[site.actions.skipToContent]

A+ a- Text version Print version
Search HELCOM:

Ecosystem regime state in the Baltic Proper, Gulf of Riga, Gulf of Finland, and the Bothnian Sea

bsrp_logo.gif 

Authors: Christian Möllmann1, Bärbel Müller-Karulis2, Rabea Diekmann1, Juha Flinkman3, Anna Gårdmark4

 

Key message:

  • Distinct regimes in ecosystem structure were detected in the four Baltic subsystems analyzed (Fig. 1)
  • Regime shifts – major changes in pelagic ecosystem structure – occurred at the end of the 1980s and during the early 1990s, in the Gulf of Finland during the mid 1990s and in 2003.
  • Pelagic food web changes were climate driven and further accelerated by fishing pressure and internal processes; in the Gulf of Riga and Gulf of Finland eutrophication, and in the Gulf of Finland, also hypoxia further affected ecosystem structure.

 

fig1_topleft.jpg     fig1_topright.jpg   
fig1_bottomleft.jpgfig1_bottomright.jpg

Figure 1: Ecosystem regime shifts in the Baltic Proper (top left), Gulf of Riga (top right), Gulf of Finland (bottom left), and Bothnian Sea (bottom right) depicted by principal component scores Click images to enlarge.

 

Relevance of the indicator for describing developments in the environment

The indicator is based on multivariate analysis of indicator time series. It describes major shifts in ecosystem structure and associates them with fundamental driving factors. Major drivers identified were climate induced changes in temperature and salinity, fishing pressure, as well as variations in bottom water oxygen conditions, which are both climate and eutrophication related. The analysis also shows key interactions between ecosystem components (e.g. resource competition and limitation).

Policy relevance and policy references

The Baltic Sea is subject to pronounced climate driven variations in temperature and salinity levels, which have a distinct impact upon ecosystem structure. Changes in temperature and salinity directly affect the composition of zooplankton and fish communities. Indirect effects are caused by the impact of the saline inflow regime on deep water oxygen conditions, which further influence not only fish recruitment, but also nutrient levels in the Baltic Proper.

Management has – if at all - only little impact on climate driven processes in the Baltic ecosystem. Target levels for Baltic ecosystem components should therefore account for the effect of large scale climatic variations. Also strong interactions between ecosystem components, for example the interrelation between cod, herring and sprat stocks, should be taken into consideration within an adaptive, ecosystem based management framework for the Baltic Sea.

Assessment

Baltic Proper

fig2.jpg 

scale3.jpg 

Figure 2: “Traffic light” plot for the Baltic Proper; time-series transformed into quintiles and sorted according to PC1; factor loading for PC1 next to variable abbreviation. Click image to enlarge!

 

The ecosystem of the Baltic Proper changed from a low temperature, high saline state with frequent inflows during the 1970s and 1980s through a freshening and warming stage with extensive bottom water anoxia and high nutrient concentrations in the beginning of the 1990s to a warm, low saline state with stable nutrient concentrations (Fig. 2). Associated were drastic changes in fish and zooplankton communities, driving the Baltic from a cod/herring to a sprat dominated system. Biomass of stenohaline species in the zooplankton community (Pseudocalanus acuspes) decreased, while the share of smaller, temperature controlled taxa (Acartia, Temora) grew.

The changes in the fish community were the combined results of direct and indirect effects of climate on recruitment, as well as of low cod predation pressure. Decreasing salinities and accompanying low oxygen conditions caused recruitment failure of Eastern Baltic cod, largely explaining the collapse of the stock, which was further amplified by high fishing pressure (Köster et al. 2005). Processes leading to recruitment failure were high egg mortality due to low oxygen contents (Köster et al. 2003) and low Pseudocalanus acuspes availability, the preferred larval food (Hinrichsen et al. 2002). In contrast, sprat profited from increased temperatures, which positively affected egg survival (Köster et al. 2003, Baumann et al. 2006) and led to an increase in Acartia spp. biomass, the major food source of sprat larvae (Voss et al. 2003).

Over the time scale investigated, fluctuations in nutrient concentrations were largely driven by the duration of stagnation periods, during which NH4 and PO4 accumulate in the bottom water. Winter DIN and DIP pools in the surface layer loosely followed the bottom water dynamics.

Linkages between phytoplankton and the large scale changes in the Baltic Proper ecosystem were only weakly expressed. Spring dinoflagellate biomass increased with temperature, which Wasmund et al. (1988) explain by reduced deep water mixing during warm winters. The apparent lack of regime shifts in the phytoplankton community was potentially also caused by the shortness of the available time-series.



Gulf of Riga

fig3.jpg 

scale3.jpg 

Figure 3: “Traffic light” plot for the Gulf of Riga; time-series transformed into quintiles and sorted according to PC1; factor loading for PC1 and PC2 next to variable abbreviation. 

 

The Gulf of Riga (Fig. 3) underwent similar changes in temperature as the Baltic Proper, but due to the absence of high saline bottom water, the effect on salinity conditions was smaller. Also nutrient loads followed a climate driven signal. Similar to the Baltic Proper, zooplankton development in spring benefited from higher temperatures. In the Gulf of Riga this led to increased herring recruitment and growth of the herring stock, which in turn caused a cascading decrease of summer zooplankton biomass (see also Kornilovs et al. 2004). In contrast to the Baltic Proper, summer phytoplankton concentrations and winter nutrient (DIP) pools were tightly related. The increase in winter DIP, decoupled from the load signal, is probably an effect of the long residence time of DIP (Savchuk 2002) in the Gulf of Riga. Internal loading from the bottom sediments, which have accumulated the surplus of past riverine inputs, therefore dominated the DIP dynamics in the Gulf.  

 

Gulf of Finland

fig4.jpg 

scale3.jpg  

Figure 4. “Traffic light” plot for the Gulf of Finland; time-series transformed into quintiles and sorted according to PC1; factor loading for PC1 next to variable abbreviation.

 

In the Gulf of Finland, regime shifts in ecosystem composition occurred slightly later than in the Baltic Proper and Gulf of Riga. Similar to the other subsystems, the Gulf of Finland has changed from a saline, relatively cold ecosystem to a warmer, less saline system (Fig. 4). Marine species, e.g. marine zooplankton such as Pseudocalanus acuspes, declined and where replaced by Eurytemora sp. and cladocerans. Fish communities show a similar decline in herring stocks and increase in sprat abundance than in the Baltic Proper. In addition, oxygen deficiency in the bottom waters as well as eutrophication, which lead to an increase in nutrient concentration and phytoplankton biomass, play an important role in determining the ecosystem structure of the Gulf of Finland. After the 2003 salt water inflow, pronounced bottom-water anoxia impacted zooplankton and fish communities so strongly, that the years 2003 – 2005 form a distinct ecosystem regime in the Gulf of Finland.


Bothnian Sea

fig5.jpg 

scale3.jpg

Figure 5. “Traffic light” plot for the Bothnian Sea; time-series transformed into quintiles and sorted according to PC1; factor loading for PC1 next to variable abbreviation

 

Also in the Bothnian Sea a climate-driven regime shift has changed the ecosystem from saline and cold conditions with abundant marine zooplankton (Pseudocalanus and Temora), with large herrings exploited by trapnets, to a warmer and less saline system dominated by brackish water zooplankton such as Bosmina, with abundant, but small herring exploited by trawling (Fig. 5). Salinity decrease was the primary driver of the regime shift in the Bothnian Sea, followed by temperature increase, whereas in contrast to the Gulf of Riga and Gulf of Finland, eutrophication did not affect the ecosystem structure significantly.


Data

Metadata

This indicator fact sheets summarizes the outcome of the ICES/HELCOM/BSRP Workshop on Developing a Framework for an Integrated Assessment for the Baltic Sea [WKIAB]”, held in Tvärminne (Finland), March 1 – 4, 2006 and the first session of the ICES/HELCOM Working Group on Integrated Assessments of the Baltic Sea (WGIAB), held in Hamburg (Germany), March 12 – 16, 2007. During both meetings, time series characterizing key components of the climatic, hydrographic, nutrient, and trophic system of the Baltic Sea were analyzed by principal component analysis to identify distinct temporal ecosystem states, their main properties and underlying driving factors. Detailed information on the workshop outcome and the working group results can be found in ICES (2006a) and ICES (2007).

Technical information

Data source 

The data sources for the analysis are listed in table 1 – 4. Abbreviations used: ICES – International Council for the Exploration of the Sea, LATFRA – Latvian Fish Resources Agency, IOW – Institute of Baltic Sea Research, Warnemünde, BED – Baltic Environment Database, Stockholm University, SMHI – Swedish Meteorological and Hydrological Institute, FIMR – Finnish Institute of Marine Research, IFM – Leibniz Institute for Marine Science Kiel, LHEI – Latvian Institute of Aquatic Ecology, HELCOM – Baltic Marine Environment Protection Commission, FGFRI – Finnish Game and Fisheries Research Institute, EMI – Estonian Marine Institute, SBF – Swedish Board of Fisheries

 

Table 1. Time-series used in the analysis of the Baltic Proper

 

VARIABLE ABBREVIATION UNIT AREA SEASON SOURCE 
Cod Spawner biomass CODSSB Tonnes SD 25–32 Annual ICES 
Cod recruitment CODR2 No age 2 (10³) SD 25–32 Annual ICES 
Cod weight CODWC3 kg (age 3) SD 25–32 Annual ICES 
Cod fishing mortality COD_F47 age 4–7 SD 22–32 Annual ICES 
Sprat Spawner biomass SPRSSB Tonnes SD 22–32 Annual ICES 
Sprat recruitment SPRR1 No age 1 (10³) SD 22–32 Annual ICES 
Sprat weight SPRWC3 kg (age 3) SD 22–32 Annual ICES 
Sprat fishing mortality SPR_F35 age 3–5 SD 22–32 Annual ICES 
Herring Spawner biomass HERSSB Tonnes SD 25–29 +32excl. GOR Annual ICES 
Herring recruitment HERR1 No age 1 (10³) SD 25–29 +32excl. GOR Annual ICES 
Herring weight HERWC3 kg (age 3) SD 25–29 +32excl. GOR Annual ICES 
Herring fishing mortality HER_F26 age 2–6 SD 25–29 +32excl. GOR Annual ICES 
Acartia spp.s Acartia_Spr mg m-3Gotland Basin Spring LATFRA 
Acartia spp. Acartia_Sum mg m-3Gotland Basin Summer LATFRA 
Temora longicornis Temora_Spr mg m-3Gotland Basin Spring LATFRA 
Temora longicornis Temora_Sum mg m-3Gotland Basin Summer LATFRA 
Pseudocalanus acuspes Pseudo_Spr mg m-3Gotland Basin Spring LATFRA 
Pseudocalanus acuspes Pseudo_Sum mg m-3Gotland Basin Summer LATFRA 
Chlorophyll a Chla_BBSpr mg m-3Bornholm Basin Spring ICES 
Chlorophyll a Chla_BBSum mg m-3Bornholm Basin Summer ICES 
Chlorophyll a Chla_GBSpr mg m-3Gotland Basin Spring ICES 
Chlorophyll a Chla_GBSum mg m-3Gotland Basin Summer ICES 
Diatoms dia_BB_spr mg m-3Bornholm Basin Spring Wasmund and Uhlig 2003, IOW
Dinoflagellates dino_BB_spr mg m-3Bornholm Basin Spring Wasmund and Uhlig 2003
Bluegreen algae cyano_BB_spr mg m-3Bornholm Basin Spring Wasmund and Uhlig 2003
Diatoms dia_BB_Sum mg m-3Bornholm Basin Summer Wasmund and Uhlig 2003
Dinoflagellates dino_BB_sum mg m-3Bornholm Basin Summer Wasmund and Uhlig 2003
Bluegreen algae cyano_BB_sum mg m-3Bornholm Basin Summer Wasmund and Uhlig 2003
Diatoms dia_GB_spr mg m-3Gotland Basin Spring Wasmund and Uhlig 2003
Dinoflagellates dino_GB_spr mg m-3Gotland Basin Spring Wasmund and Uhlig 2003
Bluegreen algae cyano_GB_spr mg m-3Gotland Basin Spring Wasmund and Uhlig 2003
Diatoms dia_GB_sum mg m-3Gotland Basin Summer Wasmund and Uhlig 2003
Dinoflagellates dino_GB_sum mg m-3Gotland Basin Summer Wasmund and Uhlig 2003
Bluegreen algae cyano_GB_sum mg m-3Gotland Basin Summer Wasmund and Uhlig 2003
Total phytoplankton Totphyto_BB_spr mg m-3Bornholm Basin Spring Wasmund and Uhlig 2003
Total phytoplankton Totphyto_BB_sum mg m-3Bornholm Basin Summer Wasmund and Uhlig 2003
Total phytoplankton Totphyto_GB_spr mg m-3Gotland Basin Spring Wasmund and Uhlig 2003
Total phytoplankton Totphyto_GB_sum mg m-3Gotland Basin Summer Wasmund and Uhlig 2003
Dissolved inorganic nitrogen (surface) DIN_BB_10_win mmol m-3Bornholm Basin Winter BED/IOW/SMHI/FIMR/ICES
Dissolved inorganic phosphorus (surface) DIP_BB_10_win mmol m-3Bornholm Basin Winter BED/IOW/SMHI/FIMR/ICES
Dissolved inorganic nitrogen (surface) DIN_GB_10_win mmol m-3Gotland Basin Winter BED/IOW/SMHI/FIMR/ICES
Dissolved inorganic phosphorus (surface) DIP_GB_10_win mmol m-3Gotland Basin Winter BED/IOW/SMHI/FIMR/ICES
Dissolved inorganic nitrogen (deepwater) DIN_BB_90_sum mmol m-3Bornholm Basin Summer BED/IOW/SMHI/FIMR/ICES
Dissolved inorganic phosphorus (deepwater) DIP_BB_90_sum mmol m-3Bornholm Basin Summer BED/IOW/SMHI/FIMR/ICES
Dissolved inorganic nitrogen (deepwater) DIN_GB_220_sum mmol m-3Gotland Basin n Summer BED/IOW/SMHI/FIMR/ICES
Dissolved inorganic phosphorus (deepwater) DIP_GB_220_sum mmol m-3Gotland Basin Summer BED/IOW/SMHI/FIMR/ICES
Maximum ice cover MaxIce km2 Baltic Annual FIMR 
Baltic Sea IndexBSICentral BalticWinterIFM
Inflow strength inflow km3 Central Baltic Annual IOW 
Depth of 11 psu isoline 11psu_GBAnn Gotland Basin Annual LATFRA 
Cod reproductive volume REPVOL km3Central Baltic Annual IFM 
Sea surface temperature SST_BB_Spr °C Bornholm Basin Spring BED/IOW/SMHI/FIMR/ICES
Sea surface temperature SST_BB_Sum °C Bornholm Basin Summer BED/IOW/SMHI/FIMR/ICES
Sea surface temperature SST_GB_Spr °C Gotland Basin Spring BED/IOW/SMHI/FIMR/ICES
Sea surface temperature SST_GB_Sum °C Gotland Basin Summer BED/IOW/SMHI/FIMR/ICES
Midwater temperature (40–60m) T_BB_60_spr °C Bornholm Basin Spring BED/IOW/SMHI/FIMR/ICES
Midwater temperature (40–60m) T_BB_60_sum °C Bornholm Basin Summer BED/IOW/SMHI/FIMR/ICES
Midwater temperature (40–60m) T_GB_60_spr °C Gotland Basin Spring BED/IOW/SMHI/FIMR/ICES
Midwater temperature (40–60m) T_GB_60_sum °C Gotland Basin Summer BED/IOW/SMHI/FIMR/ICES
Sea surface salinity SSS_BB psu Bornholm Basin Spring BED/IOW/SMHI/FIMR/ICES
Sea surface salinity SSS_GB psu Gotland Basin Spring BED/IOW/SMHI/FIMR/ICES
Halocline salinity (70–90m) S90_BB psu Bornholm Basin Spring BED/IOW/SMHI/FIMR/ICES
Halocline salinity (80–100m) S100_GB psu Gotland Basin Spring BED/IOW/SMHI/FIMR/ICES
Deepwater oxygen O2_BB ml l-1Bornholm Basin Spring BED/IOW/SMHI/FIMR/ICES
Deepwater oxygen O2_GB ml l-1 Gotland Basin Spring BED/IOW/SMHI/FIMR/ICES


Table 2. Time-series used in the analysis of the Gulf of Riga.

 

Variable Abbreviation Unit Season Source 
Acartia spp. AC_spr mg m-3 Spring LatFRA
Acartia spp. AC_sum mg m-3SummerLatFRA
Bosmina coregoni maritima Bos_spr mg m-3Spring LatFRA
Bosmina coregoni maritima Bos_spr mg m-3Spring LatFRA
Cercopagis pengoiCercmg m-3SummerLatFRA
Eurytemora affinis Eury_spr mg m-3Spring LatFRA
Eurytemora affinis Eury_sum mg m-3Summer LatFRA
Evadne nordmanni Eva_spr mg m-3Spring LatFRA
Limnocalanus grimaldii Limn_spr mg m-3Spring LatFRA
Limnocalanus grimaldii Limn_sum mg m-3Summer LatFRA
Podon sp. Pod_spr mg m-3Spring LatFRA
Synchaeta sp. Syn_spr mg m-3Spring LatFRA
Chlorophyll a Chla_spr mg m-3 Spring LHEI 
Chlorophyll a Chla_sum mg m-3Summer LHEI 
Secchi depth Sec_spr Spring LHEI 
Secchi depth Sec_sum Summer LHEI 
Herring yield Her_yield tonnes Annual ICES 
Herring spawner biomass Her_SSB tonnes Annual ICES 
Herring weight Her_W kg Annual ICES 
Herring recruitment Her_R No age 1 Annual ICES 
Cod landings Cod_catch tonnes Annual ICES 
Nitrogen NO23_spr mmol m-3Spring LHEI 
Phosphorus PO4_spr mmol m-3Spring LHEI 
Nitrogen load NO3_load mmol m-3Spring LHEI 
Phosphorus load PO4_load mmol m-3Spring LHEI 
Runoff RunoffJanAug m3 s-1 January–August Laznik et al., 1999, HELCOM 
Salinity (0–50m) S_aug50 psu August LATFRA 
Temperature (0–20m) T_aug20 °C August LATFRA 
Temperature (0–50m) T_aug50 °C August LATFRA 
Temperature (0–50m) T_feb50 °C Febuary LATFRA 
Temperature (0–20m) T_may20 °C May LATFRA 
Temperature (0–50m) T_may50 °C May LATFRA 
Baltic Sea Index BSI – Winter IFM 
 

Table 3: Time-series used in the analysis of the Gulf of Finland

 

Variable Abbreviation Unit Season Source 
Pseudocalanus acuspes Pseudo_sum mg m-3Summer FIMR 
Temora longicornis Temora_sum mg m-3Summer FIMR 
Acartia spp. Acartia_sum mg m-3Summer FIMR 
Eurytemora affinis Eury_sum mg m-3Summer FIMR 
Limnocalanus lacustris Limno_sum mg m-3Summer FIMR 
Bosmina coregoni maritima Bosm_sum mg m-3Summer FIMR 
Phytoplankton biomass Phyto_pl mg m-3Summer FIMR 
Temperature (0–10m) Temp_surf_sum °C Summer FIMR 
Salinity (0–10m) Salin_surf_sum psu Summer FIMR 
Salinity (30m–bottom) Salin_sum_bot psu Summer FIMR 
Chlorophyll a (0–20m) Chla_sum mg m-3Summer FIMR 
Phosphates PO4_sum mmol m-3Summer FIMR 
Nitrates NO3_sum mmol m-3Summer FIMR 
Phosphates PO4_win mmol m-3Winter FIMR 
Nitrates NO3_win mmol m-3Winter FIMR 
Oxygen bottom Oxy_bot_sum ml l-1Summer FIMR 
Herring landing HERRland kg Annual FGFRI 
Sprat landing SPRATland kg Annual FGFRI 
Salmon landing SALMONland kg Annual FGFRI 
Trout landing TROUTland kg Annual FGFRI 
Acartia spp. Acar_spring mg m-3Spring EMI 
Eurytemora affinis Eury_spring mg m-3Spring EMI 
Podon spp. Podo_spring mg m-3Spring EMI 
Limnocalanus lacustris Limn_spring mg m-3Spring EMI 
Pseudocalanus acuspes Pseu_spring mg m-3Spring EMI 
Sprat catch (Estonia) SprCEst 1000 tonnes Annual EMI 
Sprat weight at age 3 SprWA3 Annual EMI 
Herring catch (Est+Fin+Rus) HerCatch 1000 tonnes Annual EMI 
Herring weight at age 3 HerWA3 Annual EMI 
Temperature (0–10m) F2TEMPUp °C Winter EMI 
Silica (0–10m) F2SLCAUp mmol m-3Winter EMI 
Temperature (0–10m) F5TEMPUp °C May EMI 
Temperature (0–10m) F8TEMPUp °C August EMI 
Salinity (0–10m) F8SALUp psu August EMI 
Chlorophyll a (0–10m) F8CHLA mg m-3August EMI 

Table 4: Time-series used in the analysis of the Bothnian Sea

 

VARIABLE ABBREVIATION UNIT SEASON AREA SOURCE 
Perch catch per unit effort perchCPUE numbers net-1 night-1Summer SW Bothnian Sea coast SBF 
Roach catch per unit effort roachCPUE numbers net-1 night-1Summer SW Bothnian Sea coast SBF 
Herring total stock biomass herrTSB tonnes Annual Bothnian Sea offshore ICES 
Herring recruitment herrRecr thousands of 1-yr-olds Annual Bothnian Sea offshore ICES 
Herring weight at age 5 herrsize5 kg Annual Bothnian Sea offshore ICES 
Macoma balthica biomass MacomaS g m-2 Summer SW Bothnian Sea coast SBF 
Diatoms Diatoms mg m-3Summer Bothnian Sea offshore FIMR 
Dinoflagellates Dinoflag mg m-3Summer Bothnian Sea offshore FIMR 
Cyanobacteria Cyanobact mg m-3Summer Bothnian Sea offshore FIMR 
Phytoplankton Phytopl mg m-3Summer Bothnian Sea offshore FIMR 
Acartia sp. Acartia mg m-3Summer Bothnian Sea offshore FIMR 
Bosmina sp. Bosmina mg m-3Summer Bothnian Sea offshore FIMR 
Eurytemora sp. Eurytem mg m-3Summer Bothnian Sea offshore FIMR 
Limnocalanus sp. Limnocal mg m-3Summer Bothnian Sea offshore FIMR 
Evadne sp.and Podon sp. EvadnPodon mg m-3Summer Bothnian Sea offshore FIMR 
Pseudocalanus sp. Pseudocal mg m-3Summer Bothnian Sea offshore FIMR 
Temora sp. Temora mg m-3Summer Bothnian Sea offshore FIMR 
Macoma baltica MacomaN g sample-1 Summer NW Bothnian Sea coast Umeå University 
Chlorophyll a Chla mg m-3Summer Bothnian Sea offshore FIMR 
Surface temperature (0–10 m) tempwsurf degrees C Winter Bothnian Sea offshore SMHI, FIMR 
Surface temperature (0–10 m) tempssurf degrees C Summer Bothnian Sea offshore SMHI, FIMR 
Bottom temperature (30-m) tempsbot degrees C Summer Bothnian Sea offshore SMHI, FIMR 
Salinity bottom (30-m) salwbot psu Winter Bothnian Sea offshore SMHI, FIMR 
Dissolved inorganic phosphorous (0–10 m) POwsurf mmol m-3Winter Bothnian Sea offshore SMHI, FIMR 
Dissolved inorganic nitrogen (0–10 m) NOwsurf mmol m-3Winter Bothnian Sea offshore SMHI, FIMR 
Maximum ice coverage maxice km2 Winter Baltic Sea FGFIR 
Runoff dissolved inorganic nitrogen DINrunoff tonnes Annual W Bothnian Sea coast Swedish University of Agricultural Sciences, Environmental Assessment Unit 
Runoff dissolved inorganic phosphorous POrunoff tonnes Annual W Bothnian Sea coast Swedish University of Agricultural Sciences, Environmental Assessment Unit 
Runoff silicate Sirunoff tonnes Annual W Bothnian Sea coast Swedish University of Agricultural Sciences, Environmental Assessment Unit 
Commercial trawl effort trawlh Annual Bothnian Sea FGFRI 
Commercial trapnets trapnets number of nets Annual E Bothnian Sea coast FGFRI 


Description of data

Nutrient, hydrographic and phytoplankton data were taken from various national marine monitoring programs within HELCOM COMBINE, collected both in the ICES marine monitoring database, as well as by the Baltic Environment Database at Stockholm University and the SHARK database at SMHI. Zooplankton data for the Baltic Proper and Gulf of Riga were contributed from the Latvian Fish Resources Agency monitoring programme. Stocks, landing and recruitment of commercial fish species were used as published by the ICES fish stock assessments (ICES 2006b). Tables 1 - 4 contain a detailed description of the data sources of the indicator time series for the Baltic Proper, Gulf of Riga, Gulf of Finland and Bothnian Sea, respectively.

Temporal coverage

In the Baltic Proper and Gulf of Riga, the analysis covers the time period 1974 - 2005. Most indicator time series used cover the entire time period, but phytoplankton and chlorophyll a data for the Baltic Proper were available only from 1979. In the Gulf of Finland and Bothnian Sea the analysis and the indicator time-series used span 1979 – 2005.

Methodology and frequency of data collection

Nutrient, hydrographic and phytoplankton time series were mostly collected according to the methods of the HELCOM COMBINE manual. Zooplankton data were derived from seasonal surveys by the Latvian Fisheries Resource Agency using a Juday net (Möllmann et al. 2000). 

Methodology of data manipulation

Datasets were analyzed by Principal Component Analysis (PCA). Missing values in the dataset were replaced by the mean values of the respective variable. To improve linearity between variables and reduce the relationship between the mean and the variance some of the variables were ln(x+1) transformed. Subsequently a standardized PCA based on the correlation matrix was performed on the transformed values. The occurrence of regime shifts - rapid changes in the datasets from one state to another - was subsequently examined by chronological clustering, using intermediate linkage clustering (Legendre et al. 1985, Legendre and Legendre 1998).

The ecosystem changes were further presented in “traffic-light plots” (Choi et al. 2005). The plots present the raw values of each variable, categorized into quintiles, which are assigned a specific colour. To detect systematic patterns in the time series, the variables are sorted according to their loadings along the first principal component.

Finally, to test the significance of potential ecosystem drivers, the dataset for each ecosystem were divided into explanatory (mainly hydrographical parameters, nutrient loads, fishing pressure) and response variables (biological parameters). Redundancy Analysis was used to test which combination of explanatory variables explained the response variables best.

Quality of information

Strength and weakness (at data level) 

The indicator summarizes changes in time series characterizing a wide spectrum of ecosystem components and potential driving factors, ranging from climate and hydrography to nutrients, lower and upper trophic level species biomass. The analysis also includes direct anthropogenic forcing as for example nutrient loads and fishing pressure.

2. Reliability, accuracy, robustness, uncertainty (at data level)

The reliability of the regime shifts detected depends on the ability of the indicator time series used to depict key processes in the Baltic ecosystem. Further, the robustness of the analysis depends on the length of the time series in comparison to the time scale of processes, by which they are influenced, i.e. systematic patterns can only be detected if they occur within the ~ 30 year timeframe covered by the analysis. Further, the data analysis highlights consistent patterns in indicator time series, involving a large number of indicators but reveals processes impacting on single or few ecosystem components only in higher order principal components.

3. Further work required (for data level and indicator level)

Further work is required to refine the indicators used in the analysis. The raw data provided by the Baltic marine monitoring programs should be routinely aggregated into indicator time series that characterize key processes in the Baltic ecosystem, involving scientific expert groups. Future analysis should further expand the spatial coverage of the analysis and should investigate the stability of the ecosystem regimes identified, as well as the reversibility of ecosystem regime transitions.

References

Baumann, H., Hinrichsen, H.-H., Malzahn, A., Möllmann, C., Köster, F.W. and Temming, A. 2006. Sprat recruitment in the Baltic Sea: the importance of temperature and transport variability during the late larval and early juvenile stages. Can. J. Fish. Aquat. Sci. in press.

Choi, J. S., Frank, K. T., Petrie, B. D. and Leggett, W. C. 2005. Integrated ecosystem assessment of a large marine ecosystem: a case study of the devolution of the Eastern Scotian Shelf, Canada. Oceanography and Marine Biology: an Annual Review, 43: 47–67.

Hinrichsen, H.H., Möllmann, C., Voss, R., Köster, F.W. and Kornilovs, G. 2002. Bio-physical modelling of larval Baltic cod (Gadus morhua) survival and growth. Can. J. Fish. Aquat. Sci., 59: 1958-1873.

ICES. 2007. Report of the ICES/HELCOM Working Group on Integrated Assessments of the Baltic Sea (WGIAB), 12 – 16 March 2007, Hamburg, Germany. ICES CM 2007/BCC:04. 71 pp.

ICES. 2006a. Report of the ICES/BSRP/HELCOM Workshop on Developing a Framework for Integrated Assessment for the Baltic Sea (WKIAB), 1-4 March 2006, Tvärminne, Finland. ICES CM 2006/BCC:09. 57 pp.

ICES. 2006b. Report of the Baltic Fisheries Assessment Working Group (WGBFAS). ICES CM 2006/ACFM:24.

Köster, F.W., Möllmann, C., Neuenfeldt, S., Vinther, M., St. John, M.A., Tomkiewicz, J., Voss, R., Hinrichsen, H.H., Kraus, G. and Schnack, D. 2003. Fish stock development in the Central Baltic Sea (1976-2000) in relation to variability in the physical environment. ICES Mar. Sci. Symp., 219: 294-306.

Köster, F.W., Möllmann, C., Hinrichsen, H.-H., Tomkiewicz, J., Wieland, K., Kraus, G., Voss, R., MacKenzie, B.R., Schnack, D., Makarchouk, A., Plikshs, M. and Beyer J.E. 2005. Baltic cod recruitment – the impact of climate and species interaction. ICES J. Mar. Sci., 62: 1408-1425.

Laznik, M., Stalnacke, P., Grimvall, A., Wittgren, H.B. 1999. Riverine input of nutrients to the Gulf of Riga – temporal and spatial variation. Journal of Marine Systems 23:11-25.

Legendre, P, and Legendre, L. .1998.. Numerical Ecology, 2nd English Edition. Elsevier Science B.V., Amsterdam, 1998, XV + 853pp.

Legendre, P., Dallot, S., and Legendre, L. 1985. Succession of species within a community: Chronological clustering, with applications to marine and freshwater zooplankton. Am. Nat., 125: 257-288.

Möllmann, C., Kornilovs, G. and Sidrevics, L. 2000. Long-term dynamics of main mesozooplankton species in the Central Baltic Sea. J. Plankton Res., 22: 2015–2038.

Voss, R., Köster, F.W. and Dickmann, M. 2003. Comparing the feeding habits of co-occurring sprat (Sprattus sprattus) and cod (Gadus morhua) larvae in the Bornholm Basin, Baltic Sea. Fish. Res., 63: 97-111.

Wasmund, N. and Uhlig, S. 2003. Phytoplankton trends in the Baltic Sea. ICES J. Mar. Sci., 60 : 177-186.

Wasmund, N., Nausch, G., and Matthäus, W. 1998. Phytoplankton spring blooms in the southern Baltic Sea - spatio-temporal development and long-term trends. J. Plankt. Res., 20: 1099-1117.

 

Notes:

1 Hamburg University

2 Latvian Institute of Aquatic Ecology

3 Finnish Institute of Marine Research

4 Institute of Coastal Research, Swedish Board of Fisheries

 

For reference purposes, please cite this indicator fact sheet as follows:
[Author’s name(s)], [Year]. [Indicator Fact Sheet title]. HELCOM Indicator Fact Sheets 2007. Online. [Date Viewed], http://www.helcom.fi/environment2/ifs/en_GB/cover/.

 

Last updated: 5.10.2006