

Regional Training Workshop on "The Economic Valuation of The Goods and Services of Coastal Habitats"

REVERSING THE ENVIRONMENTAL DEGRADATION TRENDS IN THE SOUTH CHINA SEA AND GULF OF THAILAND

KASETSART UNIVERSITY OF THAILAND & UNEP/GEF SCS PROJECT

Band Tai-Had, Samut Songkram Province, Thailand

March 23-29, 2008

COST-BENEFIT ANALYSIS AND ITS APPLICATION

PRESENTED BY

M. SUPARMOKO

Natural Resource Economist

Faculty of Economics, Budi Luhur University & Center for Environmental Studies, University of Indonesia

INDONESIA

WHAT IS COST - BENEFIT ANALYSIS?

C/B ANALYSIS IS BASICALLY A COMPARISON BETWEEN COSTS AND BENEFITS OF AN ACTIVITY (POLICY/PROGRAM/PROJECT)

APPLICATION OF COST-BENEFIT ANALYSIS

- Feasibility Study
- Environmental Impact Assessment (EIA)
- Strategic Environmental Assessment

Types of Feasibility

- Technical Feasibility
- Financial Feasibility
- Economic Feasibility
- Social Feasibility
- Environmental Feasibility

FINANCIAL FEASIBILITY

COMPARING FINANCIAL COSTS (BUSINESS OR ACCOUNTANCY OR EXPLICIT COSTS) WITH FINANCIAL REVENUES (BUSINESS RETURNS)

ECONOMIC FEASIBILITY

COMPARING

ECONOMIC COSTS WITH ECONOMIC BENEFITS

ECONOMIC BENEFIT CONSISTS OF

TANGIBLE & INTANGIBLE BENEFITS AND DIRECT & INDIRECT BENEFITS

ECONOMIC COSTS

EXPLICIT COSTS

PLUS

IMPLICIT or OPPORTUNITY COST DIRECT and INDIRECT COSTS

SOCIAL BENEFIT CONSITS OF

PLUS

EXTERNAL

OR

ENVIRONMENTAL BENEFIT

10

EXPLICIT COSTS OPPORTUNITY COSTS EXTERNAL ENVIRONMENTAL COSTS

NET PRESENT VALUE (NPV)

$$NPV = \sum_{t=1}^{n} \frac{(B_{d} + B_{e})_{t}}{(1 + r)^{t}} - \sum_{t=1}^{n} \frac{(C_{d} - C_{p} - C_{e})_{t}}{(1 + r)^{t}}$$

OR

NPV =
$$\Sigma[\{(B_d + B_e)_t - (C_d + C_e + C_p)_t\} : (1+r)^t]$$

Action is feasible if NPV > 0

where:

Ce

- **NPV** = net present value
- Bd = direct benefit
- Be = external benefit
 - = direct cost

- **Cp** = prevention costs
- r = opportunity rate of discount
- t = years

F

= type of costs and benefits

Benefit - Cost Ratio (B/C)

INTERNAL RATE OF RETURN (IRR)

IRR is r (rate of interest) that make the NPV = 0

a. NPV

$$\begin{aligned}
\mathbf{NPV} &= \sum_{t=1}^{n} \frac{Bt - Ct}{(1+r)^{t}} \\
\mathbf{NPV} &\leq 0 : \text{ Project is } \text{feasible} \\
\text{NPV} &< 0 : \text{ Project is } \text{not feasible}
\end{aligned}$$
b. B/C :

$$\begin{aligned}
Net B/C &= \sum_{t=1}^{n} \frac{Bt - Ct}{(1+r)^{t}} \operatorname{Pos}_{Bt - Ct} \\
\frac{Bt}{(1+r)^{t}} \operatorname{neg}_{Ct} \\
\frac{Bt}{(1+r)^{t}} \operatorname{neg}_{Ct} \\
\end{aligned}$$

$$\begin{aligned}
NPV &\geq 0 : \text{ Project is } \text{feasible} \\
\text{NPV} &< 0 : \text{ Project is } \text{feasible} \\
\end{aligned}$$
Kriteria B/C $\geq 1 : \text{ Project is } \text{feasible} \\
\end{aligned}$

c. IRR

$$NPV = 0 -> IRR = DR$$

$$IRR = i^{+} + \Delta(i^{+} - i^{-})(\underbrace{NPV^{+}}_{NPV^{+} + NPV^{-}})$$

$$20 + 5 (0,5) = 20 + 2,5 = 22,5$$

$$IRR > DR : feasible$$

EXERCISES

- What did you do
- What did you get
- What are the impacts and
- What are the implications
- What
- Why
- How
- For whom _