

Horizontal and vertical distribution of microplastics in coastal and shelf waters from Yellow Sea of Korea

3rd YSLME Scientific Conference Qingdao, PR China 18-19 July 2019

Sang Hee Hong^{1,2}, Won Joon Shim^{1,2}, Young Kyoung Song^{1,2}, Soeun Eo^{1,2}, Jung-Hoon Kang^{2,3}, Oh-Youn Kwon³, Mi Jang^{1,2}, Youna Cho^{1,2}, Gi Myung Han¹

¹Oil and POPs Research Group, Korea Institute of Ocean Science and Technology ²University of Science and Technology (UST) ³Ecological Risk Research Division, Korea Institute of Ocean Science and Technology

Background

Baseline of microplastic (MP) in coastal and shelf water in South Korea

- To understand microplastic baseline level in salt water environments of South Korea
- To contribute for establishment of national marine (micro)plastic debris management policy

Limitation of conventional sampling methods (>300 μm)

Song et al. (2014), Van Cauwenberghe and Janssen. (2014), Van Cauwenberghe et al. (2015)

- Neuston net (300-500 µm mesh) sampling has advantage in worldwide data comparison
- But, Neuston sampling missed smaller MP than the mesh size
- The MP ingested by marine invertebrates was well less than 300 μm
- Mismatch of size range of microplastics between bioassays in laboratory and monitoring data

Vertical movement of MP in water column

Dai et al. (2018), Cole et al. (2016), Kowalski et al. (2016), Kooi et al. (2017)

- Most of monitoring studies have focused surface water, but further studies have increasingly described the prevalence of MP in sub-surface water
- Many of marine organisms are expected to be exposed to MP in sub-surface water
- Limitation of distribution of size, shape and polymer composition in surface vs sub-surface
- Ups and downs of MP by vertical mixing and biofilm formation and removal were predicted and measured in laboratory, but not validated in the environment

Horizontal distribution of microplastics in coastal and shelf surface water (330 μm Manta trawl sample)

Sampling locations

Micro ERA

Sampling and analytical methods

Assessment of MP >330 μm

 \checkmark Density separation: Lithium metatungstate

Abundance of microplastics >330 µm by region

✓ The abundance of microplastics were significantly (*p*<0.05) higher in urbanized or industrialized areas than those in rural or preserved areas.</p>

narticlos/m³

Abundance of microplastics >330 μ m by size and shape

								p
Divide	Study sites	Fragment	Fiber	Sphere	Film	EPS	Paint particle	Total
Urban	1-5 mm	0.19	0.30	0.00	0.01	0.07	0.14	0.71
	0.5-1 mm	0.22	0.34	0.01	0.01	0.12	0.19	0.89
	0.33-0.5 mm	0.28	0.38	0.01	0.00	0.26	0.32	1.25
	Sub-total	0.69	1.02	0.02	0.02	0.45	0.65	2.85
Rural	1-5 mm	0.09	0.13	0.00	0.01	0.32	0.03	0.57
	0.5-1 mm	0.09	0.23	0.00	0.01	0.29	0.10	0.72
	0.33-0.5 mm	0.11	0.23	0.00	0.00	0.10	0.12	0.58
	Sub-total	0.29	0.59	0.00	0.02	0.71	0.25	1.87

- ✓ Urbanized or industrialized area: Size of 0.33-0.5 mm and fiber were dominant.
- Rural or preserved area: Size of 0.5-1 mm, fiber in 0.33-0.5 mm and EPS in 1-5 mm
 *EPS (expanded polystyrene)

Sampling stations in shelf waters

Abundance of microplastics >330 µm in shelf waters

Similarity of microplastics >330 µm by morphology

⁵⁰ **Cluster analysis by morphology composition** (Fragment, paint particles, EPS, sphere, film, fiber, pellet)

Comparison of microplastic >330 µm abundance

Vertical distribution of microplastics in coastal and shelf surface water (20 µm net sample)

Sampling location for coastal water

Eight semi-enclosed bays or near shore areas (total 41 stations)

Surface (20 cm), mid-column and bottom water (1 m above bottom) samples (n=123)

✓ To grab 100 L of water sample using a stainless bucket (surface) or a submerged pump (sub-surface)
 ✓ To filter 100 L of water sample through a 20 µm mesh hand net on board

Sampling and analytical methods

Assessment of MP >20 μm

1) Surface water

- Depth: 20 cm
- 100 L

2) Middle water

- Thermocline or middle of water column
- Water-jet pump
- 100 L

3) Bottom water

- 0.5~1 m upper surface of the bed
- Water-jet pump
- 100 L

Fragment

100 µm

100 u

Micro ERA

Mirro ERA

Abundance of microplastics >20 µm in coastal water

Spatial distribution

Urban vs Rural areas

Song et al. (2018) Environ. Sci. Technol.

✓ Urban (1,051±571 n/m³) > Rural (560±184 n/m³)

	* Spearman's rank correlation (excluding BS)							
Pair	Total	Surface	Middle	Bottom				
Population - MP	0.857*	0.893**	0.464	0.143				

Vertical distribution of MP >20 µm in coastal water

Vertical profile

Surface vs water column

Size distribution and shape & polymer composition in coastal water

Size distribution

Shape composition

Polymer composition

Characteristic of microplastics >20 µm in water column

Urban vs Rural on size

-2

300-500

Loading plot

○ >500

0.5

1.0

5

4

3

2

-1

-2

1.0-

0.5-

0.0

0.5

·1.0-

-1.0

0

20-100

Urban >> rural

-0.5

Rural

Urban

Component 2 (29.0%)

Score plot

Size distribution and composition in water column

 \checkmark HD

- >> 20-100 μm

- Middle or bottom >> surface

PE & PP \checkmark

- >> larger than 100 µm
- Prevailing in all depth

* With non-fiber(fragment) microplastics * HD: high density polymer than seawater * EVA: poly(ethylene:vinyl acetate)

Micro ERA

Song et al. (2018) Environ. Sci. Technol.

Component 1 (38.9%)

Vertical distribution: physical mixing model vs in situ observation

✓ Average MP abundance normalized to the abundance at the surface layer superimposed over the exponential curves calculated with equation (dotted curves).

$$\mathbf{N} = \mathbf{e}^{\mathbf{w}/\mathbf{A}_0\mathbf{z}}$$

- Z: depth measured downward from the sea surface
 N: denotes the MP abundance normalized to the abundance at the sea surface
 W: rise velocity
 A₀: vertical diffusivity
- Middle and bottom water samples contained higher abundance of MP than predicted by a model based on physical mixing

* Collaboration with Prof. Atsuhiko Isobe at Kyushu University

Micro ERA

Song et al. (2018) Environ. Sci. Technol.

Manta trawl (330 μ m) vs Hand net (20 μ m)

✓ Manta: 2.490±1.953 particles/m³

Fragment/fiber ratio

- \checkmark < 300 μm MP in hand net
 - fragment: 86%
 - fiber: 29%

✓ Average of fragment/fiber ratio in each stations:

- Manta: 2.3
- Hand net: 7.8 -> 1.5 (>300µm)
- Depending on sampling methods (mesh size), the ratio of fragment/fiber changed and could be fragmented MP underestimated in sea water!

[✓] Hand net: 1,778±1,161 particles/m³

Sampling location for shelf water

Micro ERA

Abundance of microplastics >20 µm in shelf water

Vertical distribution of microplastics >20 µm in shelf water

 \checkmark There is no distinct vertical distribution pattern

Size distribution and shape composition in shelf water

Polymer composition in shelf water

Microplastic in 'loose' and 'aggregate' fraction and in zooplankton

- The relatively high microplastic contamination level was found in Korean coastal and shelf waters
- The positive correlation between microplastic abundance in coastal water and surrounding population indicates input of microplastics from the land based sources
- Although the levels are lower than the surface water, sub-surface water contained considerable levels of microplastics including low-density polymer (e.g. PE and PP)
- Further study is required to evaluate relative contribution of various biological interactions for the downward movement of microplastics

Thank you!

