361 21 nd nd nd 11 15 51 170 4200 54 15 42 14 nd 14 nd 16 13 70 11 15 55 11 15 51 11 15 55 14 15 14 16 14 16 14 16 14 16 14 16 14 16 14 16 14 16 15 14 10 16 1	16703 8300 7300 7500 5100 75 14 00 54 19 4100 54 19 361 217 14 nd 14100 8000 23100 7500 5500 517 10 15 74 1 31 66 196 4700 54 15 73 14 nd 11100 8000 5190 5200 667 106 22 nd 0.2 16 0.1 18 66 196 4700 54 15 73 14 nd 11000 11000 5100 5500 667 106 22 14 0.2 nd 0.2 1 50 14 10 1 16 11 16 11 16 11 11 11 10 12 11 10 12 14 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12 12 11 11	167U3 8300 1300 7500 5100 750 510 750 510 750 510 750 510 750 510 76 1 29 14100 8000 23100 1720 6770 54 102 21 4 0.2 nd 0.8 17 70 1 13 11000 1900 1500 5300 5300 5700 567 105 22 14 0.2 nd 0.8 17 70 1 18 11000 1900 1500 5400 5500 59 27 18 0.2 nd 0.8 17 70 1 19 1700 1900 1900 1900 5400 59 57 18 0.2 nd 0.2 4 69 1 19 1700 1900 1900 1900 5400 57 18 0.2 nd 0.2 4 51 125 23 1700 1000 1900 1900 5400 580 511 11 4 0.2 nd 0.2 4 51 1 25 1000 1100 1200	55 22 0.3 mi	4	;						1	2	
1100 300 1200 1200 10 0.2 04 0.2 15 74 1 11 66 196 420 54 15 421 240 14 05 1100 300 11500 5100 11500 5100 5100 510 51 1 0.2 04 0.6 12 14 15 1 15 53 13 241 15 04 15 53 13 241 15 04 16 14 04 15 15 14 05 14 05 15 16 14 05 14 05 16 </td <td>11100 500 11100 510 520 10 0.2 nd 0.2 nd 0.2 1 19 55 179 400 51 12 250 14 16 11 10 11 10 11 10 11</td> <td>1100 3100 1200 100<!--</td--><td>NH 2+4 22 24</td><td>á</td><td>53</td><td></td><td></td><td>19</td><td></td><td></td><td>Pu</td><td>pa</td></td>	11100 500 11100 510 520 10 0.2 nd 0.2 nd 0.2 1 19 55 179 400 51 12 250 14 16 11 10 11 10 11 10 11	1100 3100 1200 100 </td <td>NH 2+4 22 24</td> <td>á</td> <td>53</td> <td></td> <td></td> <td>19</td> <td></td> <td></td> <td>Pu</td> <td>pa</td>	NH 2+4 22 24	á	53			19			Pu	pa	
11400 3100 11200 5700 570 570 1 18 49 170 620 5 12 70 15 13 240 15 16 11 130 570 570 570 5 179 600 31 21 260 13 240 15 14 16 11 19 55 179 600 31 21 260 14 16 14 16 16 21 15 21 16	11400 3100 11200 5700 551 10 62 12 70 1 18 49 170 620 12 70 15 10 10 15 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 11 11 11 11 11 11 11 11 11 11 11 11 10 11 <td>Attoo Bits Tits <t< td=""><td>40 Ib 0.2 nd</td><td>16</td><td>31</td><td></td><td></td><td>4</td><td></td><td></td><td>1</td><td>1</td></t<></td>	Attoo Bits Tits Tits <t< td=""><td>40 Ib 0.2 nd</td><td>16</td><td>31</td><td></td><td></td><td>4</td><td></td><td></td><td>1</td><td>1</td></t<>	40 Ib 0.2 nd	16	31			4			1	1	
11100 3100 11500 5300 550 50 50 4 10 45 4 15 64 15 64 15 64 15 64 15 16 15 16 15 16 15 16 15 15 15 15 15 15 15 15 15 15 16 11 15 16 17 100 15 15 15 15 16 11 17 100 15 12 15 15 16 11 16 17 100 15 16 17 100 15 17 100 15 16 11 17 100 17 10 11	11100 3100 11600 5300 5500 570 55 179 4000 55 179 4000 55 179 4000 55 179 4000 55 179 4000 51 175 200 15 1 10 7700 19000 19100 5500 5500 57 18 0.2 nd 0.2 10 0.2 10 0.2 10 0.2 nd 0.2 11 12 55 177 100 17 100 12 11 11 10 11 11 10 11 11 10 11 11 11 11 11 11 11 11 12 11 12 11 12 12 11 12 12 11 11 11 11 11 11 11 11 11 11 11 11 11	11400 3100 11500 5100 5200 667 105 22 14 0.2 nd 0.2 4 69 1 19 3100 19300 51300 54300 5800 560 55 21 10 0.2 nd 0.2 4 69 1 19 3700 19300 51300 54300 560 55 21 18 0.2 nd 0.2 4 50 1 19 3700 10900 51300 54300 5670 517 18 0.2 nd 0.2 4 51 1 25 29 11200 5000 11300 9200 56200 713 14 0.2 nd 0.2 4 51 1 25 29 11000 7400 5300 5920 592 38 10 1 1 1 1 1 1 25 29 1 <	23 4 0.2 nd	13				a ;			2	2	
11000 19700 5100 510 0.2 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.2 0.2	11800 19700 5100 510 0.2 0.4	110300 10300 15100 51400 48300 560 35 21 10 0.2 nd 0.2 0 3 1 17 3700 10900 51500 54500 597 55 27 18 0.2 nd 0.2 9 81 2 29 112200 8000 13100 54500 5450 59 27 18 0.2 nd 16.2 9 81 2 29 112200 8000 13100 92900 65200 713 48 16 0.2 nd 0.2 4 51 1 25 10500 7400 5920 5420 592 38 13 4 0.2 nd 0.2 4 51 1 25 2 10300 7400 15600 54900 5500 41200 46 55 7 0.2 24 27 1 1 25 2	22 14 A 2 4	• •	01			32			pu	Per	
9700 19700 52800 570 97 97 98 2 23 76 137 1300 42 130 42 130 42 14 nd 112200 1000 19700 62500 75 173 18 0.2 nd 18.2 9 88 2 29 106 196 274 182 231 14 nd 112200 6000 11300 95200 6120 16 0.2 nd 0.2 9 64 1 25 34 219 480 10 13 nd 14 nd 14 0.2 nd 0.2 4 51 1 25 34 219 480 110 31 39 240 39 nd 14 nd 14 0.2 nd 0.2 4 51 1 25 24 250 14 nd 14 1 14 1 12 12 12 13 14 14 14 1 1 12 12 13	9700 19700 52800 570 97 97 98 2 23 76 137 1300 42 130 42 130 42 130 42 14 nd 112200 6000 11300 92500 65200 113 48 16 0.2 nd 0.2 9 64 1 25 14 219 4800 110 31 39 240 13 nd 10500 11300 9200 65200 113 48 15 0.2 nd 0.2 9 64 1 25 34 219 4800 110 31 39 240 13 nd 14 nd 14 nd 14 nd 14 nd 14 11 14 0.2 nd 0.2 4 51 1 22 24 23 13 23 13 14 16 14 14 16 14 14 1 12 14 14 14 110 11 130 230 <	9700 19700 5380 54500 59 95 27 18 0.22 nd 18.2 9 84 2 29 11220 6000 11300 92900 66200 713 48 16 0.2 nd 18.2 9 84 1 25 10500 7300 11200 5200 713 48 16 0.2 nd 0.2 4 51 1 25 10500 7400 1500 54900 57400 592 98 11 1 4 0.2 nd 0.2 4 51 1 25 10100 7400 1500 59500 11200 740 55 7 0.2 27 14 1 15	101 3:0 11 11	• •	2			12			P	pu	
11200 800 11300 9290 66200 713 48 16 0.2 nd 0.2 9 64 1 25 34 219 8800 110 31 390 240 13 nd 14 14 11 13 13 13 nd 13 nd 13 14 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 <t< td=""><td>11200 8000 11300 92900 64200 715 173 48 16 0.2 nd 0.2 9 64 1 25 34 219 4800 110 31 390 240 13 nd 14 nd 13 nd 13 nd 14 nd 13 nd 13 nd 11 nd 13 nd 13 nd 14 nd 14 11 14 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11</td><td>11200 5000 11300 52900 66200 715 173 48 16 0.2 nd 0.2 9 64 1 25 11500 7300 71300 7400 5303 5400 592 98 121 31 4 0.2 nd 0.2 4 51 1 22 4 11 22 4 51 1 22 4 51 1 22 4 51 1 22 4 1 19 40 500 1 10 0.2 4 38 1 19 4 0.2 4 38 1 19 22 4 38 1 19 22 24 1 1 1 1 1 1 22 24 1 1 22 24 1 1 22 24 1 1 1 1 1 1 1 1 1 1 1</td><td>27 18 0.2 nd</td><td>an an</td><td>50</td><td></td><td></td><td>2</td><td></td><td></td><td>7</td><td>200</td></t<>	11200 8000 11300 92900 64200 715 173 48 16 0.2 nd 0.2 9 64 1 25 34 219 4800 110 31 390 240 13 nd 14 nd 13 nd 13 nd 14 nd 13 nd 13 nd 11 nd 13 nd 13 nd 14 nd 14 11 14 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11	11200 5000 11300 52900 66200 715 173 48 16 0.2 nd 0.2 9 64 1 25 11500 7300 71300 7400 5303 5400 592 98 121 31 4 0.2 nd 0.2 4 51 1 22 4 11 22 4 51 1 22 4 51 1 22 4 51 1 22 4 1 19 40 500 1 10 0.2 4 38 1 19 4 0.2 4 38 1 19 22 4 38 1 19 22 24 1 1 1 1 1 1 22 24 1 1 22 24 1 1 22 24 1 1 1 1 1 1 1 1 1 1 1	27 18 0.2 nd	an an	50			2			7	200	
0.000 11.000 54.00 12.00 10.00 13 14 0.2 9 64 1 25 34 219 4800 110 31 390 240 13 14 10.600 7300 12.00 5400 530 121 14 0.2 14 51 1 22 24 239 5800 155 41 354 254 15 15 10100 7400 1500 64900 5200 121 11 4 0.2 14 0.2 4 38 1 19 22 13 14 241 13 16 10100 7400 1500 64900 5400 5400 13 14 24 38 1 19 22 13 14 14 16 14 10 13 16 10 11 14 11 16 14 1 1 19 23 10 10 11 16 10 10 10 10 10 10 10 10 11 16 10 10 10 10 10 10 10 10 10 10 10 10	12000 7300 12200 72400 46200 713 173 48 16 0.2 nd 0.2 9 64 1 25 34 219 4800 110 11 39 240 13 nd 14000 7300 12200 7240 580 580 580 580 580 580 580 580 580 58	12000 11200 7200 6200 715 173 48 16 0.2 nd 0.2 9 64 1 25 16600 7300 12200 72400 6400 638 121 31 4 0.2 nd 0.2 4 53 1 22 10100 7400 11500 6490 52400 532 98 19 4 0.2 nd 0.2 4 38 1 19 400 5500 112100 59500 11200 446 55 25 7 0.2 24P 2.7 3P 47 1 16		ł	3			17			PU	P	
11/200 11/200 <th 1="" 200<="" td="" th<=""><td>0000 12000 <</td><td>1200 10100 7400 1500 5200 520 540 1440 656 141 11 4 0.2 nd 0.2 4 51 1 22 1560 10100 7400 1500 5200 520 1200 520 1200 550 11200 550 11200 550 11200 550 11200 550 11200 550 11200 1200</td><td>16 0.2 nd</td><td>01</td><td>25</td><td></td><td></td><td>E</td><td></td><td></td><td>54</td><td>1</td></th>	<td>0000 12000 <</td> <td>1200 10100 7400 1500 5200 520 540 1440 656 141 11 4 0.2 nd 0.2 4 51 1 22 1560 10100 7400 1500 5200 520 1200 520 1200 550 11200 550 11200 550 11200 550 11200 550 11200 550 11200 1200</td> <td>16 0.2 nd</td> <td>01</td> <td>25</td> <td></td> <td></td> <td>E</td> <td></td> <td></td> <td>54</td> <td>1</td>	0000 12000 <	1200 10100 7400 1500 5200 520 540 1440 656 141 11 4 0.2 nd 0.2 4 51 1 22 1560 10100 7400 1500 5200 520 1200 520 1200 550 11200 550 11200 550 11200 550 11200 550 11200 550 11200 1200	16 0.2 nd	0 1	25			E			54	1
11200 9400 5500 12100 59500 11200 406 55 25 7 0.2 42 1.7 1. 42 1 15 43 22 188 6800 56 11 14 241 13 nd 11200 9400 5500 12100 59500 11200 406 55 25 7 0.2 <2 2, 2, 1 4, 2 1 16 43 89 2400 74 19 373 253 10 nd	11200 9400 5500 12100 59500 11200 446 55 25 7 0.2 42 1, 1 1 1 1 1 1 1 22 188 6800 56 11 14 241 1 nd 11200 9400 5500 12100 59500 11200 446 55 25 7 0.2 22 24 2.7 1 4.7 1 1 1 4.3 89 2400 74 19 171 253 10 nd	11200 4400 5500 12100 5550 1220 46 55 25 7 0.2 22 31 42 1 15	4 0.2 nd	7	22			4			n ru	1	
11200 9400 5500 12100 59500 41200 446 65 25 7 0.2 <24 2.7 34 47 1 16 43 89 2400 74 19 373 253 10 nd	11200 9400 5500 12100 59500 41200 446 65 25 7 0.2 <2+ 2.7 3+ 4.7 1 16 4.3 89 2400 74 19 171 253 10 nd	11200 9400 5500 12100 59500 41200 446 55 25 7 0.2 <2F 2.7 3; 42 1 16	4 0.2 nd	-	10			1.1			2	00	
10 01 557 516 61 Fr 0007 68 74 07 7 10 10 10 10 10 10	n n n n n n n n n n n n n n n n n n n		7 0.7 624	4	2 2			31			뮏	pq	
					6			61				nđ	

1.1

Sediment Sample	Na	ы	S.	Ca	W	82		TI	8	8	B	Au	W	Ms	B	No.	8	NI.	A	11 2	Zr 1	La	Ba	Sr	Sc	U	s
	昆											(qdd)														~	B
1/27.3.V Fly bank Xs. 8-10 cm 1/27.3.111 Fly bank Xs. 27-29 cm		4200 12200 5600 14600	0 6700		7700 102400 32300 4900 100000 41900	0 32300	136	129	32	22 16	0.7	16+ nd	<.3 0.3	± ₹	56 56	5 S	пп	26 25	147	4500	8 8	28 27	346 1 409 1	141	13	nd 0.83	nd <100
2/27.3.V Fly bank Xs. 30-32.5 cm	m 5300	13000	0 6700	5900		94400 67300	289	147	40	19	۲.>	pq	¢.3	*	54	<2	17	27	157	4100	86	28	390 1	148	20	11.11	190
4/16.2.IT L.Dav chan./Ply 3-5 cm 4/16.2.IV 18-20.5 cm	m 5300 5000	13300 12800	0 6900	6200 6800		83600 53300 92000 64400	461 760	111	39	14 21	0.6 4.4	pu	<.3 0.4	5.	57 58	\$	15	26 24	148	4300	79 82	26 27	340	154	19 20	1.6 nd	ри 009
4/1.11.111 L. Dav.chan. 20.5-22cm 2500	CII 250(0 11800	0 4900	5300	0 10620	106200 30600	185	145	36	14	0.2	ы	0.5	6	87	1	11	32	208	4700	80	32	335	127	20	12	p
1/30.3.111 L. Dav. chan. 26-28 cm 4100	CE 110	0 12900	0 5200	5800		95700 28300	122	116	35	14	9.6	pq	Ľ,	4	64	<2	1	26	155	4400	82	52	321	133	20	1.29	400
1/19.2.II L.Daviambu E 2.5-5 cm 1/19.2.III 5-7.5 cm	2900	0 11600	0 4000	5200		90300 28800 87500 34900) 221) 250	92 69	35	11 9	0.3	₽	0.2	**-	66 60	-	10	27	208	1700	90 82	28 28	262	109	18	4.8 nd	600 nd
1/1.11.1 L.Daviambu N 0-2.5cm	1200	0 3600	00 2300	5700		59600 23900	197	281	LZ.	11	0.2	pu	1.0	2	19		11	38	130	2300	15	15	261	83	12	P	P
2/1.11.11 L.Daviambu M 2.5-5cm 2/1.11.111 14-16.5 cm	1200	0 5100 00 100	30 2400 00 500	0 4500 nd		71100 18200 6500 38600	0 121	139	35	10	0.2	pu pu	0.2	* ~	54	1	12 16	33	166 38	2600 300	15	20	199	71	3 F	멸멸	igi igi
5/30.3.1 L. Daviarbu N D-3 cm 250 > 200 μm 90 5/30.3.111 L. Dav. R 19.5-22 cm total	2500 900 m total	00	8800 4200 3400 1900	0 6000		73600 37800	0 270	183	55	18 12	33	pu	0.5	5 4	30	3	15 19	24	130	2500	52 30	18 12	263 116	102 59	15 9	nd 19.6	nd 3000
2/1.4.1 L. Daviambu N 0-2.5 cm 2/1.4.11 L. Daviambu N 2.5-5 cm	三回 1200 C回 2100		3500 2100 7400 2400	0 8200		40100 2560 49200 2340	00 276 00 288	220	71 74	19 21	33	pu pu	0.8 <.3	104	27 28	3	16 15	18	70	1200 1400	30	= =	167 198	74	00 07	20	pu pu
7/24.10.III L.Dav. S 27.5-30 cm		4300 12200	00 5500	0 3700		90400 3150	00 201	38	15	35	0.4	<2+	9.4	42	22	2	н	37	174	5600	101	28	302	111	18	Pr	PU
Ja/30.3.1 L. Daviambu W 0-2 cm. t 1100 Ja/30.3.1V L. Daviambu W 22-24 cm 5100	6 t 11		2300 1200 10600 6200		3500 315 5100 905	31500 10100 90900 58900	00 86 00 1110	77 0 115	21 18	5 15	4.5 4.5	g g	0.5	54 6	22 63	2 2	4	16 21	50	1000	22 76	13	122 328	48 118	8 19	14.5 nd	2600 nd
																										(cont.)	÷

Prime 11100 2700 1400 5500 10940 16300 217 29 13 <44	Sediment Sample	Na	M	¥.	Ca	Ŋ	Fe	Ę	3	£	8	Au	уð	γş	ដ	Mo	ខ	N	٨	H	21	Ia	Ba	Sr	Sc	U	s	
1 1		뵵										(qdd)											2			-	텂	1
780 1800 1900 700 1200 1500 15 5 4 10 4 1 4 1 4 1 4 1 10 100 </td <td>3b/30.3.1 L. Daviambu W 0-3 cm. 3b/30.3.111 L. Davi W 22-24 cm t 3b/30.3.V L. Daviambu W 39-41 cm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1460 1690 34800</td> <td>104 29 142</td> <td>23 13 29</td> <td>e ≱ ⊟</td> <td>10 10</td> <td>pu pu</td> <td>233</td> <td>224</td> <td>23 18 61</td> <td>2 2 2 2</td> <td>6 7 12</td> <td>17 13 24</td> <td>0 0 0</td> <td>1000 600 4700</td> <td>23 16 81</td> <td>11 9 24</td> <td>139 163 321</td> <td>59 85 126</td> <td>7 6 18</td> <td>16.7 37.8 2.1</td> <td>3000 4200 700</td> <td></td>	3b/30.3.1 L. Daviambu W 0-3 cm. 3b/30.3.111 L. Davi W 22-24 cm t 3b/30.3.V L. Daviambu W 39-41 cm						1460 1690 34800	104 29 142	23 13 29	e ≱ ⊟	10 10	pu pu	233	224	23 18 61	2 2 2 2	6 7 12	17 13 24	0 0 0	1000 600 4700	23 16 81	11 9 24	139 163 321	59 85 126	7 6 18	16.7 37.8 2.1	3000 4200 700	
200 200 <td>4/30.3.IV L. Dav. W 31-33 cm. t</td> <td>750</td> <td></td> <td>0 1000</td> <td></td> <td></td> <td>1850</td> <td>45</td> <td>15</td> <td>5</td> <td>4.5</td> <td>pq</td> <td>Ş</td> <td>4</td> <td>17</td> <td>42</td> <td>9</td> <td>12</td> <td>33</td> <td>650</td> <td>15</td> <td>٢</td> <td>104</td> <td>65</td> <td>5</td> <td>1.01</td> <td>3000</td> <td></td>	4/30.3.IV L. Dav. W 31-33 cm. t	750		0 1000			1850	45	15	5	4.5	pq	Ş	4	17	42	9	12	33	650	15	٢	104	65	5	1.01	3000	
L FO TOO	3a/1.4.I L. Baviambu C 0-2 cm 3a/1.4.IV L. Baviambu C 18-20 cm						0 3240	187 115	N SI	18 16	2.2	bd Bd	<u>3</u> 3	22	47	3	11 6	29	109	2500 4100	44 80	18 23	304	98 107	13	pu pu	p p	
500 12100 7700 600 12300 4700 150 14 20 110 210 14 210 110 210 217 212 04 200 12300 500 11700 52900 100 51 2 3 1 1 11 5100 4 20 210 12 2 3 1 1 1 210 210 25 1 1 1 1 1 1 1 210 20 25 1 1 1 2 3 1 2 3 1 2 3 1 1 2 2 1 0 1 2 2 1 0 1 2 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3b/l.4.I L. Daviambu C 0-2 cm. t	. 1600					0 2090(148	31	11	13	ри	3	4	47	3	п	12	100	2300	99	11	255	78	14	9.13	1800	
1100 5200 500 6500 110 500 150 500 150 500 150 500 150 170 100 500 110 26 170 101 26 26 170 101 11 26 101 11 26 101 11 26 101 11 26 26 101 11 26 26 101 11 26 26 101 11 26 26 101 11 26 26 11 27 26 26 26 11 27 26	2/28.10.VI Fly R. bank 51-54 cm 20-60 µm 60-100 µm 100-200 µm	5600 9200 9200					0 4700 0 4160 0 35800 0 30200	143 103 97 95	58 54 54	11 30 30 29	0.2 0.3 0.7	* pu pu	0.1 0.1 0.1	5 22	81 59 49 39	* ~ ~ *	11 8 8 8 8	44 14 27 29	209 111 112 97	7100 5100 4700 3400	122 94 71 56	38 27 23 23	360 388 390 453	173 217 226 263	22 12 11 10	말말말말	말말말말	
Image: 100 1500 1500 1500 1500 1500 150 150 150 150 150 150 151 17 141 17	2/31.10.1V L.Pangua N 7.5-10 cm 2/31.10.V 16.5-18.5 cm	1300					0 2110(136 101	33	18 14	0.5	pu *	0.9	5	51	2 1	18	35	187	2700	50 112	26 26	179 289	72 101	X CI	nd B	pg pg	
350 1510 710 5400 19990 6400 324 118 57 15 0.2 nd 0.5 2 1 5 221 5400 112 311 118 nd 4200 14100 6400 410 8590 6400 334 135 59 10. 5 21 35 221 540 112 31 31 11 18 nd 3100 12400 6400 5400 9390 64200 322 118 41 18 <.4	3/31.10.11 L.Pangua W 2.5-4.5 cm 3/31.10.111 16.5-17.5 cm						0 3290(116	30	25 2	0.9	말 말	1.9 0.1	7 2	82 82	2	on 88	25 35	198	6500 6600	108		372 344	151 148	17	믿멷	g g	
3100 12400 6100 5100 5100 510 174 3900 75 26 295 125 19 nd 3500 12900 6600 5900 64400 327 117 400 77 26 390 129 20 nd 3500 12900 6600 5900 64400 327 117 40 13 0.4 nd <.3	4/31.10.11 L.Pangua C 14.5-16.5c 4/31.10.111 28.5-30.5 cm						0 6040(0 61100	118	65 23	15 31	0.2	e e	0.2	4	89 80	1 2	16 21	35	224 221	4200	89 112	22 31	325 315	162 131	23 18	3.0 nd	5200 nđ	
3700 10500 5500 7700 89600 42500 220 198 58 23 <.4 nd 0.3 5 52 <2 22 27 146 3400 77 25 311 132 18 7.84 5400 13300 6900 8300 95000 48800 723 122 40 19 <.4 nd 0.4 <4 53 <2 17 25 139 4100 84 27 375 160 19 2.55 (cont.)	5/11.10. L. Pangua SE 10-12.5 cm 5/31.10. 16-18 cm 5/31.10. 23-25 cm 5/31.10.111 28.5-30.5 cm 5/31.10.V 42.5-44.5 cm						0 64200 0 64400 0 67800 0 67600 0 70300	118 117 120 121 121	41 40 43 43	18 13 12 45	6.4 0.4 0.2 0.2	말 말 말 말 말	00033	5# 6# 5# 2	60 63 72 85	4 7 2 3	15 18 18 22 22	27 27 28 37 41	174 176 176 195 245 245 243	3900 4100 4200 4200 5800	75 77 79 83 107	26 26 28 31	295 309 302 293 310	125 129 129 123 153	21 22 23 23 23	nd nd 2.6 3.15 nd	nd 700 4500 nd	
	1/4.4.1V L. Pangua NE 23-28 cm 1/4.4.VI L. Pangua NE 33-38 cm	3700	1050(0 42500 0 48800	198 122	58 40	23 19	4	pu	0.3	5 \$	53	3	22 17	27 25	146 139	3400	77 84	25 27	311	132 160		7.84 2.55 (cont.	3200 1700	

par par (par) (pa	FP (PP) (P-1.5) and (PO) (PO) (PO) (PO) (PO) (PO) (PO) (PO)	Sediment Sample	Na	×	by,	Ca	AI Fe	튍	UZ U	5	Pb Pb	8	I Au	T NG	As	ង	No	ខ	M	Δ	I	17	2	Ba	Sr	Sc	U	co.
300 1300 500 3900 300 300 30 31 400 82 31 10 32 31 31 32 33	300 1300 600 89003560 13 5 1 7 1 <th1< th=""> <th1< th=""> 1</th1<></th1<>		틙										-	(qda													-	昰
e P 2.5 cm (50)	e P 2.5 m (50) (30)	4.V L. Pangua NW 32-34 cm	3900	15100	6900	0059		500 20															23	HIE	108	19	2.21	200
1(300 500 9(100(1100 15 17 60 18 6.4 6.3 6.3 6 13 6 13 130 131 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14	1000 5000 5100 110 210 110 210 110 210 110 210 110 210 110 210 110 210 110 210 110 210 110 210<	.10.F Swiss Lake 0-2.5 cm .10.II 2.5-5 cm	4500 5200			6500 6700		500 15 500 14																379	165	15 12	Pu	a a
300 1300 7200 7200 7300 7300 130 13 14 0.1 24 14 23 44 60 25 13 150 157	900 1100 700 9300 9300 110 7 14 0.4 nd <1	8.10.11 Sviss Lake 16-18.5 cm	1 5400	14300	6900	9500		100 2.																350			pu	ра
500 1300 1360 2770015500 15 7 4 7 7 4 7 7 4 7 7 6 10 17 10 11 7 8 124 7 10 11 7 5 14 15 16 7 17 11 8 112 8 23.4 3 34.4 3 34.4 3 34.4 3 34.4 3 34.4 3 34.4 3 34.4 3 34.4	500 1800 1500 1500 2700 1500 25 15 7 5 15 7 700 17 11 80 112 8 100 10 17 14 9 14 17 7 14 16 70 17 16 70 17 11 80 112 8 10 12 8 10 17 16 11 8 112 8 10 11 8 112 8 12 8 10 11 16 12 16 13 16 13 16 16 12 16 13 16 <td< td=""><td>.2.11 Tamu Cr./Ply jct.3-5 cr .2.111 13-15 cm</td><td>5400</td><td></td><td></td><td>77.00</td><td></td><td>300 2</td><td>and the second second</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>351</td><td>171</td><td>20</td><td>22</td><td>면면</td></td<>	.2.11 Tamu Cr./Ply jct.3-5 cr .2.111 13-15 cm	5400			77.00		300 2	and the second second															351	171	20	22	면면
Z200 T100 K800 S9700 L100 L40 L50 L100 L50 L100 L50 L100 L50 L50 L100 L50 <	Z00 T00 F00 F00 <thf00< th=""> F00 <thf00< th=""></thf00<></thf00<>	1.10.1 Tamu Cr.0-2.5cm < 200µ 1.10 II 2.5-5 cm < 200 µm		1800	1200 900			500 3	55															100 88			24.7	3300
1300 1400 2500 52100 136 15 16 7 1 15 52 175 4400 58 55 12 13 14 10 14(m 5400 5500 5400 712 117 60 21 <4 7 3 14 20 3 17 20 13 14 14 14 14 14 20 17 20 11 20 11 20 11 20 21 <td>130 410 200 350 5210 210 17 0 1 1 1 1 5 1 1 5 5 15 410 58 57 12 1 1(cm 5(0 1500 700 5600 5600 5600 712 117 60 21 <4 60 2 15 15 151 4400 79 27 380 174 20 12m 1400 600 2500 6000 1500 170 99 56 9 0.2 nd 0.2 4 2 2 1 16 30 174 20 21 27 20 21 21 21 20 21 21 20 21 <t< td=""><td>0.10.1 Lake Tamu II 0-4 cm 100-200 µm</td><td>2200</td><td>9100</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2 1</td><td></td><td></td><td></td><td></td><td></td><td>253</td><td></td><td></td><td>pg pg</td><td>pu</td></t<></td>	130 410 200 350 5210 210 17 0 1 1 1 1 5 1 1 5 5 15 410 58 57 12 1 1(cm 5(0 1500 700 5600 5600 5600 712 117 60 21 <4 60 2 15 15 151 4400 79 27 380 174 20 12m 1400 600 2500 6000 1500 170 99 56 9 0.2 nd 0.2 4 2 2 1 16 30 174 20 21 27 20 21 21 21 20 21 21 20 21 <t< td=""><td>0.10.1 Lake Tamu II 0-4 cm 100-200 µm</td><td>2200</td><td>9100</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2 1</td><td></td><td></td><td></td><td></td><td></td><td>253</td><td></td><td></td><td>pg pg</td><td>pu</td></t<>	0.10.1 Lake Tamu II 0-4 cm 100-200 µm	2200	9100														2 1						253			pg pg	pu
7800 95600 54600 112 117 60 21 <14 106 73 151 4400 73 27 380 174 20 1.1. 9000 41500 17300 146 14 84 23 0.2 nd 0.2 4 22 5 7 16 93 130 21 14 14 14 14 14 12 13 13.5 9200 4620017300 146 94 5 14 25 15 16 93 130 21 20 13.5 14 12 14 14 148 148 14 20 13.5 13.5 9200 4520017300 140 95 5 14 15 16 9 14 14 148 108 10 35.4 10900 61300 25700 181 65 9 15 14 15 16 13 14 14 14	7800 96600 54600 112 117 60 21 <14 nd <13 <1 60 21 380 174 20 9000 4160017300 146 114 84 13 0.2 nd 0.2 4 22 5 7 16 93 1300 27 36 174 20 9 9200 4620017300 146 19 5 16 93 1300 27 16 93 160 11 148 108 9 9200 61300 25700 181 65 9 0.2 nd 0.2 4 29 3 5 16 93 190 14 148 108 9 13 10900 61300 25700 181 65 20 nd 0.2 nd 0.2 nd 0.2 14 15 13 14 14 148 108 10 13 14 12	0.10.1 Lake Tamu I 0-3 cm	1300		2000						6)						~	1									р	ри
14.00 46.00 29.00 41500 11.4 84 21 0.2 4 22 5 7 16 93 1300 23 16 142 120 9 13.5 11 100 2900 16000 9200 4620017100 140 99 56 9 0.2 nd 0.2 4 29 3 5 16 91 14 148 108 9 nd 1100 2900 10900 61300 25700 181 95 16 91 45 4 45 4 45 2 5 20 108 240 49 19 10 13 25.4 13 35.4 2100 9100 15600 1700 9100 106 10	14.00 46.00 29.00 11.00 14.00 15.00 <th< td=""><td>3.10.11 floodpl./Kibuz 12-14c</td><td>m 5400</td><td>15000</td><td>7200</td><td></td><td></td><td>1 008</td><td></td><td>117</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.1</td><td>1000</td></th<>	3.10.11 floodpl./Kibuz 12-14c	m 5400	15000	7200			1 008		117																	1.1	1000
1100 2900 1600 9200 4620017100 140 99 56 9 0.2 nd 0.2 4 29 3 5 16 80 1600 31 14 148 108 9 nd 1100 6000 2900 61300 25700 181 170 9.5 nd <.3	1100 2900 1600 9200 4620017100 140 99 56 9 0.2 nd 0.2 4 29 3 5 16 80 1600 31 14 148 108 9 10 1100 6000 2900 19100 51300 25700 181 170 54 45 4 5 20 108 2400 49 19 110 13 110 13 10	0.2.I Bai Lagoon NW 0-2.5 cm						1 0002		114																	13.5	
1100 6000 2900 10900 61300 25700 181 110 13 25.4 2100 8400 4500 7300 9100 28400 281 170 19 16 13 25.4 2100 8400 4500 7300 9100 28400 281 170 54 18 0.2 nd 0.2 7 49 2 14 32 169 3000 52 23 261 139 16 nd 700 3900 1900 12500 17 0.2 nd 0.2 1 49 2 14 32 169 300 52 23 261 16 nd 16 nd 16 10 16 10 16 nd 17 16 16 nd 16 16 16 10 16 10 16 10 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 1	1100 6000 2900 1900 61300 25700 181 170 50 5 20 108 2400 49 19 181 110 13 16 <	0.2.II Bai Lagoon SW 1-5.5 cm			1600			001/	140	66	56																P	PL
IN C 3-5 cm 2100 8400 4600 7100 91300 28400 224 170 54 18 0.2 nd 0.2 7 49 2 14 32 169 3000 52 23 261 139 1.16 nd 700 3900 12600 47500 28500 243 61 30 7 0.2 nd 0.2 4 32 1 7 20 105 1700 39 20 185 148 10 nd 1800 9100 4400 6300 100600 25300 195 126 28 15 0.2 nd 0.2 4 59 1 10 29 171 3600 73 28 280 134 19 nd 130 1300 6600 2900 12800 31300 307 191 47 11 0.2 nd 0.6 4 37 2 7 21 136 2000 46 23 188 154 12 nd	IN C 3-5 Cm 2100 8400 4600 7300 91300 28400 224 170 54 18 0.2 nd 0.2 7 49 2 14 32 169 3000 52 23 261 139 1 16 700 3900 1900 12600 47500 28500 243 61 30 7 0.2 nd 0.2 4 32 1 7 20 105 1700 39 20 185 148 10 1800 9100 4400 6300 100600 25300 195 126 28 15 0.2 nd 0.2 4 59 1 10 29 171 3600 73 28 280 134 19 1300 6600 2900 12800 5100031300 307 191 47 11 0.2 nd 0.6 4 37 2 7 21 136 2000 46 23 188 154 12	.4.V Bai Lag. C 23.5-27 cm	1100					2700	181	85							÷.										25.4	
	(cont	0.2.II Bai Lagoon C 3-5 cm 0.2.III 5-7 cm 0.2.IV 11-14 cm 0.2.V 14-16 cm	2100 700 1800 1300				-		224 243 307	170 61 126 191					0.2	****						1.18-14-14-14-14-14-14-14-14-14-14-14-14-14-				-		29 29 29 29

Sediment Sample	Na	X	by	Ca	VI	7e	ų,	UZ	đ	ሌ	B	Au	Ŋ	As As	ង	No	8	NI	A	2 14	2r L	La	Ba	Sr Se	Sc	8	
	릺											(qdd)															B
2/5.4.1 Bai Lag. E 0-2 cm 2/5.4.11 Bai Lag. E 2-4 cm 2/5.4.111 Bai Lag. E 23-25 cm	3800 3100 2700	15000 13400 13000	6200 6900 5200	0069 0069		95500 37500 108200 33300 111900 23300	212 175 124	159 154 192	75 32 25	28 27 18	222	nd nd	333	13 <4 0.4*	54 65 64	4 6 6	11 6	25 27 25	148] 161 4 148 4	000000000000000000000000000000000000000	65 2 80 2 85 2	23 3 26 3 27 4	1 726 1 716 1 1	132 18 131 21 131 21		2	2
5/20.2. Bai Lag. chan. 43-45.5 cm 4900 14100 7000	49.00	14100	7000	12300		95200 41700 257	257	124	6	11	0.4	pu	0.3	4	21	1	12									2	008
6/20.2.II Kenea Lagoon C 2-4 cm	2600	11300	2600 11300 4400	7100		92300 34500 243	243	144	63	11	0.2	рq	0.2	-	52	-	11		ies.		100					C	
3/5.4.X Kemea channel J6-41 cm t.																										5	0
4/5.4.V Kemea Lag. W 14.5-17 cm	1200	8200	8200 4000	3700	11650	3700 116500 41500 193	191	128	09	23	4.5	pu	0.3	\$	55	<2	12	24 1	175 4	4800	85 41	(5 29	162	78 22			0
5/5.4.IV Remea L. E 17.5-21 cm t.																											9
1/7.4.V Fly R. bank 33-35 cm 1/7.4.V < 2 µm	7000	18500 7400 16700 8200	7400 8200	7500 9100	10210	102100 35700 116300 39400	212 218	122 134	69 54	29 38	33	e e	00	2 Z	74	3	5 5	24 1	151 4 171 4	4100	78 26 90 27		415 174 365 152	4 19 22 26			2 2
2/7.4.111 L. Rongun N 8.5-11 cm	4000	4000 15300 6600	6600	5700	11120	111200 33300 163	163	188	54	53	Υ.>	ри	¢.,	4		3	10	30	177 3.	3900							
3/7.4.V Kongun Cr. N 30-32 cm	4800 14300 7300	14300	1300	6500	11040	110400 38200 182	182	130	11	24	0.5		ŋ	<4 6	99	2	я	27 1	168 41	800 5							
4/7.4.111 Kongun Cr. S 19-21.5 cm 4800 14500 6600	4800	14500	6600	6400	10320	6400 103200 33900 155	155	112	37	16	4.5	423	\$3	2 5	58	42		23 1	143 45	1200 8							0
1/23.2.1 L. Boss.5W creek 0-2.5cm 1900		5200 1800	1800	2400		95200 21200	16	EEI	44	80	0.2	pg	0.2	4 8	80	1	6	46 2	239 40	1000 5	58 18	3 215	14				
2/23.2.1 L. Boss, SW creek 0-7 cm 2200		00/9	2000	3700		94000 27200 128	128	167	50	21	0.2	pu	1.4	*	82	2 1	12 4	46 2	207 45	4500 5	59 23	221				P	
4/23.2. L. Bosset island 20-60 µm 60-100 µm	1600 200 200	6100 500 800	1900 200 200	1500 400 400	107200 2 7000 9000	107200 21400 7000 2100 9000 2900	46 22 17	62 8 14	2 20	21	0.2 0.2 0.2	n n n	0.2 0.2 0.2	4 4 4	120 28 34		1 12	41 2 3	294 68 26 24 39 10	6800 102 2400 53 1000 16	2 24 5 6	215 40 32	5 80 0 15 2 12	0 15 2 5 3	5800 Get 1874	2 2 2	
5/23.2.III L. Bosset SW 5-7.5 cm 5/23.2.IV 7.5-10 cm	2200 1 2600 1	00001	4200	4400 5600		114800 27600 147 130500 29300 176	147 176	181 180	4	14 22	0.2	E E	0.2	5 2 2	23		14 4	43 2 48 2	242 36 274 40	1600 59 4000 67	9 35 7 29	249 294	9 116 4 137	5 22 7 25		pu pu	
																									0	nt.)	

Sediment Sample	Ra	I	by	Ga	AI Fe		W	Zn C	Cu	Pb	Cd A	Au Ac	Ag As	As Cr	Ko Ko	8	o Ni	Ι	11	17		La Ba	a st	R	*	0	
	H.										-	(qdd)														H	B
1/24.2.11 L. Bosset NW 5-7.5 Cm 1/24.2.111 7.5-10 cm	1700	6000 4700	2200 2800	3500	103700 28600 102000 27000		92 131	156 224	22	32 0	0.5 n 0.8 n	0 ye	0.2	4 69 <4 61		5 1	14 J	36 19	255 31 195 31	3200 4	47 2	25 I 24 2	191 (87 1) 85 1)	16 nu 19 4	nd nd 4.7 10	1000
3/11.4.11 L. Bosset NW 2-4 Cm 3/11.4.111 L. Bosset NM 4-6 Cm 3/11.4.X L. Bosset NM 6-8 Cm 3/11.4.Y L. Bosset NM 18-20 Cm 3/11.4.X L. Bosset NM 10-42 Cm	2000 1700 3900 2300	7100 5700 7200 7300	3400 2600 3900 2800	4700 3900 4000 2700	92600 31700 85600 25100 109900 27600 61000 20100		1140 91 101	216 255 227 254	53 59	22 23 23 23 23 23 23 23 23 23 23 23 23 2	17 17 17 17 17 17 17 17 17 17 17 17 17 1	v v pu pu 0 v2v	2223 - ~	111 5 4 5 4+ 5	58 59 58 4	3 1 2 1 2 1 2 1 2 1	112 3 110 6 111 3 10 3	33 I(35 I) 39 I	165 26 168 28 176 1 176 1 198 1	2600 4 2800 4 3200 5 3400 6	48 1 48 1 58 2 67 1	18 2 18 2 25 22 13 2 13 2	244 255 291 247	85 1 75 1 82 1 82 1 59 1	16 n 17 n 19 n 12 n 12 n 4	nd nd nd nd nd n nd n td n td 2 41.5 2	nd nd nd 2400
2/24.2.11 L.Bosset N 2.5-5 cm	.1200		3000 2000	4500	66100 18600		Ξ	159	45	=	0.4 1	v pu	ç	<4 4	42 <	3	9 3	32 1	134 2	2300	40 2	20 1	174	70 1	15 6	6.1 1	1300
3/24.2.111 L. Bosset N 9-11 cm 3/24.2.10.5-12.5 cm 3/24.2.1V 24.5-26.5 cm	2000 1500 1500	6900 5900 6100) 4000 3500 3200	4800 4800 5300	92000 36500 82700 27100 85900 25000		161 131 150	269 171 156	70 44	11 10	0.2 1 0.4 1 0.2 1	말말말	0.2 0.3 0.2	644	55 ~	1 1 2	27 4 14 2 14 2	42 2 29 1 35 2	245 3 171 2 221 2	3200 2800 2900	2 2 2	26 2 21 2 30 2	264 1 240 251 1	110 1 85 1 101 1	18 5 18 5 17 1	nd n 5.4 1 10.3 2	nd 1200 2300
4/24.2.IV L. Bosset C 13-16 cm	2100		10000 4600	4800	96400 30000		156	167	25	18	0.2	pu	0.2	*	62	1	15 3	36 2	227 3	3100	19	If	257 1	119 2	20 1	u pu	1g
2/11.4.I L. Bosset C D-4.5 cm 2/11.4.I < 2 µm 2/11.4.II L. Bosset C 4.5-6.5 cm 2/11.4.Y L. Bosset C 4.5-6.5 cm	2600 2100 2100 2100 2100	0 10500 0 9800 0 8800 0 10900	0 4700 0 4700 0 4400 0 4400	1 4600 5500 5300 1 4400	97900 32200 103800 32600 92800 25900 108400 23600		146 169 124 106	154 168 185 144	68 64 31	26 35 23 23	3333	면면면	0200	2.4* 5	59 56 62	- 599	1000	1 72 1 82 1 10 1 10 1 10	178 3 171 3 181 2 181 3 181 3	3100 3300 2900 3800	55 59 78	22 23	285 1 268 1 268 1 290 1 313	101 102 94 97	20 19 19 22	5.76 nd n nd 1 3.61	800 nd 400
4/11.4.IV L. Boss.E 23-25 cm <2µm 3900 12900	2 10 390(0 1290	0 6700	8000	00857 001511 0	73800	163	124	48	21	4.4	pq	0.3	44	11	2	10	12	201	4100	88	27	322	117	25	i P	12
1/25.2.VI Boss.chan/Fly 28-30 cm 1300	CE 130	0 5700	0 2300	0 3500	0 83500 15900	15900	16	128	11	15	0.2	pu	0.3	4	60	1	10	54	183	3100	19	40	275	78	19	E PI	P
1/9.4.111 Kai Lag. SW 15.5-18 cm 1/9.4.V Kai Lagoon SW 33-35.5 cm	cm 1700 cm 2100	0 8100 0 7200	00 3800 00 3300	0 3900		02000 22600 80500 32600	94	344	52	28	4.4	PP PP	0.8 <.3	1.	73	3	8 25	35	214 174	3200	59	26 23	263	82	22	명명	Pg Pg
2/9.4.IV Kai River S 18-20.5 Cm		0 147(4300 14700 6200		6100 110200 30200	30200	109	123	44	19	٢.>	#8	Ċ,	54	62	2>	2	25	165	4200	68	28	387	138	23	1.44	300
																										cont.	_

Table A1 continued

Sediment Sampis	B	4	b.	3	AL IS		U7 1	B	2	3	Au	δę.	AS	5	Wo.	8	IN	Δ	ದ	12	La	Ba	Sr	Sc	0	\$
	틾										(P	(qdd								1						昆
3/9.4.II Rai Lagoon N 5-7 cm	DOLL	13300		5800	112800 35900 134	EI 0061									<2×	80	26	204	5		50	105	611	24	Pd	Pu
3/9.4.111 Kai Lagoon N 15-17 cm		13300	5000	4900	110700 3.	1 0090	24 125		37 20	×.×	Per M	0.3	3 4		<2	-	22	197			52	306	12	. 22	1.44	1001
3/9.4.111 < 2 µm	2300	14800	6000	5600	125300 39300	101 0000								52	42	00	12	234	4300	32	29	308	8	26	E	P
1/8.4.111 Agu L. bank N 7.5-10 cm 4100 12200	001) E	12200	5400	5000	5000 112400 13400 176	1 00%	5 246		50 27	Y*>	pu y	0	3 ×4	64	<2	10	32	159	4300	83	28	330	121	12	pq	ри
2/8.4.111 Agu Lake N 5-7.5 cm		10000	5100											68		5	34	181	4500		30	295	116	23	P	2
2/8.4.1V Agu Lake N 7.5-10 Cm	36.00	11000	4900	2300	105300 31600		8 164		98 26	5.4	R R	5	3 <4	63	2	10	32	160	4000	92	28	299	115	20	P	P
E 7 5 AT' 5 0/7	3400	3800	0019	5800	135400 31000	000 102								75		10		161	4700		24	268	105	26	P	pu
4/8.4.Il Agu Lake E 5.5-8 cm	00,85	13000	6000	5100	115700 26900	721 0069								64	2	- 00	EE	171			50	412	36.1	10	1 23	UCL.
4/8.4.III Agu Lake E 15-16.5 cm	4400	14000	6500	6900	117600 33900	900 125	5 146	6 49	9 24	¢.4	pu y	0	1 <4	65	<2	6	29	176	4300	58	30	389	148	22	P	P
5/8.4.1V Agu River S 22.5-25 cm	4300	11900	5300	00.09	109300 64000	000 149								54	2	90	16	168	4400		36	325	101	16	12	7
5/8.4.1V < 2 µm	2100	11000	5600	0065	126000 83000	000 79	9 I40	0 42	2 22	5	pu	0	00	11	<2	00	32	196	4400	120	26	280	107	26	2	E 12
Kean				8787	85538 37302	302 289	1.000			0.2					1.		E	165	3765	69	24	505	117	11	1.3	1107
	3146	4448	2320	2493	25348 15185	185 225				0.1							11	67	1 769	35	-	110	1			1115
Median	3700	12050	5900	6100	91100 33700	700 197	7 130	99	1 18	0.20		3.0 0.20		(.0 61	1.0	0 12	52	EI	100	16	25	105	127	1 8	2.6	009

+ INAA analysis * hydride ICP analysis

pp pp (pp) (pp		34	×	by	Ca Al	E B	ş	uz	g	Pb	B	Au A	Ag As	5	OH I	8	N1		r I	12	F	55	10	2		~
60 200 200 500 500 500 500 500 100		edd										(qdd)													~	멾.
Same Same <th< td=""><td>copper flotation concentrate</td><td>600</td><td>2900</td><td>2800</td><td>600</td><td>5500 181 200</td><td>132</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>11/113</td><td></td><td></td><td>101</td><td></td><td>10</td><td>60</td><td>23</td><td>¢</td><td>0.04</td><td>00601</td></th<>	copper flotation concentrate	600	2900	2800	600	5500 181 200	132									11/113			101		10	60	23	¢	0.04	00601
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	and the second second second			0000			1048	780					7	51				151			12	363	535	12	pu	.pu
Zame Constraint Sind	8.10. UK TEQ1, TEGAMOLE DT.			2010			1087	1510					-	5 31				121			55	69	480	5	2.1	58203
22100 1100 1100 110 11 110 12 110 12 11 110 11 110 11 110 11 110 11 110 11 110 11 110 11 110 11 110 11 110 11 110 11	20-P0 PE			4500			857	NCT NEE					5	5 28				82			81	120	623	9	6.1	20103
27:00 7:0 7:0	ad Didnates that form its and			0100	115000	59100 54700	1160	657		1000											28	273	715	đ	Fu	P
Im Tool 1360 Tool 1360 <thtool 1360<="" th=""> <thtool 13<="" td=""><td>The required the representation of the repre</td><td></td><td></td><td>AULT</td><td>NO2CUL</td><td>00161 00020</td><td>1111</td><td>1204</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>32</td><td>41</td><td>6/15</td><td>~</td><td>旧</td><td>P</td></thtool></thtool>	The required the representation of the repre			AULT	NO2CUL	00161 00020	1111	1204													32	41	6/15	~	旧	P
Im COMP From From From From From From From From	und 0.9-07			000.0	00000	TECHN 112560	1165	6191													24	01	555	*	PE	'nd
District	100-100			00/6	00006	NUTEL UNDER	1101	87K				1									74	69	650	-t	1.4	38700
TBOD 27100 7800 27100 7800 27100 7800 27100 7800 2700 7800 2700 1700 25 17 100 11 937 55 10 10 100 11 937 55 10 10 100 11 100 11 100 11 100 11 100 11 100 11 100 11 100 11 1	100-200 Jun			5400	79600	59100 41000	298	161													17	195	683	S.	Į.	P
Image: 12500 27400 6400 1110 251 101 17 5 1 71 101 1700 5 19 55 5 104 101 1700 5 19 55 71 101 1700 5 19 155 11 11 21 0.1 11 4 12 11 10 170 5 101 170 5 11 10 21 11 11 21 11 11 21 11 11 21 11 11 21 11 11 21 11 11 21 21 11 11 21 21 11 21 <t< td=""><td></td><td>0005</td><td></td><td></td><td></td><td></td><td>VC0</td><td>113</td><td>1181</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>24</td><td>318</td><td>672</td><td>80</td><td>ри</td><td>P</td></t<>		0005					VC0	113	1181												24	318	672	80	ри	P
Income 11200 2770 270 270 27 11 10 21 20 21 21 16 25 10 17 20 21 16 23 16 21 <t< td=""><td>8.10. dto.</td><td>008/</td><td></td><td></td><td></td><td></td><td>370</td><td>BLL</td><td>1406</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>19</td><td>305</td><td>655</td><td>5</td><td>旧</td><td>旧</td></t<>	8.10. dto.	008/					370	BLL	1406												19	305	655	5	旧	旧
0 µm 112900 24700 490 91400 5100 4500 918 591 1441 389 2.1 nd 1.4 12 11 10 21 80 1400 21 16 459 673 5 nd n 1 1 4 12 11 20 12 12 12 12 12 12 12 12 12 12 12 12 12	四7 09-07		101017	0000	ANCICI.	1000	DUL	00.7	EG1												14	387	889	5	1.9	6000
T400 24400 7800 124100 61100 6590 1741 139 2.1 nd 1.9 1.6 2.3 124 100 33 2.2 2.81 618 9 nd n 10 10500 23300 4800 118500 5590 1791 530 1.7 1 20 97 1700 27 21 241 613 5 nd n nd nd <t< td=""><td>100-150 µm</td><td></td><td>24700</td><td>4900</td><td>80300</td><td></td><td>898</td><td>322</td><td>100</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>16</td><td>459</td><td>673</td><td>5</td><td>F</td><td>P</td></t<>	100-150 µm		24700	4900	80300		898	322	100												16	459	673	5	F	P
T400 T400 T410 T410 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>005</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>11</td><td>281</td><td>618</td><td>9</td><td>pġ</td><td>pq</td></th<>										005											11	281	618	9	pġ	pq
Im 8600 22700 5900 112600 4800 4100 55 54 171 1380 217 2.7 nd 1.7 1.0 2.6 2.4 1.7 1.6 2.4 1.7 1.6 2.4 1.4 1.1 1.6 2.4 1.7 1.6 2.4 1.7 1	8.10. dto.	7400	24400		124100			FAC	C 881	202	117										11	170	613	ur	Pu	pu
Imm 10500 23300 4600 11800 5370 450 1380 217 2.7 nd 1.2 130 14 14 14 14 14 14 14 14 14 14 17 1200 17 120 17 1200 17 1200 17 1200 17 120 17 130 17 1 17 1 17 1 17 1 17 180 17 11 17 12 12 12 <td>20-60 HB</td> <td>8600</td> <td>22700</td> <td></td> <td>127600</td> <td></td> <td></td> <td>954</td> <td>16/1</td> <td>630</td> <td>C.2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>11</td> <td>100</td> <td>213</td> <td></td> <td>17</td> <td>17</td>	20-60 HB	8600	22700		127600			954	16/1	630	C.2										11	100	213		17	17
Distribution 12300 25400 4300 550 146 699 70 1.5 81 + 1.4 277 25 27 9 20 77 1200 17 12 17 12 17 12 17 15 17 17 15 17 17 15 17 17 15 17 17 15 17 17 15 17 17 15 17 17 17 13 17 17 15 17 17 13 16 17 17 12 13 17 12 13 16 17 13 13 13 13 13 13 13 13 13 13 <td>60-100 gm</td> <td>10500</td> <td>23300</td> <td></td> <td>118500</td> <td></td> <td></td> <td>811</td> <td>1380</td> <td>217</td> <td>1.1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>07</td> <td>567</td> <td>110</td> <td>r 1</td> <td>nir</td> <td>NI</td>	60-100 gm	10500	23300		118500			811	1380	217	1.1										07	567	110	r 1	nir	NI
Dot into 11200 2700 2700 77000 7700 7700		00001	DEADD		101400			446	669	20	1.5										61	420	143	4	1./	1130
LII LIII LII LII <thl< td=""><td>100-001 mi</td><td>15500</td><td>32000</td><td></td><td>114600</td><td></td><td></td><td>155</td><td>408</td><td>60</td><td>9.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>11</td><td>129</td><td>108</td><td>5</td><td>Ы</td><td>pu</td></thl<>	100-001 mi	15500	32000		114600			155	408	60	9.0										11	129	108	5	Ы	pu
LI Litto 2000 File 2000 File 2100 File 22 File 25 File 25 File 21 File 21 <td></td> <td>VUTLE</td> <td></td> <td></td> <td>67900</td> <td></td> <td></td> <td>215</td> <td>908</td> <td>10</td> <td>9.0</td> <td>+EVE</td> <td></td> <td></td> <td></td> <td>98</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>195</td> <td>517</td> <td>5</td> <td>2.17</td> <td>800</td>		VUTLE			67900			215	908	10	9.0	+EVE				98						195	517	5	2.17	800
1 16200 34600 5700 41800 62700 1820 338 163 542 25 0.6 94+ c.3 12+ 18 25 3 7 81 1300 9 13 558 510 6 1.15 18100 38400 5500 35900 67700 14400 298 78 469 21 0.6 77+ c.3 9+ 18 20 3 6 80 1200 8 11 619 521 6 0.34	14.4. dto.	notTT			ELEDO.			756	805	: 22	17	120+				32						605	521	5	1.50	190
a 16100 36400 5500 35900 57703 14400 298 78 469 21 0.6 774 <.3 94 18 20 3 6 80 1200 8 11 619 521 6 0.94	50-P0	10221			DUCEC			161	542	36	9 0	176				25						558	510	9	1.15	320
	60-I00 http	10100			15900			18	469	3 12	9.0	14				20						619	521	9	0.94	130(
	100-100T	INTOT			****																					

Table A2:Analytical results for river bank sediments and suspended solids from the
Upper Ok Tedi River. Sediments with no grain size are <20 m. Statistics were calculated
for the fraction <100 m.</th>

Sediment Sample		Ma	4	5¥	Ca	A1	2	2	117	3	2	3	μų	şđ	AS	ម	20	3	NI	٨		72	La	Ba	ST	Sc	C	20
		틙											(qdd)															멾
4/14.4. dto.		12000	37200	2700	74600		65800 29700	470	182	568	84	1.0	874+	0.9	18+	33	30	5	14	112	1900	11	24	516	540	0	2.64	7100
20-60 μв		15000	36800	6600	54800		62800 34500	436	266	643	16	0.7	9354	1.3	27+	21	35	5	10	103	1700	1	5	259	507	-	1.57	115M
60-100 ha		15900	34000		47000		61300 51700	483	357	1268	11	1.0	pu	1.4	284	21	36	m	12	107	1700	П	21	669	515	-0	1.19	20616
100-200 µm		16300	34700	5400	41300		62400 43400	420	247	1112	36	6.0	140+	0.6	33+	19	If	80	6	96	1500	11	11	625	525	ø	1.03	19400
1/14.4. SS OK Tedi, Tabubil br.	Tabubil br.	15600			57900		72300 21500	324	124	889	48	9.0	рг	0.4	12	30	27	*	10	119	1700	12	28	573	513	-		4100
20-60 µm		19000			36600		72500 20100	236	140	633	44	0.6	p	0.7	46	19	21	-	00	66	1500	-	15	149	463	1		pq
回 001-09		19400	38100	4900	DOELE		70500 21100	225	176	629	37	0.6	'nd	0.7	ŧ11	17	18	+	60	85	1400	60	12	637	459	6	12	12
2/14.4. SS OK Tedi, Tab.br. <2 µm10300 `27900	Tab.br. <2 µm	10300	27900	10400	84700		87500 32100	520	223	2144	124	0.9	ри	1.4	16	29	29	9	23	167	2000	23	40	219	619	11	pe	50
20-60 µm		19100	41100	6300	36800		74600 18700	230	138	622	63	0.7	рц	0.8	8	19	20	-	80	66	1400	6	15	652	484	-	12	n in
SS3/29.2. susp.sol. 0k Tedi/Menga 9600	Ok Tedi/Menga				119700		64500 31800	812	221	728	119	0.4	pu	3.9	4	11	27	10	11	IM	2300	30	26	575	745	1		48.00
50-60 百		13000	28000		107100		63100 39800	211	398	615	206	0.7	pq	1.5	-	30	Ξ	12	12	III	2100	53	21	360	202	00		pu
€0-100 μ¤		13500	26300	5200	100100		60300 43200	LLL	497	1132	122	9.0	pq	0.8	.~	24	32	12	Ξ	104	1800	18	20	191	689	- 10		P
Ef 100-500		16400	00¥ZE	2100	105300		68500 46300	888	244	661	5	0.2	ри	0.2	*	39	27	5	24	66	1800	25	53	538	190	-	pq	P
Kean		11921	30350	6733	86117		47512	700	541	1523	463	1.6	426	2.4	14.9	30	38	13	17	H	1788	22	23	410	576	7,3	87	15211
		4159	7395	1463	33796		11766 29854	323	450	916	744	1.3	381	2.5	11.5	12	14	10	đ	21	305		9	202	38	2.4	5.0	LEAUC
Kedian		10950	27950	6350	98450		62750 40900	275	378	1158	123	0.95	268	1.4	11.0	26	36	н	14	105	1750	61	22	368	545	2	0	1900

+ INAA analysis • hydride ICP analysis

Table A3:	Analytical results for floodplain sites in the middle and Lower Fly River
Region	where deposition of mine material occured. Sediments with no grain size given
were <2	0 m. Statists were calculated for the fractions <100 m only.

l

aufinet Samla	Na.		19X	5	IN	50	12	2n	B	92	3	Åu	Ŋ	As	5	Ŵ	3	M	Δ	H	12	La	Ba	Sr 3c	0	603	
BY AND TIBUTTOC	: E	1	5		E.							(qdd)				ŝ.									~	A	84
1/3.4.11 Lower Fly bank 11-13.5cm 9000 22800 9300	5cm 900	0 2281	00 930	00 35200	00 87200	00 49200	134	4 152	239	40	4.2	pu	0.8	164	58	ø	И	37	140	3600	11	52	(58 3	274 17	pu L	P	-
2/15.2.1 Lover Fly bank 0-3 cm 20-60 µm 60-100 µm 2/15.2.111 17-19 cm	1 8200 11900 10900 7900	8200 17100 1900 15000 0900 13500 7900 17900	00 6400 00 7600 00 7900 00 8500	00 32200 00 26900 00 24800 00 39100	10 10 IP IP			956 161 508 108 527 111 521 163	1 185 8 79 1 65 3 225	25 25 41	0.2 0.2 0.2 0.2	pg pg	0.8 0.2 0.6 0.2	12 4 10	55 55 70	8 2 8	20 15 16 22	52 42 51	171 113 125 181	3600 33600 2800 4000	11 11 11	21 22 19 28	324 2 324 2 3359 2 359 2	246 1 240 1 242 1 298 1	11 11 12 12 13 13	2222	סי סי סי סי
SSJ/15.2. susp. solids Lower Fly	1y 93	9300 267	26700 9900	00 27800	****	10100 497	177 00764	7 152	2 140	15	0.2	р	4.0	16	82	~	22	55	123	4400	60	35	146	2 162	24 D	e p	pu
4/15.2.1 Lower Ply bank 0-3 cm		7600 199				- 20.	24000 10	1029 170			6.0	P	6.0	12	69	19	21	30	111	3600	18	28	363	288 1 288 1	11 1	u u pu	말멸
20-60 pm					- r	2200 10							2.0		5 5	1 10	11	14	E	2900	H	19					12
60-100 µm 106-200 µm	56	9500 1128	11200 9000		25700 697			EII 6001	1 198	1 92			0.5	9	86	12	23	68	118	2800	52	20					12
							0000					1504		102	52	14	14	22	179	2600	37	HE	(23	19)	12 1	u pu	Pe
3/16.2.1 F1Y R. bed/0bo 0-4.5 Cm 10000 34400 3/16.2.111 25.5-27.5 Cm 7300 31700	100	TE 0052		119 0026	189 00019	8200 38		802 270	0 626	111 8	0.9		1.0	15*	11	28	9	15	MI	2000	30	21					1500
1/27.3.11 Fly bank Xs. 4-6 cm		8300 43	13 00/11	9 0019	16 0019	94700 21	21700 1	122 164	64 360	0 39	1.5	160+	t.> +	64	38	60	9	11	143	2200	37	23	531	278	п	'n	pq
2/27.3.11 Fly bank Xs. 3.5-5.5 cm 9800 2/27.3.111 Fly bank Xs. 5.5-8 cm 8200	55		52700 80 35800 62	8000 6 6200 6	16 0069	94200 23 93800 35	23400 1 35000 1	141 17 136 10	175 430 108 320	0 110 0 81	0.4	240+ 5 nd	0.7	\$ 5	69	11	- 5	15	126	2100	31 46	25	603 463	296	11	1.07	<100 100
3/27.3.1 Fly bank Xs. 0-2.5 cm		7500 JI	0067 0071E		23400 77	77500 45	15000 6	648 24	243 424	4 85	5 0.9	pu	0.8	7	99	27	10	17	142	2800	42	26	101	297	11	1.0	1000
4/27.3.11 Fly bank Xs. 19-21.5 Cm 5800	583				1000	100.0	(9500 5						0.6		09	22	13	20	168	3000	71 55	17 16	162 186	190	12 8	p p	믿믿
20-50 µm	11							588	11.	133	17 24	27	30	22	5	5 5	101	8 1	90	2400	36	H II	339	259			e e
100-200 µm 8900 4/27.3.111 Fly bank Xs. 22-24 cm 6400	C E		12800 5	7300 11	10100 54	92600 5	00125						0.4		20	21	12	25	160	3500	66	27	439	216			pu
•																										(cont.)	~

Sediment Sample	Na	M	Mg	g	VI	Fe	W	UZ	B	PP P	B	Ņ	ş	Åß	5	Ŵ	8	N	A	T	12	La	Ba	St	Sc		s
	EL.											(qdd)								1							B
5/27.3.III Fly bank Xs. 20-22 Cm	8400	31100			80900	45900	682	238	116	92	0.5	2054	0.9		43	30	10	19	130	2900	57	01	125	165			200
		40300			23100	24400		172	111	22	4.4	pu	0.4		20	20	9	11	86	1600	10	12	570				0000
5/2/.3.V FIY Dank XS. 30-32 Cm		35200			83300	42100	609	225	929	79	0.5	Pa	0.7		42	30		11	11	DADA		1 2	111	111			NMC
5/27.3.VI Fly bank Xs. 46-48 cm		36100			81100	41000	615	213	168	Ľ	5	р	0.7		42	31		91	1.76	2600		5 6	111	116			10
E1 2 > 1A.E./2/C	4000	20100	10600	38500	101000	27900	790	336	1710	142	1.2	pq	1.6	29	11	42	п	53	171	3300	11	32	416	320	16	nd	nd
1/29.10. Obo floodplain D-1 cm	1700	7600	NUNC	0000	DACCE	70000	f		2			100	3														
20-60 tim	1 95.00	0007	1000			00007	21	2	47 6	8		13+	0.1	14+	80	14	m	27	137	5600	68		159	19			p
	DALCT	NUNE	nnot		00107	00/10	11	8	997	14	0.1	nd	0.1	2	20	9	-	10	69	3200	69		117	89			.pc
	0060	01050	0067	2000	4.5200	00056	123	123	524	8		P	0.1	a	62	16	3	23	104	3800	61	53	188	84	0	12	P
4/16.2.1 L.Dav. chan./Fly 0-2 cm	9600	31000	0082	25300	83400	44100	742	144	383	35	0.3	pu	0.2				15		1.71		5						
50-e0 ha	12000 2	27800	6100	25400	73300	30600	520	130	252	26	0.5	P	0.2		E		2 2	15	111	0070	2 2	67	C14	101	10	C.1	2200
																	2	3	1		7						D
1/19.2.1 L.UBVIAMDU OST 0-2.5Cm			4700		87700	31000	433	127	161	24		124			63	9	12	27	198		1						20.0
20-50 μ	6800 1	12600	2700	7800	47800	16500	121	66	160	20	0.2	P	0.2	-	31	5	2	15	80	1900		22	256	691	10	pd P	nn/
1/30.3.11 L. Dav. chan. 2-4 cm	8300 3	37600	8700	7300	92200 26500		165	178	409	18	0.5	pu	6.0	1	99	51	5	5	1 20								
A PROPERTY OF A															2	2		3			5	0	000	200	21	17.1	100
2/30.3.1 L. Daviarbu chan. 0-2 cm10000		37100	2700	39500	76000	34100	462	203	679	19	6.0	B	11	. 3	45	21	~	15	13	2500	62	28	011	383	12	0.70 2	2500
4/30.3.1 L. Daviarbu # 0-5 cm	2700	9200	3300	9200 6	61600	37000	276	206	123	30	4.>	P	0.4	5	38	7	15	25	98	1900	45	18	235]	115	12	e P	ġ
4/1.4.11 L. Daviandu E 6-8 cm	9800 3	36500	7200	37800 8	80400	37600	526	211	748									16									4
4/1.4.III L. Daviambu E 12-14 cm						42500 (690	122	842	81	0.7							1 2									
20-60 µm				41000 7	75900	25900	565	223	522									2 2	- 112								100
4/1.4.V L. Daviambu E 20-22 cm	7700 3	32100	1900	48200 7	70400	35300	533	228	575			B	0.5		45	12	- 01	16	2 23	2100 2	60	12	5 NFC	124	۳ <u>-</u>	u pu	pupu
4/1.11.1 L.Davianbu/channel 0-6cm	8300	35300	10300	9 00111	95100	00017	180	157	613	201																	000
						-	100	103			3	1/01	1.0	ŧ	2	17	=	54	199	3200	41	36	534 3	362 1	=	u pu	pu
2/26.10.111 Fly bank 15-19 cm	7000 2	28900	7300	6200 71500		37800 212	212	111	237	67	0.8	Da la	0.1	2 6	99	6	00	15	I 89	5100	75 3	30 4	423 2	226 1	12 1	pu pu	70
																									-	(cont.)	

	-		~~ N~	e	1	04	W	HZ HZ	3	qd	3	Au	Aq	As C	5	0	CoN	V IN	I		Zr 1	La B	Ba	ST	Sc	S	
Sediment Sample	B I	4	£	5	5	2	1	1				Q															Edd
	民品																										70
5/31.10.1 L.Pangua SE 0-2.5 cm	3700	33900 15900	9000	14700 6800		92100 53100 95400 63100	456 308	245	842	131	0.2	명명	\$.0 0.3	7 *9	60 J	12		23 1	181 30	3600	3 53	82	328	168	18	P	pu
ma i c intitolo												8								002							p
6 /11 10 T I Danmia/channel 0-1 cm 7900	006L E	32400	9200	61600	73900	45000		321	863	117	6.0	B.	1	-						000		21040					P
20-60 100	12900		00EL (240	599	61	8.0	2	1.2	7						200		: =	121	623	12	pu	뒫
6/31.10.V 45-50 cm	8100	36800	0 10000	0 78800	00867 (1 42700	1 596	246	946	139	1.0	2 2	1.2	5 0		52		1	127 2	2500	ж						p
und 0.5-07											ļ					00					13		136	518	12	P	pu
7/31.10.1 Fly River bed 0-3 cm	8800							505.0	198	102	1.0	년 1	1.0	2 0		25	1		120	2500	15	18	456	482	6	pu	nd
20-60 μm	12000							1.1	ICC	10	0.0	2 7		44.6		20					11		352	466	1	0.7	5100
7/31.10.11 17.5-20 CB	6200								840	171	C 1 6	2 2	1.1	-27		22					53		426	638	12	12	P
7/31.10.111 32-34.5 CB	00/1					÷			100	101		2	3.0	, u		205					44		426	12	10	P	델
7/31.10.V 53.5-56 Cm 20-60 NM	8200	0 37000	0 9500	0 59200	0 74500	0 30800	0 1018	300	508	631	0.8	p p	0.1	2	8	29					12		213	574	80	pq	2
									CC1	78	8 0	pu	6.0	44	32	36	4	11		1700	25	23	151	453	00	0.3	2100
7/28.10.1 Komovai shortcut 7-9 cm 8700	870					NUCE2 0			111	AL .	0.7	12	0.7	4	25	24	6	п		1800	24	15	408	424	œ	g	bd
20-60 10	10600			-					ULL	-	47	12	0.3	111	67	61	11	20		3500	28	Ħ	{15	220	16	6.0	200
7/28.10.11 16.5-19 Cm	2300								110	2 1		12	1	14	E	- 00	6	15		3100	64	52	Ħ	258	=	B	g
20-60 国	9400						CC+ 01	8 1	110	2		1 2	0.3	12*	15	It	12	22	146	1900	69	20	£6¥	225	11	μġ	pq
7/28.10.III 19-24.5 cm	2900	0 22700	00 6800	0066 0/	00816 00	00.826 00			001	5		n H			1												
10/28.10.1 Sviss take 11-13 cm	0029 0	00 27900	0066 00		90000 70200	00 36400	00 613	243	705	66	0.8	pu	1.0	45	11	40	9	11	114	2200	3f	28	374	221	10	pu	P
1/19.2.1 Tamu creek/Fly jct.0-Jcm 7900 18400 8100	301 790	00 184	00 810		13400 93200 47200	00 472	00 423	119	161	24	0.4	pu	0.7	12	99	1	19	36	204	4700	16	30	386	244	18	1.9	1300
uld/backsinents reserve	6400	00 21100	00 6900		42100 65200	00 45000				16	9.0	pu	1.3	15	11	37	12	21	140	2400	37	90	308	363	10	2.5	9500
2/1/	13100				55600 69900	00 30000	00 620	0 199 FTC 0	484	88 55	0.5	얻 얻	0.4	4 6	23	32	8 DI	11	11 E	1600	25	12	999	559	- 80	Pa	'n
E0-100 Jun	16200	00 34/00	00 6400							3												ġ		5			- 71
5/26.10.1 Tamu Creek bank 8-10 cm 8300	0 00 83		39700 87	8700 587	58700 74900 15000 83300		32100 49	2000					0.9	10# <{	35	35	un 60	12 16	108	2600	38	24	76) 76)	354	51	2.6.5	nd bu
5/26.10.11 14-15 Cm 20-60 pm	211						27000 486 38100 417	6 128 7 188	914	40	0.4	pg pg	0.8	55	22	19	9 9	14	103	2200	29	30	515	354	10	nd nd	
5/26.10.111 20-22 CD	10																									Inni	7

Rate (Pa) (Pa) </th <th>Image: Mark 1-1 Image: Ma</th> <th>Sediment Sample</th> <th>Na</th> <th>я</th> <th>6W</th> <th>Ca</th> <th>Ŋ</th> <th>Fa</th> <th></th> <th>Zn</th> <th>8</th> <th>8</th> <th>8</th> <th>Åu</th> <th>Åg</th> <th>As</th> <th>ដ</th> <th>Ŵ</th> <th>ខ</th> <th>N</th> <th>Δ</th> <th>H</th> <th>Zr</th> <th>La</th> <th>Ba</th> <th>Sr</th> <th>Sc</th> <th>0</th> <th>5</th>	Image: Mark 1-1 Image: Ma	Sediment Sample	Na	я	6W	Ca	Ŋ	Fa		Zn	8	8	8	Åu	Å g	As	ដ	Ŵ	ខ	N	Δ	H	Zr	La	Ba	Sr	Sc	0	5
	and k-1 are 800 800 6100 700 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>(B.)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>E.</td></t<>													(B.)														-	E.
12.m 710 700 700 700 700 700 700 70 700 70 700 70 <td>11 <th< td=""><td>/28.10.1 Fly bank 4-7 cm /28.10.11 10.5-12.5 cm</td><td></td><td>26800</td><td></td><td></td><td></td><td></td><td></td><td></td><td>747 500</td><td>86</td><td>1.2</td><td>2 2</td><td>1.1</td><td>18*</td><td>11</td><td>34</td><td>11</td><td>19</td><td>133</td><td>2800</td><td>17</td><td>52</td><td>101</td><td>140</td><td>E</td><td>0.7</td><td>6500</td></th<></td>	11 11 <th< td=""><td>/28.10.1 Fly bank 4-7 cm /28.10.11 10.5-12.5 cm</td><td></td><td>26800</td><td></td><td></td><td></td><td></td><td></td><td></td><td>747 500</td><td>86</td><td>1.2</td><td>2 2</td><td>1.1</td><td>18*</td><td>11</td><td>34</td><td>11</td><td>19</td><td>133</td><td>2800</td><td>17</td><td>52</td><td>101</td><td>140</td><td>E</td><td>0.7</td><td>6500</td></th<>	/28.10.1 Fly bank 4-7 cm /28.10.11 10.5-12.5 cm		26800							747 500	86	1.2	2 2	1.1	18*	11	34	11	19	133	2800	17	52	101	140	E	0.7	6500
36 a 700 2360 610 190 190 190 190 190 190 190 190 190 1	3eta 700 2500 5100 5000	/28.10.III 19-21 Cm		32400							113	121		2 72		5.3	1	9 2	n .	3	901	2000	17	Ç 7	166	401	er.	E	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	/28.10.1V 36-38 Cm		29500							778	101	6.0	P	0.1	, A	98	82	• =	a #	151	0007	30	52	100	194	6	pu	pu
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Turn 600 2700 600 2700 670 730 10 11 10 11 10 11 100 11 200 12 12 100 11 200 12 12 100 11 100	/28.10.11 Flv bank 13.5-17.5 cm	6900	276.00	0000	KRONN				000	330	10.1	•					3	6					;	*	3	ç		0017
(1) (2) <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>/28.10.111 23-25 cm</td> <td>KUNN</td> <td>00222</td> <td></td> <td>000029</td> <td></td> <td></td> <td></td> <td>500</td> <td>000</td> <td>101</td> <td>· · ·</td> <td>1117</td> <td>1.0</td> <td>23+</td> <td>28</td> <td>88</td> <td>Π</td> <td>=</td> <td>167</td> <td>3800</td> <td>5</td> <td>20</td> <td>356</td> <td>458</td> <td>12</td> <td>멷</td> <td>P</td>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	/28.10.111 23-25 cm	KUNN	00222		000029				500	000	101	· · ·	1117	1.0	23+	28	88	Π	=	167	3800	5	20	356	458	12	멷	P
Circle Circle<	Condition Condition <t< td=""><td>28.10.1V 32-14 CM</td><td></td><td>00312</td><td></td><td>CEADO</td><td></td><td></td><td></td><td>2/2</td><td>57</td><td>101</td><td>1.0</td><td>27</td><td></td><td>181</td><td>9</td><td>=</td><td>10</td><td>19</td><td>IEI</td><td>2900</td><td>\$</td><td>26</td><td>369</td><td>604</td><td>13</td><td>0.8</td><td>4400</td></t<>	28.10.1V 32-14 CM		00312		CEADO				2/2	57	101	1.0	27		181	9	=	10	19	IEI	2900	\$	26	369	604	13	0.8	4400
us We -2.5 cm 1300 1700 500 9040 4200 120 131 131 131 131 136 136 136 136 136	Bit We-2.5.5 cm 410 1700 610 760 940 420 7	28.10.V 40-42 cm		30300		22500				167	394	86	0.5	pg pg	0.6	104	1	32	8	18	130	3100	42	25	363	122	11	pu 6.0	nd 1600
gal K12.5 cm tuo K700 tuo K700 tuo K200 k200 <t< td=""><td>gual lat. 0-2.5 or 410 IF10 710 E10 B310 1570 Table E10 F10 F10</td><td>19.2.1 L.Pangua SN 0-2.5 cm</td><td>4300</td><td>17700</td><td></td><td>7600</td><td></td><td></td><td>480</td><td>182</td><td>246</td><td>19</td><td>0.3</td><td>ра</td><td>1.0</td><td>10</td><td>65</td><td>16</td><td>18</td><td>31</td><td>221</td><td>3500</td><td>89</td><td>35</td><td>318</td><td>186</td><td>17</td><td>P</td><td>pg</td></t<>	gual lat. 0-2.5 or 410 IF10 710 E10 B310 1570 Table E10 F10	19.2.1 L.Pangua SN 0-2.5 cm	4300	17700		7600			480	182	246	19	0.3	ра	1.0	10	65	16	18	31	221	3500	89	35	318	186	17	P	pg
gua N P-5.5cm 280 1500 100 5700 500 530 540 131 28 0.5 14 1500 13 25 13 <th< td=""><td>gual N-5.5cm 280 1560 470 570 550 16 15 55 15 55 15 55 14 1500 47 52 91 15 25 14 1500 47 152 91 11 7.55m 1400 5700 5600 5600 5800 5100 520 610 13 21 13 21 13 21 13 21<td>31.10.I L.Pangua Isl. 0-2.5 cm</td><td></td><td>18700</td><td>7300</td><td>6100</td><td></td><td></td><td>165</td><td>170</td><td>622</td><td>124</td><td>0.5</td><td>pu</td><td>0.9</td><td>4</td><td>52</td><td>50</td><td>9</td><td>18</td><td>146</td><td>2500</td><td>11</td><td>31</td><td>382</td><td>225</td><td>15</td><td>5.6</td><td>1300</td></td></th<>	gual N-5.5cm 280 1560 470 570 550 16 15 55 15 55 15 55 14 1500 47 52 91 15 25 14 1500 47 152 91 11 7.55m 1400 5700 5600 5600 5800 5100 520 610 13 21 13 21 13 21 13 21 <td>31.10.I L.Pangua Isl. 0-2.5 cm</td> <td></td> <td>18700</td> <td>7300</td> <td>6100</td> <td></td> <td></td> <td>165</td> <td>170</td> <td>622</td> <td>124</td> <td>0.5</td> <td>pu</td> <td>0.9</td> <td>4</td> <td>52</td> <td>50</td> <td>9</td> <td>18</td> <td>146</td> <td>2500</td> <td>11</td> <td>31</td> <td>382</td> <td>225</td> <td>15</td> <td>5.6</td> <td>1300</td>	31.10.I L.Pangua Isl. 0-2.5 cm		18700	7300	6100			165	170	622	124	0.5	pu	0.9	4	52	50	9	18	146	2500	11	31	382	225	15	5.6	1300
		11.10.1 L.Pangua N 0-5.5cm 11.10 111 5 5-7 5cm	2800	12600		8700			328	189	353	99	1.0	B.	0.5	15	55	12	16	22	143	2700	21	25	253	145	10	pų	pe
ue NE 0-2 cm 4100 14500 6500 7500 95100 5100 185 183 218 48 <4 nd 0.7 11* 51 7 11 27 160 200 68 28 375 182 15 4.29 gua NE 7-4 cm 6500 17200 6400 1650 9600 7400 511 050 20 511 75 0.7 nd <3 7 55 12 11 34 151 200 65 28 375 182 15 4.29 agua NE 7-4 cm 700 1050 7400 1050 7400 5110 510 200 511 75 17 11 35 <4 94 7 <5 1 1 7 11 7 11 71 200 65 28 73 09 11 44 16 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ue NE 0-2 cm 4100 14500 6600 7500 5430 450 451 152 158 48 <4 nd 0.7 11* 51 7 11 27 160 1200 68 28 341 155 125 15 gua NE 7-9 cm 6600 1000 4700 1660 9660 7600 481 186 485 78 0.5 nd <1 4 45 6 19 24 114 200 65 28 73 09 149 14 main 27 15 15 12 11 14 15 900 10100 470 1560 9500 7600 480 580 780 51 23 15 0.7 nd <1 4 45 6 7 19 77 15 230 60 57 26 313 144 15 900 10100 470 1560 9500 870 890 580 780 51 23 15 0.7 nd <1 4 45 6 19 24 114 200 62 24 309 149 14 main 24 cm 410 1470 990 630 9700 840 580 212 51 157 111 35 <4 904 1.0 74 55 13 10 23 117 290 60 23 23 151 147 15 main 24 cm 410 1470 990 630 9960 3490 231 157 111 35 <4 904 1.0 74 55 13 12 12 17 290 60 23 23 14 155 main 24 cm 410 1470 990 190 1900 530 1990 231 157 111 35 <4 10 11 0 27 13 12 12 17 290 73 121 122 16 main 2-4 cm 410 1470 990 1900 1990 239 153 142 11 0.2 nd 0.3 19 80 27 12 17 290 91 20 28 14 155 15 main X-4 cm 410 1710 630 640 7500 1390 231 137 131 0.6 nd 0.3 19 80 27 12 17 239 480 78 (2 40 27 17 18 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18			Mir	0077	Men			707	19	113	87	0.2	B	9.0	2	32	6	15	25	134	1600	34	21	152	16	11	ġ	멑
guare c-r cm wow 1/200	gata mc - 7 vm bow 1/200 1000	.4.1 L. Pangua NE 0-2 cm		14500	6600	7500				183	218	80¥	4.2	P	0.7	11*	23	7	13	27	160	3200	89	28	343	155	17		400
Number 7-9 cm wore rate 7.00 read 910 510 510 51 7 19 47 56 7 19 47 56 7 19 47 56 7 19 47 56 7 19 47 56 7 19 47 56 71 19 47 156 290 57 25 313 144 16 nd wide No-2 cm 4900 1900 6500 9700 8400 231 157 113 35 <4 56 7 19 47 136 290 60 70 12 13 14 16 nd use MM 0-2 cm 4100 17700 5900 6500 370 321 137 113 35 <4 31 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21	Ngua NE 7-9 cm 400 13500 5900 8700 93200 8400 541 50 71 4 4 5 6 19 24 124 2400 56 113 144 16 ua NN 0-2 cm 4900 13500 5900 8700 8200 8400 540 54 163 24 50 17 15 230 147 15 13 144 16 ua NN 0-2 cm 4900 13500 5900 6600 91700 42600 230 231 15 14 5 1 3 10 21 14 26 24 90 1 7 3 10 21 14 16 113 14 15 15 14 15 15 14 15 14 15 14 15 15 14 15 15 14 14 15 14 15 15 15 14 15 15 15 16 17 16 17 16 17 16 17 16 17 <t< td=""><td></td><td></td><td>00101</td><td>0400</td><td>10000</td><td></td><td></td><td></td><td>186</td><td>485</td><td>82</td><td>0.5</td><td>2</td><td>ç</td><td>1</td><td>55</td><td>12</td><td>E</td><td>34</td><td>151</td><td>2800</td><td>65</td><td>28</td><td>375</td><td>182</td><td>15</td><td></td><td>700</td></t<>			00101	0400	10000				186	485	82	0.5	2	ç	1	55	12	E	34	151	2800	65	28	375	182	15		700
The first of	Will be 2 cm 4100 1700 5200 5300 5300 530 53 530 53 530 53 530 53 530 53 530 53 53 131 144 16 Wild -2 cm 4100 14700 5000 5000 5400 135 113 35 <4 314 <3 54 51 8 10 21 133 2300 500 500 510 132 142 16 134 <3 10 21 137 2300 50 50 23 313 142 16 14 <3 54 131 230 130	4 III I Pannua NF 7-0 cm		DOTAT	100	10000				007	105	16	1.0	2	3	-	42	÷	19	24	124	2400	62	24	309	149	14		pq
us NW 0-2 cm 4900 19300 6300 6600 91700 42600 230 222 351 62 <.4 904 1.0 74 51 8 10 21 143 2800 52 26 365 172 15 nd yua NW 2-4 cm 4100 14700 5900 6800 96600 34900 231 157 113 35 <.4 314 <.3 54 51 3 10 23 137 290 60 23 321 142 16 nd mgu M 0-2.5 cm 4700 17100 6300 6400 76900 40300 295 153 142 41 0.2 nd 0.5 2 73 5 10 28 191 5700 93 28 344 155 15 nd yua Nitte 0-5 cm 6100 27300 9300 1290 92400 6390 622 254 751 132 0.6 nd 0.3 19 80 27 12 17 219 480 78 42 440 275 17 nd 5500 2400 8400 8900 94400 51900 1198 158 550 62 0.4 nd 0.1 10 60 7 20 25 141 4300 91 26 360 204 12 nd 5500 2400 8400 92400 51900 387 228 656 119 0.8 nd 0.9 114 59 32 8 22 170 300 50 34 461 274 16 nd 4800 20400 7400 8200 94400 5400 317 162 371 80 0.5 nd 0.3 8* 59 23 10 22 168 3100 50 34 461 274 15 nd 4800 20400 7400 8200 94400 5460 317 162 371 80 0.5 nd 0.3 8* 59 23 10 22 168 3100 59 30 420 227 17 nd 4800 20400 7400 8200 94400 5460 317 162 371 80 0.5 nd 0.3 8* 59 23 10 22 168 3100 59 30 420 227 17 nd 4800 20400 7400 8200 94400 5460 317 162 371 80 0.5 nd 0.3 8* 59 23 10 22 168 3100 59 30 420 227 17 nd 4800 20400 7400 8200 94400 5460 317 162 371 80 0.5 nd 0.3 8* 59 23 10 22 168 3100 59 30 420 227 17 nd 4800 20400 7400 8200 94400 5460 317 162 371 80 0.5 nd 0.3 8* 59 23 10 22 168 3100 59 30 420 227 17 nd 4800 20400 7400 8200 94400 5460 317 162 371 80 0.5 nd 0.3 8* 59 23 10 22 168 3100 59 30 420 227 17 nd 4800 20400 7400 8200 94400 5460 317 162 371 80 0.5 nd 0.3 8* 59 23 10 22 168 3100 59 30 420 227 17 nd 4800 20400 7400 8200 94400 5460 317 162 371 80 0.5 nd 0.3 8* 59 23 10 22 168 3100 59 30 420 227 17 nd 4800 20400 7400 8200 94400 5460 317 162 371 80 0.5 nd 0.3 8* 59 23 10 22 168 3100 59 30 420 227 17 nd 4800 20400 7400 8200 94400 5460 317 162 371 80 0.5 nd 0.3 8* 59 23 10 22 168 3100 59 30 420 227 17 nd 4800 2040 2040 2040 2040 2040 2040 205 162 100 205 160 205 160 200 20 20 20 20 20 20 20 20 20 20 20 2	Lux NN 0-2 cm 400 19300 6300 660 91700 42600 230 223 351 62 <4 90+ 1.0 7+ 51 8 10 21 143 2800 52 25 315 112 16 qua NN 2-4 cm 4100 14700 590 680 90600 34900 211 35 <4 31+ <13 55 51 3 10 21 2300 50 22 34 152 15 16 qua N 2-4 cm 4100 14700 590 6400 7300 6400 130 231 132 0.6 nd 0.5 2 73 3 10 23 132 14 53 54 132 0.6 nd 0.3 13 60 23 13 142 15 15 16 17 130 230 230 230 23 34 155 15 15 15 15 15 16 23 13 16 23 13 16 23 13 13 16 13 16	mn a l mi mafains in status		MOCT	ANGE	00/0	00760			107	167	15	5	Da	Ç	4	56	1	19	47	156	2900	67	26	313	144	16		pq
The first of	The first f	.4.I L. Pangua NN 0-2 cm .4.II L. Panona NM 2-4 rm		19300		6600				222	351	52	3	+06	1.0	ŧ,	15	80	10	21	EM	2800	52	26	365	172	15		멷
Injulk U-2.5 cm 4700 17100 6300 6400 76900 40300 293 142 41 0.2 nd 0.5 2 73 5 10 2700 93 28 344 155 15 nd gual Mittle 0-5 cm 6100 27300 9300 12900 6100 61900 6120 254 751 132 0.6 nd 0.3 19 80 27 12 17 219 480 78 42 440 275 17 nd 7 100 1200 12900 12900 128 550 62 0.4 nd 0.1 10 60 7 20 25 141 4300 71 71 nd nd 1 7300 1260 5100 119 13 0.6 0.1 10 60 7 20 25 141 450 26 74 15 nd 1 5500 2400 5400 139 156 0.4 0.1 10 60 7 20 25 141 450 27 16 nd	Induk W 0-2.5 cm 4700 17100 6300 6400 7690 4000 153 142 41 0.2 nd 0.5 2 73 5 10 23 34 155 15 15 16 28 34 155 17 15 17 15 16 20 21 15 17 16 17 16 17 17 17 17 17 17 17 17 17 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 </td <td></td> <td></td> <td>00.111</td> <td></td> <td>0000</td> <td>nnone</td> <td></td> <td></td> <td>/ct</td> <td>111</td> <td>S</td> <td>•••</td> <td>+15</td> <td>3</td> <td>ħ</td> <td>51</td> <td>~</td> <td>10</td> <td>53</td> <td>137</td> <td>2900</td> <td>60</td> <td>23</td> <td>121</td> <td>142</td> <td>16</td> <td></td> <td>pq</td>			00.111		0000	nnone			/ct	111	S	•••	+15	3	ħ	51	~	10	53	137	2900	60	23	121	142	16		pq
Jua Witte 0-5 cm 6100 27300 92400 6100 52400 61200 525 751 132 0.6 nd 0.3 19 80 27 12 17 219 4800 78 42 440 275 17 nd 1 7300 12500 5200 10100 61900 51300 158 550 62 0.4 nd 0.1 10 60 7 20 25 14 4300 91 26 360 204 12 nd 5500 24000 8900 96400 51900 317 228 656 119 0.8 nd 0.9 11* 59 32 8 22 170 300 50 34 461 274 16 nd 4800 20400 7400 8200 94400 5400 337 162 371 80 23 10 22 16 3300 59 30 420 227 17 nd 4800 20400 7400 820	Jua Witte 0-5 cm 6100 7300 92400 6300 622 254 751 132 0.6 nd 0.3 19 80 27 12 17 219 4800 78 42 440 275 17 1 7300 12500 5200 10100 61900 5190 158 550 62 0.4 nd 0.1 10 60 7 20 25 14 4300 91 26 50 12 14 50 204 12 5500 10100 61900 51900 387 528 550 62 10.4 nd 0.1 10 60 7 20 25 14 4500 91 26 204 12 5500 24000 51900 387 228 656 119 0.8 0.9 11 450 91 26 20 12 16 274 16 5500 24000 7400 870 9400 56 16 10.9 11 57 16	1.10.I L. Pangua W 0-2.5 cm			6300			40300		153	142	Ił	0.2	pu	0.5	2	73	5	10	28	161	5700	66	28	ME	155	15		p
5500 24300 8400 8900 9640051900 387 228 656 119 0.8 nd 0.9 11* 59 32 8 22 170 3000 50 34 461 274 16 nd 4800 20400 7400 8200 9440054600 337 162 371 80 0.5 nd 0.3 8* 59 23 10 22 168 3300 59 30 420 227 17 nd	5500 24300 8400 8200 94400 54600 337 228 656 119 0.8 nd 0.9 114 59 32 8 22 170 3000 50 34 461 274 16 4800 20400 7400 8200 94400 54600 337 162 371 80 0.5 nd 0.3 84 59 23 10 22 168 3300 59 30 420 227 17	1.10.1 L.Pangua Mitte 0-5 cm 20-60 µm		2500	9300	12900	92401	0 63900		254	751	132	0.6	pu	0.3	19	80	12	12	17	219	4800	78	45	440		11		P2
4800 20400 7400 8200 94400 54600 337 162 371 80 0.5 nd 0.3 8* 59 23 10 22 168 3300 59 30 420 227 17 nd	4800 20400 7400 8200 94400 54600 337 162 371 80 0.5 nd 0.3 8* 59 23 10 22 168 3300 59 30 420 227 17	1.10. 5-7 🖽		14300	8400	8900	96400	00615 0		228	656	119	0.8	1 2	6.0		3 2	2	2 8	3 6	191	0001	5 5	9 7	161		12		2
		11.10. 7-9 cm		20400	7400	8200	94401	0 54600		162	371	08	0.5	P	0.3	*	26	2	10	22	168	3300	26	5 00	420		11		말멸

Sediment Sample	Na	N	Mg	g	M	Fe	ų,	u2	S	Bb	B	Au	Ag	Åß	ដ	Ŵ	ខ	Mİ	٨	E	12	La	Ba	Sr	Sc	0	8
	븶											(qdd)															툂
6/26.10.1 Tamu creek 0-3 cm 20-60 µm 6/26.10.12-13.5 cm 6/26.10.24-26 cm	9900 12200 8000 9100	52700 41400 40500 48400	8100 6100 6600 5800	12700 12800 26100 8400	80100 60000 86400 89700	47000 28200 38300 36100	690 638 448 388	210 191 165 170	999 538 875 803	111 65 94	0.2 0.5 0.5 0.5	90g pu pu	1.5 0.1 1.2 1.3	14 2 8#	33 33	42 20 36 40	9 7 6	11 20 E1 E1	081 721 921	3600 2400 2200	37 34 25	42 19 28	509 497 467 527	330 · 343 ·	1 ^ II 6	nd a	nd nd 2400 nd
7/30.10.1 Lake Tamu III 0-5 cm 20-60 µm	1200 2800	3600 7100	2300	9500	43300	25700	814 900	185	100 217	39	0.2 0.2	pu pu	0.1	2	45	6 11	11	26 12	112	1600	11	14	195 245	108	11	p p	말멸
5/30.10.1 Lake Tamu II 0-4 cm 100-200 µm	2200 2600	0012	3400 2400	6800	79700	42100	398 618	194	157 266	46 42	0.5	pu pu	0.8	2 12	77	кл + ғ	21 19	44	101	4600	72	28 24	253	118	16	P P	je je
4/26.10.1 Lake Kibuz 0-6 cm 20-60 µm 4/26.10.V 45-50.5 cm 5/28.10.1 F19 bank 0-3.5 cm 4/28.10.1 F19 bank 0-3.5 cm	9500 12500 9100 5700	41700 40000 46400 41900 22100	8500 6200 9500 8700 7600	49500 40100 61600 8600 6600	67200 60200 74800 95800 92700	36700 26000 32600 32600 57400 57400	679 460 756 217 582	241 177 246 200 158	653 389 635 611 173	95 49 129 129 43	0.7 0.8 0.9 0.7 0.7 0.7 0.7 0.7	r r r r r r	0.8 2.5 0.9 0.1	8 6 5 7 8	49 44 47 69	20 20 10 10 10 10 10 10 10 10 10 10 10 10 10	8 9 5 5 5 5]] 5 5 5 5	18 4 21 14 22	146 110 126 141 187	3400 2700 2300 2300 5100	83 75 80 10 10 10 10 10 10 10 10 10 10 10 10 10	42 23 29 29	5) 15 (1) 15 (1)	4.27 513 332 204	10 8 8 11 13 13 13	nd brd 0.6	nd nd 400
60-100 µm 60-100 µm 100-200 µm 4/28.10.11 3.5-7 cm	9800 5300							89 88 133	81 102 118	28 23	0.2 6.4	2 2 2 2	1.0 1.0	5 ~ 5	39 39			14 11 22	101 66 147	3900 3900	46 48 70	119 117 21			6 6 8		pu 900
4/19.2.1 Oriv bed N ⁴ L.Kibuz 0-3cm 8800 20-60 µm 8900 4/19.2.11 3-6 cm 8900 4/19.2.17 22-24 cm 8900 4/19.2. 33-36 cm 11900 4/19.2. 33-40 cm 6800 4/19.2. 38-40 cm 6800 4/19.2. 43-45 cm 8800	122100 122100 8900 8900 8800 11900 6800 6400 6400 8800 8800	36500 37300 42200 44600 44600 40500 40500 25600 25600 25500	8800 6300 9000	2 53600 3 46500 5 61700 1 9400 1 12500 0 14700 0 14700 0 14700 0 11300 0 10900 0 10900 0 10000 0 20000	78300 65300 79200 86900 79400 79400 79400 79400 79400 79400 79400 79500 79500	<pre>45200 24900 24900 44500 351000 351000 354200 354200 357500 338500 338500</pre>	1 990 1 <t< td=""><td>294 247 247 243 199 149 243 243 243 243 149 243 243 243 243 243 243 243 243 243 243</td><td>895 470 823 1092 958 631 432 432 432 432 433</td><td>126 34 97 97 112 112 94 26 105</td><td>1.1 0.5 0.7 0.5 0.5 0.6 0.6 0.6</td><td>190+ Ind Du Du Du Du Du Du Du Du Du Du Du Du Du</td><td>1.1 0.5 1.7 1.1 1.1 0.6 0.5 0.5 0.5</td><td>18+ 4 15 15 12 15 4 4 15 10</td><td>45 45 45 45 45 45 45 45 45 50 51 51 51</td><td>41 24 45 34 38 38 38 38</td><td>12 8 8 12 12 12 12 12 12 13</td><td>21 11 14 14 10 10 20 20 20 26</td><td>157 111 151 151 181 181 181 181 181 181 1130 2311 2311</td><td>2400 1600 2700 2700 3500 3500 3100 3100</td><td>39 21 34 47 58 49 49</td><td>32 17 33 33 33 28 28 29 29 32 32 32</td><td>396 425 414 414 414 414 538 433 433 433 434 481</td><td>477 466 3517 356 356 350 350 276 276 326</td><td>11 7 111 111 111 111 114 114 114</td><td>nd bud bud bud bud bud bud bud bud bud bu</td><td>nd 3300 nd 2900 2900 nd 2900 nd</td></t<>	294 247 247 243 199 149 243 243 243 243 149 243 243 243 243 243 243 243 243 243 243	895 470 823 1092 958 631 432 432 432 432 433	126 34 97 97 112 112 94 26 105	1.1 0.5 0.7 0.5 0.5 0.6 0.6 0.6	190+ Ind Du Du Du Du Du Du Du Du Du Du Du Du Du	1.1 0.5 1.7 1.1 1.1 0.6 0.5 0.5 0.5	18+ 4 15 15 12 15 4 4 15 10	45 45 45 45 45 45 45 45 45 50 51 51 51	41 24 45 34 38 38 38 38	12 8 8 12 12 12 12 12 12 13	21 11 14 14 10 10 20 20 20 26	157 111 151 151 181 181 181 181 181 181 1130 2311 2311	2400 1600 2700 2700 3500 3500 3100 3100	39 21 34 47 58 49 49	32 17 33 33 33 28 28 29 29 32 32 32	396 425 414 414 414 414 538 433 433 433 434 481	477 466 3517 356 356 350 350 276 276 326	11 7 111 111 111 111 114 114 114	nd bud bud bud bud bud bud bud bud bud bu	nd 3300 nd 2900 2900 nd 2900 nd
4/20.2.1 Bai Lagoon Mitte 0-3 cm		3500 16000	0 6300		7400 86400	0 40700	0 297	273	390	82	0.2	ри	0.2	-	53	18	14	25	175	2500	**	29	296	207	н	nd (cont.	g _

1.6 4 T Rai farron M G.7 m		-	5W	B	Al F	Fe	E.	12	2	2	E B	Au h	Ag As	5	SK L	8	IN NI	Δ	T	17	La	Ba	IS	Sc	ڊ	2
m [-] w ladoon M [-] m	edd											(qdd)													-	R
me a to invited the tree	1100	22800	7200	84.00	8400 89000 48900	8900	314	205 6	612	96 0	0.4 n	0 pu	0.3	5 53	14	4 10	22	IH	4 2400	00 50	29	415	207	14	ри	pu
5/20.2.1 Bai Lagoon chan. 0-5 cm 5/20.2.1V 22-25 cm 20-60 µm	9100 8700 12400	39400 34400 27500	8400 7800 6200	30100 39700 54600	91100 3 82500 4 68100 2	39500 6 45900 8 28300 5	806 560	2228 7 2271 7 2269 4 2269 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	52 0	0.6	2221	0.5 9 0.9 12 0.7 11	9 45 1 23	32 32	2 11 8 12 8 8	18 18 11	161 161 107	1 2300 1 2300 1 1800	00 35 00 31	36 37 19	404	418 468 543	12 12 7	nd 1.8	nd nđ 4800
5/20.2. 32-34 cm 5/50.2. 41-43 cm		29800 34000					621 621	0.0													31 26	542 385 420		12 9	nd 0.5	
3/5.4.1V Kemea channel 18-20 cm 3/5.4.V Kemea channel 25-27 cm	9600	52300 31600	7400	41300	79400 2	25700 4	404	165 5	524 1	72 < 108 0	<.4 D 0.7 D	nd 1 0	1.3 <4 0.7 <4	4 49	1 33	2 7	10	96 7E1	6 1500 7 2500	00 26 39 39	22 28	526	401	8 []	0.51 nd	1 1900 nd
4/5.4.11 Kennea Lagoon W 0-3.5 cm 4/5.4.11 Kennea Lag. W 3.5-7.5 cm 4/5.4.111 Kennea Lag. W 7.5-11 cm	7500 3600	33800 38300 14600	7200 5700 5100	9100 9600 7300	88900 37600 65900 33500 89800 40500		297 325 240	189 4 152 3 212 1	475 378 111	28 28	222	nd 1 255+ 0 nd <	1.0 6 0.5 10 <.3 <4	6# 44 10+ 45 <4 46	1 16 27 5 10	6 10 7 8 0 15	18 15 25	137 163 124	7 2400 3 2800 4 2800	00 43 00 44 00 57	26 16 22	458 420 393	236 224 140	13 9 16	3.72 1.44 6.81	2 700 4 700
5/5.4.1 Kemea Lagoon E 0-2 cm	2700 12100	12100	5400	4900	82200 37300	1 0017	Ш	231 2	255	> 65	4.4 D	0 pu	0.7	5* 47	10	0 14	26	135	5 2200	0 45	24	322	137	H	2	Pl
6/20.2.1 Kemea Lagoon C 0-2cm	0009	26200	6600	8200	116100 39600	6000	162	197 2	214	61 0	0.2 n	0 pu	0.5	8 64		8 21	30	204	4 3500	59 00	32	374	226	21	pu	p
7/20.2.1 Remea Lagoon/Chan. 0-4cm 6800 20-60 µm 11500 60-100 µm 12300 7/20.2.111 25-27 cm 7600 7/20.2.1V 27-29 cm 7800 7/20.2.V1 41.5-43.5 cm 8100		24600 31900 31400 31400 32500 30000 26300	8900 7200 8500 8400 8100 8700 9900	67100 51400 31100 43500 56300 76400 97900	76700 51000 73200 32700 92400 34500 89400 47200 83800 47200 77200 39400 71200 43500		1129 764 878 859 929 940 757	376 9 384 6 289 6 264 9 264 9 264 9 279 1 279 1 279 1 279 8	993 1 657 651 964 1 1050 1 892 1 827 1	155 0 72 1 92 0 146 0 141 0 130 0 130 0	0.9 m 1.1 m 0.6 m 0.8 m 0.9 m 0.9 m 0.8 m 0.8 m	22222222	1.5 16 1.1 4 0.7 14 0.7 14 1.6 11 1.4 9 1.4 9 1.2 4 1.2 4 1.2 6	6 48 4 28 4 28 9 45 6 45 6 45	8 46 9 24 55 68 61 61 50 50 50		22 15 18 22 22 20 20 20 17 18	163 125 125 126 169 169 169 188 122	3 2700 5 2000 6 2100 9 2800 8 2100 8 2100 2 2500	00 46 00 28 00 28 00 48 00 48 00 34 00 34	37 20 18 40 40 40 34 34	324 403 557 382 382 381 381 381	540 531 550 549 549 597	13 9 14 12 10 11	2.5 2.5 2.5	nd 5300 7900 nd nd nd nd
8/20.2.1 Kenea chan. bank 0-2.5cm 9300 20-60 µm 12200 8/20.2.11 2.5-5 cm 9800 8/20.2.111 5-7.5 cm 9400 8/20.2.1V 7.5-10 cm 9000		33900 33800 39700 34000 38300	8500 7200 8200 7600 7600	80100 52500 67800 67200 63900	84000 40600 78700 26200 87000 38800 83600 38400 85400 32600		958 866 751 686 625	365 8 287 6 283 7 283 7 223 8 223 8 222 7	840 1 637 1 771 1 771 1 876 1 751 1	177 nu 90 1 150 0 129 0 126 0	nd 0 1.2 nd 0.5 nd 0.7 nd 0.9 nd	ad 0.8 bid 0 bid 0 1	1.4 6 0.4 4 0.8 4 0.9 4 1.1 4	5 47 4 45 4 45 4 45 4 45 4 45 4 45 4 45	350 350 350 350 350 350 350 350 350 350	9 12 12 12 12 12 12 12 12 12 12 12 12 12	20 13 19 17	172 127 167 159 159	2 2700 7 1700 7 2600 9 2300 1 2000	0 41 0 27 0 35 0 39 0 34	32 33 34 34 30	391 846 388 388 19	574 552 513 513	13 10 12 12 12	2.8 2.1 nd nd font.	7300 3000 nd nd nd nt.)

Pla Table	Sediment Sample Na	10	Бų	Ca	A Al	Fe	ų	UZ	3	62	cd A	Au A	Ag As	S CI	Ko	8	N	٨	2	71	Fa	Ba	Sr	2		0
3100 5100 5200 510 11 210 5 11 210 5 16 11 210 5 11 210 5 11 210 5 11 210 5 11 210 5 11 210 5 11 210 5 11 210 5 11 210 5 11 210 5 11 210 5 11 210 5 11 210 5 11 210 5 11 210 5 11 210 5 11 210 5 11 210 5 11 21 21 21 11 210 21		8										(qdd														B
000 000 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>CEO.</td> <td>261</td> <td></td> <td>26</td> <td>486</td> <td>242</td> <td>15</td> <td>1.18</td> <td>200</td>							CEO.	261													26	486	242	15	1.18	200
No. No. <td>.II Fly River bank 7.5-10 cm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>020</td> <td>107</td> <td>25.</td> <td></td> <td>16</td> <td>483</td> <td>275</td> <td>5</td> <td>멷</td> <td>P</td>	.II Fly River bank 7.5-10 cm						020	107	25.												16	483	275	5	멷	P
B B B I		1000 5					402	134													19	528	CLE	đh	0.64	200
900 1110 (500 1100 (500 1100 (500 1100 (500 1100 (500 1100 (500 1100 (500 1100 (500 1100 (500 1100 (500 1100 (500 1100 (500 1100 (500 1100 (500 1100 (500 1200 1100 (500 1200 120 110 (500 1200 1200 120							200														12	532	312	11	0.41	200
800 2110 500 290 210 500 210 <td>.I Lake Kongun N 0-2.5 cm</td> <td></td> <td></td> <td>1 0016</td> <td></td> <td></td> <td></td> <td>777</td> <td>710</td> <td></td> <td>33</td> <td>421</td> <td>280</td> <td>17</td> <td>pq</td> <td>p</td>	.I Lake Kongun N 0-2.5 cm			1 0016				777	710												33	421	280	17	pq	p
m m	2/7.4.1 < 2 µm 2/7.4.11 L. Kongun N 2.5-5 cm			8900 3				971 172	1062 113												28	470	397	12	0.62	900
4,000 500 7100 7000 7100 7000 7100 700 7100 700 7100 700 7100 7100 710						01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		101	767	8												511	350	[]	0.53	1700
4.100 500 5100 1100 500 510 13 51 15 <th15< th=""> 15 15</th15<>	.I Kongun Creek M 0-2.5 cm					00315 00962		100	121	8 5												173	513	6	0.38	3000
	.111 Kongun Cr. N 19.5-22 cm .111 < 2 µm					10000 12900		174	374	02												335	231	22	2	р
1000 4800 9100 4700 50 7 52 7 5 15 14 200 29 517 12 0.73 12 0.73 12 0.73 12 0.73 13 12 0.73 13 13 12 0.73 13 13 13 13 15 13 13 13 15 13 13 13 15 13 14 13 </td <td></td> <td></td> <td></td> <td></td> <td>1000</td> <td>ARTER AND A</td> <td></td> <td>000</td> <td>601</td> <td>50</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>U.</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>547</td> <td>281</td> <td>12</td> <td>0.93</td> <td>600</td>					1000	ARTER AND A		000	601	50						U.	1					547	281	12	0.93	600
9900 43000 5000 63000 63000 63000 63000 63000 63000 63000 5300 5300 130 57 140 1.7 7 7 7 5 19 111 121 250 123 6 nd n 2900 13100 2800 6900 5300 5300 130 51 14 15 11 12 12 13 12 13 6 nd n 200 1300 6900 6900 5500 6900 100 13 14 10 11 14 10 14 13 11 12 13 14 13 11 12 13 14 13 11 13 14 13 13 14 13 13 14 13 14 13 11 12 13 14 11 11 14 13 13 14 14 14 14				86.00	/800	00/75 00716		602	203	722												517	325	12	0.79	300
9500 4700 500 400 5400 500 400 5400 700 70 7 7 15 61 90 17 7 15 15 123 153 123 6 nd	II Kongun Cr. S 2.5-5 cm			0000	0000	00515 006/8		202	200	140	3 0											(16)	197	9	Pu	믿
8700 3300 6300 6300 7310 7300 630 65 71 10 11 10 11 10 126 200 436 136 136 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 13 11 13 13 11 13 13 11 13 13 11 13 13 13 11 13 13 13 11 13 14 13 14 13 14 13 11 14 13 14 14 13 13 13 13 13 13 13 13 13 13 13 13 14 14 13 13 13 13 13 14 14 14 14 14 15 13 <td>.X Kongun Ct. S 7-9 cm > 200 µm</td> <td></td> <td></td> <td>2800</td> <td>6600</td> <td>00/11 0056Z</td> <td></td> <td>127</td> <td>1926</td> <td>145</td> <td>1.1</td> <td></td> <td>183</td> <td>123</td> <td>9</td> <td>P</td> <td>pu</td>	.X Kongun Ct. S 7-9 cm > 200 µm			2800	6600	00/11 0056Z		127	1926	145	1.1											183	123	9	P	pu
8700 3300 8000 4500 78104 970 53 53 13 0.1 13 1 15 126 240 40 26 417 454 12 0.70 5 8100 3500 5900 5500 5500 5500 5500 550 23 135 0.5 111 1.2 24 61 11 13 1 16 120 250 29 418 459 11 nd									200	5		P.M.											358	12	몓	P
83100 9300 64500 7500 9400 64500 7500 580 539 639 107 0.9 nd 1.0 13* 43 13 7 16 120 2200 29 418 459 11 nd nd nd nd nd 1.0 13* 43 13 7 16 120 23 24 418 459 11 nd nd<	(,III Rongun Cr./Fly 20-23 cm	8700	33800		45000	00151 00151		190	970	2 2	0.0	TILL											454	12	0.70	5900
2000 6800 7700 5600 8100 170 17 10 1 11 11 10.2 11 0.1 4 51 14 11 214 2800 52 20 196 102 11 nd 1 2200 8600 5500 9170042500 191 111 40 <.4	4.IV Kongun Cr./Fly 23-26 cm 4.VI Kongun Cr./Fly 38-40 cm	8300	32000		64900	76300 35500		258	629	107	0.9	pu											459	11	19g	2
2200 8600 5600 5500 9170042500 191 111 40 <.4	.2.1 L. Bosset MM 0-5 cm	2000	6800	2700	5600	83400 41500		240	185	11	2.0	pu	0.7											1	pu	pu
2800 10800 4100 3900 8390 38200 162 10 12 65 22 13 31 225 290 52 27 234 14 14 nd 1 3700 16200 5500 4600 94100 55100 231 200 51 25 308 193 15 6.9 1500 5500 4500 4600 94100 55100 231 200 65 13 70 27 22 34 256 300 15 23 15 6.9 15 6.9 15 6.9 15 6.9 15 6.9 15 6.9 15 6.9 15 6.9 15 6.9 15 6.9 15 6.9 15 6.9 15 6.9 16 16 0.2 13 70 27 27 27 27 27 27 27 27 20 16 16 nd 16 16 16 16 16 16 16 17 26	.4.1 L. Bosset NH 0-2 Cm	2200	8600	3600	5500	91700 42500	-		131	40	1.2	pu	9.0	5	56										pu	pq
2800 10800 4100 5000 510 21 21 22 34 256 3000 51 25 308 189 15 6.9 3700 16200 5500 4600 9100 511 20 406 547 547 56 0.6 nd 0.2 13 70 27 23 31 25 31 25 13 70 27 23 31 25 17 200 45 27 175 99 15 nd 1500 5300 5500 4500 580 151 148 44 0.2 13 66 15 27 17 253 3200 55 23 280 140 16 16 16 16 16 10 0.2 13 66 15 27 17 250 50 140 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16					1000	ANCOL ANALS			JUL	11	0.0	2	9.6	12	59										ри	pu
3700 15200 5500 4600 94100 510 231 200 27 22 34 256 300 51 25 39 15 64 1500 5300 5700 5800 6500 550 287 66 0.6 nd 0.2 12 52 15 28 32 172 2000 45 27 175 99 15 nd 2800 11300 4500 4400 9210041500 171 195 148 44 0.2 13 66 16 27 37 253 3200 55 23 280 140 16 nd 2800 11300 4500 410 9210041500 171 195 148 44 0.2 13 66 16 27 37 253 3200 55 23 280 140 16 nd 2600 130 8600 110700 35300 182 174 0.2 16 17 16 nd 2600 <td< td=""><td>1.2.I L. Bosset N 0-2.5cm</td><td>2800</td><td></td><td>4100</td><td>20065</td><td>0785 00658</td><td></td><td></td><td>onr</td><td>-</td><td>1.1</td><td>2</td><td></td><td>ŧ</td><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	1.2.I L. Bosset N 0-2.5cm	2800		4100	20065	0785 00658			onr	-	1.1	2		ŧ	2											
# 0-4 cm 2600 12000 4300 8600 110700 35300 182 176 166 40 0.2 nd 0.2 4 76 8 15 41 243 3500 50 33 267 161 19 nd (cont.)	3/24.2.1 L. Bosset N 0-6.5cm 20-60 µm 2124 211 6 5-8 5 cm	3700 1500 2800	-	5500 2700 4590	4600 3800 4400	94100 5510 69900 4550 92100 4150		0000000	406 547 148	86 66	0.2 0.6 0.2	ष प्र	0.2 0.2 0.2	1111	70 52 66	27 15 16									bu nd	Pad Pad
		0000	NANC F.			110700 3530			166	10	0.2	pu	0.2	-	76	8	15								pu	B
	3.6.1 L. BUSSEL ON U-4 CM	0007	AA 79 T																						8	t.)

Sedizent Sample	Na	¥	ЪЖ	Ca	N1	Fe	ş	2n	3	Pb	B	Åu	Ag	As	B	No	00	Rİ	٨	11	Zr	Fa	Ba	10	Sc	0	50
	昆											(qdd)									F					-	EG.
4/24.2.1 L. Bosset C 0-8 cm 20-60 cm	5800	28700	7800	6200	103800 51200	51200	334	224	628	125	0.2	12	0.2	14	65	29	12	27	237	3000	14	39	387	267	17	3	3600
4/24.2.11 8-10.5	EQUA	00102	0007			00108	640	607	PLIT	140	ç.0		0.2	5	22	19	21	58	178	2200	=	33	231	148	16	p	pq
4/24.2.111 10.5-13 cm	2000	UUble	TANG			NUCC -	202	202	200	3 8	1.0		1.0	1	2	26	=	28	237	2900	7	12	103	288	11	P	p
			201			00171	66.7	007	CT+	8	7*0		7*0	-	99	19	1	27	230	3100	20	28	893	236	18	P	P
	1 5200	21800	9800	33000			610		1730		0.5				99	5			187		50	27		306		-	
4/11.4.11 L. Bosset E 2.5-5 cm	11000	42900	8100	27500			414		698		15	1				61			122		12	20		000		DI CO	DU
4/11.4.111 L. Bosset E 5-7.5 cm	10100	36100	8700	50900			551		786		17				11	12			121		34	0 6		767		10.0	0017
4/11.4.111 L.Boss. E 5-7.5 cli<21	a 2500	14900	6800	14200			240		215		0.5				12	9			181		20	36		101		50.0	1400
4/11.4.XI L. Bosset E 15-17.5 cm	7300	32200	6500		85800 31800		288	162	388	80	9.0	170+ 1	1.2	ti.	=	22	. 00	100	132		17	26		101		n in	
4/11.4.7 L.BOSSET E 20-23 CB <2 m	2400	15000	7400	14100			221		215		4.4	1.127			75	15			208	4300	88	29	354	159	25	P	2 2
1/25.2.1 L. Boss. chan./Fly 0-5cm10000 35400	10000	35400	7600	7600 54200	74400 35100		111	220	\$16	85	F.0	nd 0	0.8	-	45	46	=	19	175	2500	40	37	385	443	12	2.1	4900
.chan.bank 0-4 cm			7500	60100	74600 42500		906	313	733															10		5 5	5700
			0009	53800			141	210	529															101		-	2010
回一日 100 加回	15300	32100	7000	35500	71500		1128	240	[99]	19	0.8	nd 0	0.5	4	24	30	a	16	131	1600	58	18	E Es	526	- 6	2 2	8 8
1/10.4.1 Rai River E 0-2 cm		36000	7500	35400	75600 3				563																		
1/10.4.II Kai River E 2-4 cm	11100	43800	7600	44300	80400 3				668							1 5				2.02							2300
1/10.4.IV Kai River E 18-20 cm	6700	25000	8900	50000	81200.4				295							3 1											1700
1/10.4.V Kai River E 28-30 cm		35000	2900	56800	2 00069				ar.							5											g
1/10.4.VI Kai River E 30-32.4 cm 12000		38800	8000	50200	54200 2				PLS PLS							1 6											2700
1/10.4.VII Kai River E 32.4-34.5 17500		50900	7500	35200	64900 19100		244	166	483	. 3		110+ 0	0.7		18	18		P •	1 8	1500 Z	67 8	20	174	344	00 1	pu	pu
																2											<100
2/9.4.1 Kai River S 0-2 cm		40200		27300	88500 35500		342	221 6	619				- 2/3			0										30 0	1400
		40200		53500	77700 3				226	87 0	0.4	0 pu	0.7	9	35	25	9	8	108 2	2000 2						p	pu
四 6-7 C JANN TRV IT-5-2/2	13/00	40200	0069	40/00	74700 2				121			1				5				-	24	E	536	414	80	P	l Pi
3/9.4.1 Kai Lagoon N 0-3 cm	7500	35800	8300	5800	95500 3																						
3/9.4.I < 2 µm	4400	21400	9700	6700	107400 54800		325	324	813	163 (1 1.0	nd D	0.7 1	12 7	13	22	12	32	189	3200 4	£ 65		191	228	1 22	in pi	nnc pu
																										(cont.)	

	Na Na	X	No C	Ca	Al Fe	ş	u2	3	8	B	M	PA by	Ys	y	0¥	8	N		11	17	Гg	23	10	20	,	
בז להדב אות דות											(qdd)															맖.
	8 8	35100	6900	5800	93700 44400 92600 40500	0 192	169	478	58	6.4 4.5	170+	0.4 0.9	12+ 9+	47	20	r≻ 80	16 20	142	3100	44	26 26	468	229	15	2.22 1.95	800
4/9.4.11 Adl Lagoon a 2.272 cm 2/8.4.1 Agu Lake N 0-2 cm > 200 µm 2/8.4.11 Agu Lake N 2-5 cm			5300 3400 5200	5800 4900 5600	95200 28200 58700 26100 107800 48800		241 138 152	297 275 111	57 40 38	5.4 5.5 5.3	pe pe	0.7 <.3 <.3	4 S 4	51 51	11 2	as as 11	24 22 17	144 91 160	2900 1800 3900	55 39 76	28 18 29	118 205 122	146 38 127	17 12 13	2 2 2	pu pu
4/8.4.1 Agu Lake E 0-2.5 cm 4/8.4.1 < 2 µm	7900 4200	18700	7300	4500	99700 28200 115600 39900	0 144	176 249	404	84 115	0.5	pi pi	0.6	41	49	11 21	r 0	20	153	2600	33 51	28	474	237 201	n s	1.34 nd	202 PH
5/8.4.11 Agu River S 4.5-7 cm	4300	4300 15400	2000	12400	12400 108100 35600	0 249	185	140	31	64	pu	Ç	9	61	er.	6	29	151	4200	82	12	191	164	21	E	
5/8.4.IV Agu R. S. oxbor 20-23cm 11200 51400 7600 20-50 µm	11200	11200 51400 14300 46700		58000	81900 35900 70300 21600	N 553	202	554 362	72	22	рц	1.1	$\overline{A} = \overline{A}$	31	34		15	105	1700	13	24	530	473	5.9	рц	nd na
Maan su	8010 3218	28807 11610	7242	30139	80994 40004 14915 11012	04 528 12 254	1 211 68	530	36	0.52	2 166 0 81	0.69	- 6.0	3 48 8 14	24	10.3	21 9 16	35 35 100	2753 801 2600	16	26 7 27	415 100 420	861 661	12.6 3.7 12.0	1.5	2464 2150 2150
Wedian	8200	30300	7400	24800	81100 39500										3	101				1						L

+ INAA analysis • hydride ICP analysis

sample	temp.	Hd	cond.	• Ххо	SS	Na	Х	Ca	Mg	Sr	Fe	Mn	Zn	cd	ca	Pb	Mo	HCO ₃	SO4
	°.		µs/cm	æ	mg/1	1/64												mg/1	
W1/22.10. F1y R,/0bo	26.2	2.5	148	65	400	1570	pu	41200	1450	231	130	42	Π	٢.)	18	<.5	<10	pu	pu
W11/22.10. F1Y K./UDO	20.1	8.0	C11	64	159	2270	pu	34300	1520	243	<10	8	1	0.1	14	<.5	15	pu	pu
W1/24.10. F1Y R./Obo	26.4	1.1	137	60	155	1420	pu	26000	1190	161	11	6	13	<.1	10	pu	13	pu	pu
W2/28.10. Fly R./Kibuz	27.3	7.3	172	66	520	1750	pu	39900	1400	200	<10	14	<5	<.1	10	pu	14	put	8.1
W2/16.2. Fly R./Obo	29.3	5.1	121	73	501	1380	pu	22700	1070	146	25	11	6	<.1	20	<.5	S 5	72	3.5
W1/21.2. Fly R./Kemea L.	28.9	7.8	119	85	52	1320	pu	24400	1140	154	339	20	24	0.1	53	<.5	<5	pu	6.0
W2/27.3. Fly R./Obo	29.6	7.8	130	64	133	1300	667	25100	1040	136	65	11	<5	1. ^	24	<.5	<5	76	2.5
W5/1.4. Fly R./Obo	30.0	7.7	136	54	35	1430	536	26000	1080	141	34	30	7	0.06	17	<.5	<5	78	pu
W4/3.4. Fly R./Obo	30.2	1.7	151	63	174	1780	563	28300	1290	161	85	36	10	<.1	19	<.5	11	84	nd
W11/10.4. Fly R./Kai L.	26.7	8.1	132	72	305	1420	722	25900	1190	152	Ц	5	5	1.>	15	<.5	6	76	nd
Fly R./Obo 28.3.	29.2	1.7	132	60	150	pu	pu	pu	ри	pu	pu	pu	pu	κ.1	16	<.5	pu	pu	pu
Mean	28.2	7.7	138	99	199	1564	622	29380	1237	172	72	18	5	1.2	20	<.5	80	11	5.0
SD	1.6	0.2	15	80	149	299	87	6654	170	36	102	13	9		12		5	4	2.5
Medlan	28.9	1.7	136	64	155	1425	615	26000	1190	158	30	13	80		11		٢	76	3.5
sample	temp.	Hd	cond.	oxy.	SS	Na	К	Ca	Mg	Sr	Fe	W	Zn	cd	Cn	Pb	Mo	HCO ₃	504
	ັບ		µS/cm	æ	mg/1	hq/1												mg/1	
W2/18.10. Ok Tedi,	18.8	8.1	150	102	2079	2020	pu	30700	1710	233	53	40	<5	0.5	Π	2	<10	pu	pu
Tedawoim Bridge	20 13	10																	
W1/18.10. OK Tedi, Tabubil Bridge	21.4	1.8	245	96	3537	2700	pu	47200	2160	338	80	45	S	ć.1	13	4	<10	pu	pu
W1/14.4. Ok Tedi,	pu	7.6	300	94	5889	4430	1790	55700	2550	388	46	80	1	1.2	22	0	17	15,2	16.0
W2/14.4. Tabubil bridge	рц	8.3	242	16	4513	4370	1780	44700	2430	337	63	27	<5	15	21	1	11	VCL	16.6
W3/29.2. Ok Tedi/Ok Menga	pu	7.9	204	pu	10610	3660	pu	35500	2140	316	10	33	6	5	9	. ≙	26	120	9.4
W1/29.2. Ok Menga	pu	1.9	186	pu	146	1080	pu	38400	ULLC	418	дę	t.	10	1.2	5	5	L.	h.,	-
W2/29.2. creek/Ok Menga	pu	1.7	197	pu	6	2720	pu	37100	1210	146	54	11	à	1	2 6	T Pu	2 4		
african and taxanta incom Inc			1.4	24	3	CI CU	- PH	ANTIC	TOTA	01-1	1.1	IT	0	Τ.,	ę	In	0	DU	1.6

 Table A4:
 Analyses of the waters of the Fly and Ok Tedi Rivers. Medians, means and stardard deviation only given where appropriate.

sample	temp. pH	H	cond. o	oxy. ss	Ma	X	G	Mg		Sr AI	9	W	U2	5	3	22	2	HCO3	3 184	NO2	£	S,	M
	ۍ	-	hS/cm \$	Бш	mg/1 p	µg/1												mg/l	-				
W2/30 3. Lake Daviambu Creek	36.0 4	80	18 1	44 11	-	890	96	360		11		356	49 I	, c.		2	3	5	0.50		0.016 <. 005	05 0.03	16
With a Daviambu W	34.5 5	1	43 1	145 nd		Y	20			32			S S	5		0	52		0.30		<. 002 nd	0.19	13
W2/4.4. Tamu Creek mouth/F1v	29.2 6	6.0	45		-		146		672	42	50	182	26 1	0.	04 5	2	\$2	21	0.		0,004 0.01	1 0.92	Π
W1/5.4. Bai Lagoon C	29.4 6	6.2	27	65 13	-	1010	186	-		34			1 5	~ ~		0	5			-	0.025 0.005		10
W3/5.4. Kemea Lagoon W	29.6 5	5.6	18	40 30	1		82			18			I	5 0.		5	5			-	0.012 0.015		13
M4/5.4. Kenea Lagoon E	30.6 5	5.4	14	TT NF			62			п			32 0	\$					0.50		0.003 nd	0.23	11
W2/7.4. Lake Kongun N	31.2 6	6.4	22 1	102 NF			131			21			> 10	5						n nd	pu	pu	9
W3/7.4. Lake Kondun S	28.6 5	5.8	26	3 10			66			24			31 <	5							0.010 nd	pu	1
W4/7.4. Lake Kongun		5.8	28	5 10			206			24			5	1 <.	_	2					0.003 0.02		-
/8.4. Adu Lake		6.5	44	67 nd	-		392			47			25	5 .	10	2				4 nd	pu	pu	-
W1/9.4. Kai Lagoon SW		6.4	30	65 10	-	10.0	254			24			~		-	0			0.02	12 md	hi	0.5	7
W11/9.4. dto.				H	-		282			23		1210	8	5 <.	-	5							00
W1/11.4. Lake Bosset SW	29.3 6.0	0.0	21				337	3380	484	23			×.		-	~					012 0.	0.012 0.015 0.4	80
W3/11.4. Lake Bosset NW	28.7 6	6.4	38			120 2	234	6200		36		124	×.	5 .	-	v 4					0.025 0.1	15 0.6	
W2/20.2. Bai Lagoon W	30.5 6	6.5	21	98 39	500	220	pu	3060		23		585	2 1	5 4.1	-	3 4	1 65	10	pu	Pu	ри	nd 0.2	pu
W1/23.2. L. Bosset Creek	31.1	5.9	32		and.	100	pu	3980	875	36	I pu	140	6 1	0	-	× ×				P. P.	pu	pu	
Hean	30.6 6.0	5.0	28.5	2	0	230 1	188	4295	477	27	19		15.4	Ý	1.2	12		(5 I	0.27 U	27		0.37	9.4
	2.2	0.5	10.0	1	=		107	1990	141	10	48		15.1							18		0.2	
	0 00		0		0		50	1110	400	N.C.	C.A		4					13		00		0	

 Table A5:
 Analyses of the waters of the Fly River floodplain. Medians, means and stardard deviation only given where appropriate. NF means unfultered water sample.

Probe	tenp.	. pH	cond.	cond. oxy.	SS	Na	Ж	Ca	ŝ	Sr	Al	Pe	W	ΠZ	Cd	3	R	Wo.	HCO.	MHA	10,	BS	SOA	B
	C		ths/an	ae 17	1/60	1/54													1/pg					
W2/15.2. Kinda Ch. flow -> river 28.7	Ver 28.7	6.8		47	П	1340	pu	7520			pu	302	23		17	CK.	10	37	00	Pa				1
W2/J.4. Jasetei Creek	29.7		35	14	pq	1840		17300	1130	100	<50	115	18	É			15	2 4	23	2 4	III	IN AAF		
W3/15.2. Lover Fly/Oqua	28.2		151	52	558	2280		26400			Pu				1	4 4	2 5	2 •	70	C*1				יר
W1/15.2. Lower Flv/Odwa	28.6			PL-	VIC	UCLC		26700			17		2.4] [0 1	7	٥	DU	DU		Pl	D	ри
Environment A 1/18	0 00			5 2	5	0100		10.02			H	5	×		1.2	1	¢	9	nd	pu		nd	pu	pu
make / It i make it i / in	1	2		6	11	0477		2/600			<20 <20	20	11		15	5	Ų	Ð	12	<.05		pu	5.5	L
Teve and the second of the	7.67			5	184	3360		27400	2920		119	43	55		15	<2	0	5	18	pu		144	0 0	u
W1/16.2. Strickland River	27.5	3.6	156	11	1164	2840	pg	26200	2670	213	р	242	88	6	Ç	2	4	с A	84	밑	2	P	8.8	pu
W1/27.3. floodplain	32.8	6.5	106	65	12	1460	845	198.00	087	111	<50	187	36	. cc	1				1	1				
pond Obo												100	07	19	7	0	7	2	70	0.1	cnn.n	10.0	/c.0	5
W2/28.3. floodplain	28.0	6.4	280	29	46	2480	811	50000	2840	277	<50	3845	171	18	0 08	0	5	10	167	2.0	000 0			3
seepage/0bo													***	0.4	0010	7	7	A.	201	0.0	0.000	20.0 8	5.0	11
W1/26.10. floodplain	29.0	9-9	199	29	ри	2440	рц	13570	135700 5360	826	pu	<10	2290	21	0.3	14	Ģ	59	pu	pu	pu	'n	pu	
seepage/0bo	100	2		2	1											ŧ.		ł	l	1	ł	2		nit
Seebade /// Obo	BII	p.4	597	16	2	1410	ВЦ	52300	1960	297	pu	316	675	19	0.2	Ţ	ç	<10	pu	р	pu	nd	pu	pu
W2/1.4. floodplain	27.8	5.2	166	11	pu	1590	371	30600	1870	168	<50	810	070	10	pu	1	, en	G	10	10				1
seepage//i/Obo												NTO	613	1	2	D	nii	Ē.	16	C7*0	500.0	CT-0	6.1	Ξ
W1/28.10. pond/Fly N'Obo	28.8	9.9	132	38	18	1490	pu	25600	1180	153	pu	145	ŝ	24	$\langle .1 \rangle$	22	2	12	pu	pu	pu	pu	'n	pu
1/20 10 round/	10	с ц	5		1					l														
floodplain Obo	50	0.0	20	75	Ца	1/20	nd	13200	341	82	멑	48	49	34	13	*	4	\$	nd	pu	pu	pu	pu	pu
W2/29.10. floodplain	рц	0.7	158	nd	nd	1950	Ы	31400	920	191	'n	410	5	\$	1.	5	¢	<10	pu	pu	pu	pq	pu	-pu
utati UDO W1/10.10 floodhlain	Pu	1 3	161	5	100	0171	1	10700																ł
seepage N'Obo	1	1.0	Ici	2	nu	0.101	21	00/05	1/60	607	Du	600	243	24	C-0	15	2	<10	Ptt	ри	pu	pu	6.0	ри
W1/30.3. Lake Daviarbu channel			106	2	58	1350	350	20500	1040	CII	<50	114	122	00	0.05	5	þ	5	5	0.15	0.015	0.00	1.3 0	i.
W1//1.4. Lake Daviambu channel	28.6	6.4	35	\$	pu	1340	289	18200	950	35	144	497	38	26	1.5	-	10	5	3 5	0.15	010 0			0 0
W2/22.10. L. Davianbu channel	26.2	9.2	150	63	445	1520	nd	28200	1320	176	pq	15	10	9	6.1	10	2	2	1 12	Pri-	1			274
W2/24.10. L. Dav. channel	26.5	2.0	137	69	212	1390	pu	26000	1210	162	nd	410	52	E	61			11	1 2	2 2	1.1	1	8 7	87
W1/19.2. Lake Daviarbu NE	29.4	7.3	140	02	55	1640	pu	26300	1260	121	P	67	5		17	12	1 12	97		1	20	27	E S	
W4/30.3. Lake Daviarbu RE	32.2	6.8	18	95	рц	1420	234	14800	885	83	30	195	28	\$	10	5		5	11	0 15	n nnk	n P	7.0	DII 1
													2	6	£		•	8	ř	CT-0	C00.0		AIN	NI
																								(cont.)

 Table A6:
 Analyses for mixed waters. Medians, means and stardard deviation only for filtered waters of the Middle Fly region.

Probe	tenp.	뿬	cond.	•xv.	SS	Na	×	Ca	БW	Sr	Al	Fe Mn		0 U2	Cq	Cu P	Pb Xo	1	HCO3 N	MI4 N	NO2 H	HS S	so, D	DOC
	0		hS/C	de	1/2	µg/1												E	1/ja					
Wind a take Daviantan NE	30.0	6.9	80	17	pu	1330	241	14100	838	61	052	111				2	1		46 0	0.4 0	0.012 0	0.01 0	0.4 1	ц
W/ 10 1 Davianha F	pu	8.0	pu	98	114	1740	pq	32300	1390	197	nd	<10												g.
n neurorana in intion in the	0 00	0	1 55	144	6	1910	20	30700	1380	189	pu	410												Į.
Comptained of a constant	N.1.3		a de	ĘF	, pu	1300	<20	14800	823	AT.	<50	141												6
a number of the new second second	1 CL	- C	P. F.	140	pu	1340	124	12200	633	22	< 50	ц												80
W4/1.4. Lake Daviation SE	1.00	7.0	151	197	DU	USVI	Lat Put	UNANT	1250	181	pu	<10												p
WJ/24.10. L. LAVIADU JE	0 6.C	+ - r	170	115	- u	DULC		00666	1580	200	p	185												pu
W4/24.1U. L. Daviand SE	2.15	4.1	167	1	1	1750	pi pi	12100	1790	212	pu	27	5	80	0.1	5		<10			nd			g
MD/ 24.10. L DAV. ISIGNA	2.00	1 0	151	106	4	UUFC	nd bu	28600	1 160	186	p	62												nd
W5/24.10. L. UGVIGDDU S	1.67		111	113	- e	UCTL	pu	22500	1 290	147	P	16												pu
e notipation 1 01.027/20	3 00		164	100		1880	pu	10500	1390	191	PI	¢10		21			4							pu
W9/22.10. L. Davianbu W	30.2	1.6	135	172	2	1620	nd	24900	1360	170	pu	24												믿
W4/26.10. floodplain pond/	pu	8.1	142	116	22	1440	pu	28200	1240	171	pu	11	ŝ	6	<u>6.1</u>	12	ç	Ş	p	pu	pu	nd	믿	pu
Lake Pangua, flow -> Fly	5		150		10	1 KUU	pu	UUCYC	1140	348	pu	58	\$	\$	01	6	Þ	<10	pq	'n	pu	pu	nd	pu
W5/28.10. floodplain pond/ Lake Panqua	9.16	1.1	9CT	E	2	NACT	WI	00313	ALTT			3			:	5		4		3	1	1	3 0	Pre-
W4/28.10. Konovai shortcut/	nd	4.7	423	107	25	2390	pu	80200	3940	230	ри	21	282	12	1.	13	-	63	2	2	1111	1		
<pre>L. Pangua, flow -> Fly W1/31.10. pond.</pre>	34.1	0.7	209	0.	16	1660	pq	41900	1690	247	ы	83	180	17	<.1	6	₽	<10	pq	pu	pu	pu	ри	pq
L. Pangua channel													,te	2		5	5	٢	pu	pa	pu	Ъ	pu	pu
W4/31.10. Lake Pangua/channel flov -> Plv	29.5	8.0	147	102	13	0641	nd	28800		1/4	DU	97	9	2	3	3	7	- 1	1		1	1 1	1 1	1
Take Dangua NE	32.5	0.7	80	105	nd	1840	412	14300		82	16	647	\$	16	5	9	q	ŝ	8	c7.0	8 ·	8	81	21
W2/19 2. Lake Pancua NE	30.0		-	83	24	1960	pu	27600		179	p	88	25	16	51	5	0		8	멸.	8.	2	21	g
W2/31.10. L. Panqua NN	32.2			170	6	2110	pu	21500	1180	128	p	114	9		7 .	9	4.	-	2	B J	8 1	2 7	2 7	2 7
W3/31.10. Lake Pangua SE	30.4			108	9	1800	nd	28400		176	рц	23	80	€	L?	12	d	<10 <10	DQ	DU	D	2	DI	DI
W2/30.10. Lake Tarw III	33.5	8.7	115	174	2	2210		20200	1140	128	pu	282	\$	60	3	r- 1		\$	면	pu	pu	pu -	pu	pu o
W1/70.10. Lake Taru I	31.7		III	108	9	2020	P	20800		134	pu	80	Ş	20	Ç.	٩	₽.	ors	PC -	2	81	27	0.7	2 7
W4/30.10. Tanu Creek,	31.0		12/	107	5	1600		25100		152	pu	18	θ	ø	5	П	Ъ	٥	DI	10	8	2	211	2
E' L. Tanu I	C 11	4 7 6	117	LUI	L	2170	pu	22200	1200	133	ри	478	30	9	ς.1	9	4	11	ри	pu	pq	pq	ри	pu
No/JU.I. Claimer 4																								(cont.)

Probe	tenp.	뜅	cond.	· kxo	SS	Na	×	Ca	БЖ	Sr	W	Fe	ų	UZ	g	3	PP P	Ko	HCO.3	NB4	NO2	BS	SO4	g
	J		hts/cm	an	ng/1	µg/1									1				1/2a					
W1/26.10. pond/Lake Kibuz	ри	7.2	170	ри	IJ	1560	pu	35900	1380	209	рц	15	\$	r~-	<i>.</i> 1	п	4	13	pu	nd	pq	pu	'nď	ри
WJ/28.10. floodplain pond	30.7	6.7	170	09	20	1580	pu	35200	1350	198	ри	170	\$	6	4	п	đ	24	pu	pu	pu	pu	PE	ри
S' L. Kıbuz W3/19.2. old river bed, flov -> river	30.3	3*2	148	٢٢	27	1480	pu	27300	1260	167	pu	0111	11	69	C)	45	2	20	pu	ри	pu	pq	nd	hd
W3/20.2. Bai Lagoon C	30.1	0.7	43	96	11	1180	pu	0606		59	pu	1090	Ħ	99	Γ	22	nd	89	pu	ри	pu	nd	pu	рц
W4/20.2. Bai Lagoon/channel flow river -> lake	28.8	5.5	III	11	69	1200	pu	22000	1080	140	ри	263	17	89	pu	58	-	5	pu	nd	pu	pu	pu	pu
W2/5.4. Bai Lagoon C	29.3	6.4	29	63	MF	1030	124	5790	423	34	358	1610	44	80	<.04	18		Q	17	0.55	0.004	nd	pu	12
W5/20.2. Kerea Lagoon C	29.1	6.7	90	32	11	1000	ри	15900		16	pu	177	Ξ	35	ŝ	10	\mathbf{V}	80	54	ри	p	р	2.1	nd
W6//20.2. Kerea Lagoon/channel	28.3	6.8	123	14	22	1120	pu	22700		140	pq	156	9	28	1.5	19	4	15	р	ри	nd	B	pu	рц
W4/11.4. Lake Bosset/channel	28.7	0.7	114	29	ри		618	20700			<50	45	\$	e.	90.0	en	ç	9	62	01.0	0.040	10.0	3.2	ur)
W5/11.4. Lake Bosset/channel	31.8	9.9	42	110	12	744	295	7650		46	<50	166	\$	9	0.06	18	t,	ş	24	0.25	0.003	0.005	0.24	12
W1/25.2. Bosset channel, flow -> river	30.2	4.	135	11	29		pu	25500	-		pu	110	\$	11	1.2	п	4	12	pu	pq	ри	pu	멷	nd
W2/25.2. Bosset channel, floodplain runoff	25.8	5.9	Ľ	C,	9	1160	ри	12200	715	80	pu	2040	Lt.	38	pu	24	2	5	37	pu	ри	pu	0.4	ри
W2/23.3. Lake Bosset SW/village	31.3	00.	29	109	14	1500		12400			pu	325	3	17	ć.1	Ŀ	pu	00	pu	P	Ъ	pq	pq	Ы
W1/24.2. Lake Bosset NW	1.11	2.3	44	98	9	960		7390			pu	1160	6	15	<.1	80	¢	5	덛	P	Ы	pu	ЪЦ	pu
W2/24.2. Lake Bosset N	33.0	6.6		98	10	1390		9590	224		pu	36 <i>i</i>	5	22	7	80	U.	3	Ы	Ы	'n	nd	pq	рц
W3/24.2. Lake Bosset N	31.5		15	66	16	1020		10000			pu	516	Ð	15	Ç	00	Q	1-2	pu	ц	DC	nd	pu	ри
W2/11.4. Lake Bosset C	29.0		62	41	pu	1100		11100			<50	491	5	14		80	4	Ş	35	0.12	0.016	10.0	pu	
W4/24.2. Lake Bosset C	31.6		109	107	14	1420		18300	11. n	1.2	pu	Ľ	52	\$	Ģ	4	Ċ,	\$	20	Ы	nd	19d	1.1	pu
WJ/25.2. L. Bosset E	pu	5.5	119	pu	22	1760	면	23000	1180	146	Ы	127	10	18	1.2	12	ç	10	pu	pu	pq	nd	4.0	nd
W4/25.2. L. Bosset E	pu	L		pu	34	1540		15700			nd	231	\$	25	C.I.	ση.	Ų	1	рц	pu	pu	рц	pu	pu

(cont.)

sample	temp. pH	Hd	cond. oxy. ss	· Axo		Na	Х	Ca M	Mg S	Sr 1	ALE	Fe N	Wu W	Ш2	B	C	Pb	Mo	HCO3	NH4	NO2	HS	SO4	DOC
	J.		Jus/cm \$		mg/1	µg/1													mg/1				Į.	
W1/7.4. floodplain	27.2 6.2	6.2	18	14 nd	pu	1000	3390	12800	892	51	363	319.	13	11	0.1	52	₽	9	41	0.35	0.020	0.020 0.025 nd	pu	5
pool/Fly near L.Kongun W10/7.4. dto.					HF			12800			930	2800	125	15	0.1	106	č	6					3.8	5
W1/8.4. Aqu Lake N	29.4 6.6	6.6	54	63	pu	1090	282	9450	593	58	<50	156		9	0.12	6	4	S	29	0.15	0.007	0.007 0.005	1.6	12
W3/8.4. Aqu Lake/Mipan	32.2	2.1	111	86	pu		210	20200			<50	43		1.3	0.08	16	1	\$	23		0.014	0.01	3.5	L
W4/8.4. Agu Lake S	30.6	0.1	VL		HE			13200			330	817	27	9	۲.)	36	2	52	40		pu	nd	1.3	5
W5/8.4. Agu Lake E	32.0 7.5	7.5	06	92	HF			16100			131	393		5	(.1	18	4	ß	49		hđ	pu	pu	4
W2/9.4. Kai Lagoon S	. 28.6 6.4	6.4	75	33	pu	1120	433		880	11	<50	238		9	<.04	ł	5	<5	41	0.03	0.004 nd	pu	рц	F
W3/9.4. Kai Lagoon S	26.4	7.8	125	58	32	1010	598	24400]	1050	138	<50	33		65	<.04	15	Ţ	<5	73	pq	hd	pu	3.6	4
M30/9.4. dto.					IIF	1020	715	24600 1180		140	772	1140	31	1	1.^	88	9	\$					hđ	ŝ
W4/9.4. Kai Lagoon N	28.0	7.1		26	NE	1170	660		1080	124	486	936		5	0.06	39	1.3	\$2	99	0.03		0.016 0.01	1.2	1
W5/9.4. Kai Lagoon N	29.8 7.0	7.0	72	68	MF	967	344	13000		73	68	484	ø	3	1 .>	6	U	<5	40	0.05	11.0	0.015 0.01	pu	80
Mean	30.2 7.3	7.3	130	11	36	1587	540	21390	1225	150		357	82	15		12		00	53	0.21	0.01	0.02	2.5	6
Q	2.0	0.8	89	42	72	541		8372 725	725	111	139	590	308	15		11		10	28	0.16		0.03	2.0	2.4
MedIan	30.1	7.1	119	11	15	1480	385	21900	1140	138		145	e	12		σ		ß	47	0.15		0.01	2.1	9

